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1. Introduction
Consider the Ricker population model

$x(n+1)=x(n)\exp[r-ax(n)]$ , n $=0,$ 1,2, \cdots (1)
where r $>0$ and a $>0$ , and the initial condition of (1) is given as $x(0)>0$ . Aknown
result for the permanence of (1) is the following: (cf. Hofbauer et al[2]):

Theorem ASystem (1) is permanent

Let $x(n)$ be any solution of system (1). We say (1) is permanent if there exist $\xi>0$ and
$\eta>0$ , independent of $x(n)$ , such that $\xi\leq x(n)\leq\eta$ for all large $n$ . Permanence is one of
the most important questions from abiological point of view, which guarantees the long
term survival of species. It is well known that the dynamics of difference equations may
be extremely complex, even for one species, since, for example, chaotic behavior can occur
even in one dimensional equations. Theorem Asays that (1) is permanent even if chaotic
behavior occurs for large $r$ .

We next consider the Lotka-Volterra discrete competition population model:

$\{$

$x(n+1)=x(n)\exp[r_{1}-a_{11}x(n)-a_{12}y(n)]$

$y(n+1)=y(n)\exp[r_{2}-a_{21}x(n)-a_{22}y(n)]$ , $n=0,1,2$, $\cdots$

(2)

where $r_{i}>0$ , $a_{i:}>0(i=1,2)$ , $a_{\dot{\iota}j}\geq 0(i\neq j)$ . The initial condition of (2) is given as
$x(0)>0$ and $y(0)>0$ . A known result for the permanence of (2) is the following (cf. [2]):

Theorem $\mathrm{B}$ System (2) is permanent if and only if
$r_{2}a_{11}-r_{1}a_{21}>0$ and $r_{1}a_{22}-r_{2}a_{12}>0$

hold.

We will now take some delays into consideration on systems (1) and (2). Consider the
Ricker population model with adelay

$x(n+1)=x(n)\exp[r-ax(n-k)]$ , (3)
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where $r>0$ , $a>0$ , $k\in Z^{+}$ ( $Z^{+}:$ the nonnegative integer set) and the Lotka-Volterra
discrete competition population model with delays

$\{$

$x(n+1)=x(n)\exp[r_{1}-a_{11}x(n-k_{1})-a_{12}y(n-k_{2})]$

$y(n+1)=y(n)\exp[r_{2}-a_{21}x(n-l_{1})-a_{22}y(n-l_{2})]$ ,
(4)

where $k_{i}$ , $l_{i}\in Z^{+}$ , $r_{i}>0$ , $a_{ii}>0$ $(i–1, 2)$ , and $a_{ij}\geq 0(i\neq j)$ . The following theorems
hold, which generalize Theorems Aand $\mathrm{B}$ , respectively:

Theorem 1. System (3) is permanent for all $k\in Z^{+}$ .

Theorem 2. (Saito et $al[4]$) System (4) is permanent for all $k_{i}$ , $l_{i}\in Z^{+}(i=1,2)$ if and
only if

$r_{2}a_{11}-r_{1}a_{21}>0$ and $r_{1}a_{22}-r_{2}a_{12}>0$

hold,

As seen in the comparison between Theorems Aand $\mathrm{B}$ and Theorems 1 and 2, we can
see that the delays $k$ , $k_{1}$ , $k_{2}$ , $l_{1}$ , and $l_{2}$ have no effect on dynamics of the discrete population
models (3) and (4) from the point of view of permanence, that is: delays are ’harmless’ on
the permanence of these systems. That fact leads to the following question: what other
forms of (3) and (4) can have properties that delays don’t have any effect on permanence?
In this paper, to answer this question at least in part, we will try to generalize systems (3)
and (4) and try to generalize Theorems 1and 2further.

2. Generalization of Theorem 1

In this section we will generalize Theorem 1. We consider the nonautonomous delay
difference population model

$x(n+1)=x(n)f(n, x_{n})$ , $n=0,1,2$ , $\cdots$ , (5)

where $x_{n}(s)=x(n+s)$ for $s=-\nu,$ $-\nu+1$ , $\cdots,$ -1, 0 $(\nu\in Z^{+})$ . The initial condition of
(5) is given as

$x(s)\geq 0$ , $s=-\nu,$ $-\nu+1$ , $\cdots$ , 0 ; $x(0)>0$ .

Define $X=\{\phi$ : $\{-\nu, -\nu+1, \cdots, 0\}arrow R_{+}\}$ and $f$ : $Z^{+}\cross Xarrow R_{+}$ . For each $\phi\in X$ , the

norm of $\phi$ is defined as $|| \phi||=\max\{|\phi(s)||s=-\nu,$ $-\nu+1$ , $\cdots,$ -1, $0\}$ , where $|\cdot$ $|$ is any
norm in $R$ .

The assumption of the functional $f$ is done as follows:

(C1) There exist constants $\delta_{1}>1,1>\delta_{2}>0$ , $K_{1}>0$ , and $K_{2}>0(K_{2}\geq K_{1})$ such
that for all sufficiently large $n$ ,

$x(n+s)\in[0, K_{1}]$ , $s=-\nu$ , $\cdots$ , $0\Rightarrow f(n, x_{n})>\delta_{1}$ ,
(6)

$x(n+s)\in[K_{2}, \infty)$ , $s=-\nu$ , $\cdots$ , $0\Rightarrow f(n, x_{n})<\delta_{2}$ .
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(C2) For each $\overline{x}>0$ , there exists an $1>l(\overline{x})>0$ such that for all sufficiently large n,

$||x_{n}||\leq\overline{x}\Rightarrow f(n,x_{n})\geq l(\overline{x})$ . (7)

(C3) There exists an M $>1$ such that for all sufficiently large n,

$x_{n}\in X\Rightarrow f(n,x_{n})\leq M$ . (8)

(C1) assumes that the growth rate for small population is positive, while there is aself-
crowding effect creating anegative growth rate at high population levels. (C2) states that
the negative fluctuation effect on the growth rate is limited for a limited population density.
(C3) assumes that there is an upper bound for the growth rate. These assumptions (C1),
(C2), and (C3) are natural ones for population models because equation (3) and equations
which will be mentioned later satisfy (C1), (C2), and (C3).

The following is the main result:

Theorem 3. Let f satish (C1) $-(C3)$ . Then system (5) is permanent.

(Proof.) It follows from (C1) and (C3) that there exists a sufficiently large number
$N>0$ such that the following (C1)’ and (C3)’ :

(C1)’ There exist constants $\delta_{1}>1,1>\delta_{2}>.0$ , $K_{1}>0$ , and $K_{2}>0(K_{2}\geq K_{1})$ such
that for all $n\geq N$ ,

$x(n+s)\in[0, K_{1}]$ , $s=-\nu$, $\cdots$ , $0\Rightarrow f(n,x_{n})>\delta_{1}$ ,
$x(n+s)\in[K_{2}, \infty)$ , $s=-\nu$, $\cdots$ , $0\Rightarrow f(n, x_{n})<\delta_{2}$ . (9)

(C3)’ There exists an M $>1$ such that for all n $\geq N$ ,

$x_{n}\in X\Rightarrow f(n,x_{n})\leq M$ . (10)

We need to show that there are two positive constants (independent of $x(0)$ ) $\eta_{1}$ and $\eta_{2}$

such that $\eta_{1}\leq x(n)\leq\eta_{2}$ for all large $n$ (depending on $x(0)$ ).
We first show that we can choose $772=K_{2}M^{\nu+1}$ . Rom the latter of (9), we see that

there is an $N_{0}>N$ such that

$x(N_{0})\leq K_{2}$ and $x(N_{0}+1)\leq\eta_{2}$ . (11)

We only prove $x(N_{0})\leq K_{2}$ since we obtain from (10),

$x(N_{0}+1)$ $\leq x(N_{0})M\leq K_{2}M\leq \mathrm{b}$

if $x(N_{0})\leq K_{2}$ . If not, we have $x(n)>K_{2}$ for $\mathrm{a}\mathbb{I}$ large $n$ . Hence, ffom (9) and (5) we
obtain for all large $n$ ,

$x(n+1)\leq x(n)\delta_{2}$ .

This implies $x(n)arrow 0$ as $narrow+\infty$ , which contradicts $x(n)>K_{2}$ for all large $n$ .
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We will show that $x(n)\leq\eta_{2}$ for all large $n$ . Otherwise, it follows from (11) that there

exist $N_{1}$ and $N_{2}$ ; $N_{2}>N_{1}>N$ , such that

$x(N_{1})\leq K_{2}$ , $x(N_{2})\leq\eta_{2}$ , $x(N_{2}+1)>\eta_{2}$

(12)
$x(n)\in[K_{2}, \eta_{2}]$ for $n=N_{1}+1$ , $\cdots$ , $N_{2}$ .

Since (9) holds, we have for $n\geq N_{1}$ ,

$x(n+1)\leq x(n)M\leq x(n-1)M^{2}\leq\cdots\leq x(N_{1})M^{n+1-N_{1}}$ . (13)

When $n=N_{2}$ on (13), we obtain from (12)

$\eta_{2}<x(N_{2}+1)\leq x(N_{1})M^{N_{2}+1-N_{1}}\leq K_{2}M^{N_{2}+1-N_{1}}$ ,

which implies $\nu+1<N_{2}+1-N_{1}$ since $\eta_{2}=K_{2}M^{\nu+1}$ ans $M>1$ . Thus we get

$N_{2}-N_{1}>\nu$.

Therefore, $x(N_{2}+s)\in[K_{2}, \infty)$ for $s=-\nu$ , $\cdots$ , 0. By (9) we then have

$f(N_{2}, x_{N_{2}})<\delta_{2}<1$

and hence

$x(N_{2}+1)=x(N_{2})f(N_{2}, x_{N_{2}})<x(N_{2})$ ,

which is acontradiction to (12).
Let $\eta_{1}=K_{1}l(\eta_{2})^{\nu+1}$ where $l(\eta_{2})$ is defined as in (7). We will now prove that $x(n)\geq\eta_{1}$

for all large $n$ . Since $x(n)\leq\eta_{2}$ for all large $n$ , we have from (7) that there exists an $\overline{N}>N$

such that for all $n\geq\overline{N}$ ,

$f(n, x_{n})\geq l(\eta_{2})$ . (14)

Then, by the former of (9), we see that there is alarge $\overline{N}_{0}>\overline{N}$ such that

$x(\overline{N}_{0})\geq K_{1}$ and $x(\overline{N}_{0}+1)\geq\eta_{1}$ . (15)

We only show that $x(\overline{N}_{0})\geq K_{1}$ since we have from (14) that $x(\overline{N}_{0}+1)\geq x(\overline{N}_{0})l(\eta_{2})\geq\eta_{1}$

if $x(\overline{N}_{0})\geq K_{1}$ . If not, we have $x(n)<K_{1}$ for all large $n$ . Prom (9) and (5) we obtain for

all large $n$ ,

$x(n+1)>x(n)\delta_{1}$ .

This implies $x(n)arrow+\infty$ as $narrow+\infty$ , which contradicts that $x(n)<K_{1}$ for all large $n$ .
Assume that there exists alarge $\overline{N}_{3}>\overline{N}$ such that $x(\overline{N}_{3})<\eta_{1}$ . Then, it follows from

(15) that there exist $\overline{N}_{1}$ and $\overline{N}_{2}$ ; $\overline{N}_{2}>\overline{N}_{1}>\overline{N}$ such that

$x(\overline{N}_{1})\geq K_{1}$ , $x(\overline{N}_{2})\geq\eta_{1}$ , $x(\overline{N}_{2}+1)<\eta_{1}$

(16)
$x(n)\in[\eta_{1}, K_{1}]$ for $n=\overline{N}_{1}+1$ , $\cdots,\overline{N}_{2}$ .

Since (14) holds, we have for $n\geq\overline{N}_{1}$ ,

$x(n+1)\geq x(n)l(\eta_{2})\geq x(n-1)l(\eta_{2})^{2}\geq\cdots\geq x(\overline{N}_{1})l(\eta_{2})^{n+1-\overline{N}_{1}}$ .
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Letting $n=\overline{N}_{2}$ , we obtain from (16)

$\eta_{1}>x(\overline{N}_{2}+1)\geq x(\overline{N}_{1})l(\eta_{2})^{\overline{N}_{2}+1-\overline{N}_{1}}\geq K_{1}l(\eta_{2})^{\overline{N}_{2}+1-\overline{N}_{1}}$ ,
which implies $\nu+1<\overline{N}_{2}+1-\overline{N}_{1}$ since $\eta_{1}=K_{1}l(\eta_{2})^{\nu+1}$ . Thus we get

$\overline{N}_{2}-\overline{N}_{1}>\nu$.
Therefore, $x(\overline{N}_{2}+s)\in[0, K_{1})$ for $s=-\nu$, $\cdots$ , 0. By (9), we must have

$x(\overline{N}_{2}+1)=x(\overline{N}_{2})f(\overline{N}_{2}, x_{\overline{N}_{2}})>x(\overline{N}_{2})\delta_{1}>x(\overline{N}_{2})$ ,
which is contradiction to (16). This completes the proof.

3. Corollaries of Theorem 3
(I) Consider the Ricker difference equation with $\mathrm{a}$ fifinite number of delays

$x(n+1)=x(n) \exp[r-\sum_{j=1}^{m}a_{j}x(n-k_{j})]$ (17)

where $r$ and $a_{j}$ are constants with $r>0$ , $a_{j}\geq 0$ , and $\Sigma_{j=1}^{m}a_{j}>0$ , and $k_{j}\in z+(j=$
$1$ , $\cdots$ , $m$). Define

$f(n, x_{n})= \exp[r-\sum_{j=1}^{m}a_{j}x_{n}(-k_{j})]$ .

Then $(C1)-(C3)$ are satisfied. By Theorem 3, the following holds:
Corollary 1. System (17) is pemanent for all $k_{j}\in Z^{+}(j=1,$\cdots , m).

It is clear that Corollary 1 generalizes Theorem 1.

(II) Consider the nonautonomous Ricker difference equation with afinite number of
delays

$x(n+1)=x(n) \exp[r(n)-\sum_{j=1}^{m}a_{j}(n)x(n-k_{j})]$ . (18)

Here $r(n)$ and $aj(n)$ are functions with

$0< \rho_{1}\leq\lim\inf r(n)\leq$ $\mathrm{r}(\mathrm{n})\leq\rho_{2}$ ,
$0 \leq\alpha_{1j}\leq\lim\inf a_{j}(n)\leq\lim\sup a_{j}(n)\leq\alpha_{2j}$ ,

where $\rho_{1}$ , $\rho_{2}$ , $\alpha_{1j}$ , and $\alpha_{2j}$ are constants with $\Sigma_{j=1}^{m}\alpha_{1\mathrm{j}}>0$, and $k_{j}\in Z^{+}$ $(j=1, \cdots, m)$ .
Let

$f(n, x_{n})= \exp[r(n)-\sum_{j=1}^{m}a_{j}(n)x_{n}(-k_{j})]$ .

Then $(C1)-(C3)$ are satisfified. By Theorem 3, we get the following:
Corollary 2. System (18) is pemanent for all $k_{j}\in Z^{+}(j=1, \cdots, m)$ .
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Remark 1. Corollary 2generalizes Corollary 1. The result, biologically, means that sys-
$\mathrm{t}\mathrm{e}\mathrm{m}(18)$ , in which the birth rate $r$ and the coefficients $a_{j}$ of the density dependence terms

depending on time $n$ , becomes permanent if only the birth rate and the density dependence

are eventually positive and eventually bounded above, even if they are negative when time
$n$ is not so large.

(Ill) We will consider some other equations that are different from the Ricker tyPe

population models. Bellows [1] used the following equation to model the population of an
insect:

$x(n+1)= \frac{\lambda x(n)}{1+[\beta x(n)]^{\gamma}}$ $n=0,1$ , $\cdots$ ,

where $\lambda$ , $\beta$ , and $\gamma$ are constants with $\lambda>1$ , $\beta>0$ , and $\gamma>0$ . Now, take some delays into

consideration on the system as follows:

$x(n+1)= \frac{\lambda x(n)}{1+[\sum_{i=1}^{m}\beta_{i}x(n-k_{i})]^{\gamma}}$ $n=0,1$ , $\cdots$ , (19)

$x(n+1)= \frac{\lambda x(n)}{1+\Sigma_{i=1}^{m}[\beta_{i}x(n-k_{i})]^{\gamma}}\dot{.}$ $n=0,1$ , $\cdots$ , (20)

where $\beta_{\dot{l}}$ and $\gamma_{i}$ are constants with $\beta_{i}\geq 0$, $\Sigma_{i=1}^{m}\beta_{i}>0$ , $\gamma_{i}>0$ , and $k_{i}\in Z^{+}(i=1, \cdots, m)$ .
Applying Theorem 3to systems (19) and (20), we have the following:

Corollary 3. Systems (19) and (20) are permanent for all $k_{i}\in Z^{+}(i=1, \cdots, m)$ .

Furthermore, for the two nonautonomous equations

$x(n+1)= \frac{\lambda(n)x(n)}{1+[\sum_{i=1}^{m}\beta_{i}(n)x(n-k_{i})]^{\gamma(n)}}$ , (21)

$x(n+1)= \frac{\lambda(n)x(n)}{1+\sum_{i=1}^{m}[\beta_{i}(n)x(n-k_{i})]^{\gamma.(n)}}.$ , (22)

where $\lambda(n)$ and $\beta_{i}(n)(i=1, \cdots, m)$ satisfy the eventual conditions

$1< \lambda_{1}\leq\lim\inf$ $\mathrm{A}(\mathrm{n})$ $\leq\lim\sup\lambda(n)\leq\lambda_{2}$ ,
$0 \leq\beta_{i1}\leq\lim\inf\beta_{i}(n)\leq\lim\sup\beta_{i}(n)\leq\beta_{i2}$ ,

$0< \gamma_{1}\leq\lim\inf\gamma(n)\leq\lim\sup\gamma(n)\leq\gamma_{2}$ ,

$0< \gamma_{\dot{\iota}1}\leq\lim\inf\gamma_{i}(n)\leq\lim\sup\gamma_{i}(n)\leq\gamma:2$ ,

and $\Sigma_{i=1}^{m}\beta_{i1}>0$, we get the following result:

Corollary 4. Systems (21) and (22) are permanent for all $k_{i}\in Z^{+}(i=1, \cdots, m)$ .
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4. Generalization of Theorem 2
In this section we will try to generalize Theorem 2. We consider the nonautonomous

delay difference Kolmogorov-type population model

$\{$

$x(n+1)=x(n)f(n,x_{n}, y_{n})$

$y(n+1)=y(n)g(n,x_{n}, y_{n})$ , $n=0,1$ , $\cdots$

(23)

where we define for s $=-\nu,$ $-\nu+1$ , \cdots , -1, 0 $(\nu\in Z^{+})$ ,

$x_{n}(s)=x(n+s)$ and $y_{n}(s)=y(n+s)$ .
The initial condition of (23) is given as

$x(s)\geq 0$ , $y(s)\geq 0$ , $s=-\nu,$ $-\nu+1$ , $\cdots$ , 0,
$x(0)>0$ , $y(0)>0$ .

Define $X=\{\phi$ : $\{-\nu, -\nu+1, \cdots,0\}arrow R_{+}^{2}\}$ and $f,g$ : $Z^{+}\cross Xarrow R_{+}$ . For each $\phi\in X$ ,
the norm of $\phi$ is defined as $|| \phi||=\max\{|\phi(s)||s=-\nu,$ $-\nu+1$ , $\cdots,$ -1, $0\}$ , where $|\cdot$ $|$ is
any norm in $R^{2}$ .

The assumptions of the functionals $f$ and $g$ are the following from (HI) to (HI)
(HI) There exist constants Slf $>1,1>\delta_{2f}>0$ , $K_{1f}>0$ , and $K_{2f}>0(K_{2f}\geq K_{1f})$

such that for all sufficiently large $n$ ,

$x(n+s)\in[0, K_{1f}]$ , $s=-\nu$, $\cdots,0\Rightarrow f(n,x_{n}, 0)>\delta_{1f}$ ,
(24)

$x(n+s)\in[K_{2f}, \infty)$ , $s=-\nu$, $\cdots,0\Rightarrow f(n,x_{n}, 0)<\delta_{2f}$ .

(H2) For all sufficiently large $n$ ,

$x_{n},y_{n}\in X\Rightarrow f(n,x_{n}, 0)\geq f(n,x_{n}, y_{n})$ . (25)

Furthermore, for each $\overline{x}>0$ and $\overline{y}>0$ , there exists an $1>l_{f}(\overline{x},\overline{y})>0$ such that for
all sufficiently large n,

$||x_{n}||\leq\overline{x}$ , $||y_{n}||\leq\overline{y}\Rightarrow f(n,x_{n}, y_{n})\geq l_{f}(\overline{x},\overline{y})$ . (26)

(H3) There exists an $M_{f}>1$ such that for all sufficiently large n,

$x_{n},y_{n}\in X\Rightarrow f(n,x_{n},y_{n})\leq M_{f}$ . (27)

(HI) There exist constants $\delta_{1g}>1,1>\delta_{2g}>0$, $K_{1g}>0$ , and $K_{2g}>0(K_{2g}\geq K_{1g})$

such that for all sufficiently large $n$ ,

$y(n+s)\in[0, K_{1g}]$ , $s=-\nu$, $\cdots,0\Rightarrow g(n, 0, y_{n})>\delta_{1g}$ ,
(28)

$y(n+s)\in[K_{2g}, \infty)$ , $s=-\nu$, $\cdots,0\Rightarrow g(n,0, y_{n})<\delta_{2g}$ .

(H2) For all sufficiently large $n$ ,

$x_{n}$ , $y_{n}\in X\Rightarrow g(n,0,y_{n})\geq g(n,x_{n},y_{n})$ . (29)
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Furthermore, for each $\overline{x}>0$ and $\overline{y}>0$ , there exists an $1>l_{g}(\overline{x},\overline{y})>0$ such that for

all sufficiently large $n$ ,

$||x_{n}||\leq\overline{x}$ , $||y_{n}||\leq\overline{y}\Rightarrow g(n, x_{n}, y_{n})\geq l_{g}(\overline{x},\overline{y})$ . (30)

(H6) There exists an $M_{g}>1$ such that for all sufficiently large $n$ ,

$x_{n}$ , $y_{n}\in X\Rightarrow g(n, x_{n}, y_{n})\leq M_{g}$ . (31)

In the assumptions of $f$ , propositions (24), (26), and (27) are similar to and correspond

with (6), (7), and (8), respectively. $(\# 1)$ assumes that the growth rate for small population

in the absence of competitors is positive, while there is aself-crowding effect creating a
negative growth rate at high population levels, even in the absence of competitors. In

$(\# 2)$ , (25) states that the existence of $y$ is negative to the growth of $x$ . The relation (26)

assumes that the negative fluctuation effect on the growth rate of $x$ is limited for limited

population densities of of species $x$ and $y$ . (H3) assumes that there is an upper bound for

the growth rate of $x$ . Assumptions $(\# 4)$ , (26), and (H6) are the ones in which $f$ in (H1),

$(\# 2)$ , and (H3) are replaced by $g$ . When system (23) satisfies (ffl) through (H6), we call

it acompetition system.
We obtain the following:

Theorem 4. Suppose (HI) $-(H6)$ hold. Let $\eta_{x}=K_{2f}M^{\nu+1}f$ , $\eta_{y}=K_{2}M^{\nu+1}\mathit{9}g$ , and

$(x(n), y(n))$ be any solution of (23). Then for all large $n$ ,

$x(n)\leq\eta_{x}$ and $y(n)\leq\eta_{y}$ .

Assume further that there is a $\delta_{0}>1$ such that for all sufficiently large $n$ ,

(i) $||x_{n}||\leq\delta_{0}$ , $||y_{n}||\leq\eta_{y}+\delta_{0}\Rightarrow f(n, x_{n}, y_{n})>\delta_{0}$ ,
(ii) $||x_{n}||\leq\eta_{x}+\delta_{0}$ , $||y_{n}||\leq\delta_{0}\Rightarrow g(n, x_{n}, y_{n})>\delta_{0}$ .

Then system (23) is permanent.

(Proof) We will first prove the former of Theorem 4. We need only show that $x(n)\leq\eta_{x}$

for all large $n$ since the case where $y(n)\leq\eta_{y}$ for all large $n$ can be shown similarly.

It follows from $(H1)-(H3)$ that there exists a sufficiently large number $N>0$ such

that the following $(H1)’-(H3)’$ hold :
(H1)’ There exist constants $\delta_{1f}>1,1>\delta_{2f}>0$ , $K_{1f}>0$ , and $K_{2f}>0(K_{2f}\geq K_{1f})$

such that for all $n\geq N$ ,

$x(n+s)\in[0, K_{1f}]$ , $s=-\nu$, $\cdots$ , $0\Rightarrow f(n, x_{n}, 0)>\delta_{1f}$ ,
(24’)

$x(n+s)\in[K_{2f}, \infty)$ , $s=-\nu$ , $\cdots$ , $0\Rightarrow f(n, x_{n}, 0)<\delta_{2f}$ .

(H2)’ (the fomer) For all $n\geq N$ ,

$x_{n}$ , $y_{n}\in X\Rightarrow f(n, x_{n}, 0)\geq f(n, x_{n}, y_{n})$ . (25’)

(H3)’ There exists an $M_{f}>1$ such that for all $n\geq N$ ,

$x_{n}$ , $y_{n}\in X\Rightarrow f(n, x_{n}, y_{n})\leq M_{f}$ . (27’)
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Rom (25’) we have for all n $\geq N$ ,

$x(n+1)\leq x(n)f(n,x_{n}, 0)$ . (32)
Thus, we can see by the same arguments as in the proof of Theorem 3 that there is alarge
$N_{0}>N$ such that

$x(N_{0})\leq K_{2f}$ and $x(N_{0}+1)\leq\eta_{x}$ . (33)
We will show that $x(n)\leq\eta_{x}$ for all large $n$ . Otherwise, it follows from (33) that there
exist $N_{1}$ and $N_{2}$ ; $N_{2}>N_{1}>N$ such that

$x(N_{1})\leq K_{2f}$ , $X(N_{2})\leq\eta_{x}$ , $x(N_{2}+1)>\eta_{x}$

$x(n)\in[K_{2f}, \eta_{x}]$ for $n=N_{1}+1$ , $\cdots$ , $N_{2}$ . (34)

By (27’) and (33) we have for $n\geq N_{1}$ ,

$x(n+1)\leq x(n)M_{f}\leq x(n-1)M_{f}^{2}\leq\cdots\leq x(N_{1})M_{f}^{n+1-N_{1}}$ .
When $n=N_{2}$ ,

$\eta_{x}<x(N_{2}+1)\leq x(N_{1})M_{f}^{N_{2}+1-N_{1}}\leq K_{2f}M_{f}^{N_{2}+1-N_{1}}$ ,

which implies $N_{2}-N_{1}>\nu$ since $\eta_{x}=K_{2f}M_{f}^{\nu+1}$ and $M_{f}>1$ . Therefore, $x(N_{2}+s)\in$

$[K_{2f}, \infty)$ for $s=-\nu$, $\cdots$ , 0. By (24’) and (32) we have

$x(N_{2}+1)\leq x(N_{2})f(N_{2}, x_{N_{2}},0)<x(N_{2})$ ,

which is acontradiction to (34).
Next, we will show the latter of Theorem 4. An approach similar to the proof of Theorem

1 is adopted. Let

$\eta_{x}^{-}=\delta_{0}l_{f}(\eta_{x},\eta_{y})^{\nu+1}$ and $\overline{\eta}_{y}=\delta_{0}l_{g}(\eta_{x}, \eta_{y})^{\nu+1}$ .
We prove here that

$x(n)\geq\eta_{x}^{-}$ for all large $n$ . (35)
The proof that $y(n)\geq\overline{\eta}_{y}$ for all large $n$ is similar. Since $x(n)\leq\eta_{x}$ and $y(n)\leq\eta_{y}$ for all
large $n$ , we have from (26) that there exists an $N’>N$ such that for all $n\geq N’$ ,

$f(n,x_{n}, y_{n})\geq l_{f}(\eta_{x}, \eta_{y})$ . (36)

From (i) we see that there is an $N_{0}’>N’$ such that

$x(N_{0}’)\geq\delta_{0}$ and $x(N_{0}’+1)\geq\overline{\eta}_{x}$ . (37)
We need only prove $x(N_{0}’)\geq\delta_{0}$ since it is easy to get $\mathrm{x}(\mathrm{N}\mathrm{q}+1)\geq\eta_{x}^{-}$ if $x(N_{0}’)\geq\delta_{0}$ by (36).
If (37) is false, then we have $x(n)<\delta_{0}$ for all large $n$ . From (i) we obtain for all large $n$ ,

$x(n+1)>x(n)\delta_{0}$ .
This implies $x(n)arrow+\infty$ as $narrow+\infty$ , which contradicts that $x(n)<\delta_{0}$ for all large $n$ .
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If (35) is false, then from (37) there exist $N_{1}’$ and $N_{2}’$ ; $N_{2}’>N_{1}’>N’$ such that

$x(N_{1}’)\geq\delta_{0}$ , $x(N_{2}’)\geq\overline{\eta}_{x}$ , $x(N_{2}’+1)<\eta_{x}^{-}$

(35)
$x(n)\in[\overline{\eta}_{x}, \delta_{0}]$ for $n=N_{1}’+1$ , $\cdots$ , $N_{2}’$ .

Prom (36) we have

$\eta_{x}^{-}>x(N_{2}’+1)\geq x(N_{2}’)l_{f}(\eta_{x}, \eta_{y})\geq x(N_{2}’-1)l_{f}(\eta_{x}, \eta_{y})^{2}$

$\geq\cdots\geq x(N_{1}’)l_{f}(\eta_{x}, \eta_{y})^{N_{\acute{2}}+1-N_{\acute{1}}}$ ,

which implies $N_{2}’-N_{1}’>\nu$ since $\eta_{x}^{-}=\delta\circ^{l}f(\eta_{x}, \eta_{y})^{\nu+1}$ and $0<l_{f}(\eta_{x}, \eta y)<1$ . Thus,
$x(N_{2}’+s)\in[0, \delta_{0}]$ for $s=-\nu,$ $-\nu+1$ , $\cdots$ , 0. By (i), we have

$x(N_{2}’+1)=x(N_{2}’)f(N_{2}’, x_{N_{\acute{2}}}, y_{N_{\acute{2}}})>x(N_{2}’)\delta_{0}>x(N_{2}’)$ ,

which is acontradiction to (38). The proof of Theorem 4is thus completed.

5. Acorollary of Theorem 4and future work

We apply Theorem 4to system (4). Let

$f(n, x_{n}, y_{n})=\exp[r_{1}-a_{11}x_{n}(-k_{1})-a_{12}y_{n}(-k_{2})]$ ,

$g(n, x_{n}, y_{n})=\exp[r_{2}-a_{21}x_{n}(-l_{1})-a_{22}y_{n}(-l_{2})]$ .

Then $(H1)-(H6)$ are satisfied. By Theorem 4, the following holds:

Corollary 5. System (4) is permanent if
$r_{2}a_{11}-r_{1}a_{21}e^{r_{2}(l_{2}+1)}>0$ and $r_{1}a_{22}-r_{2}a_{12}e^{r_{1}(k_{1}+1)}>0$

hold.

We can see that there is agap between the conditons of Corollary 5and Theorem 2.
Theorem 4has not generalized Theorem 2and has room for improvement, because it is
considered that conditions (i) and (ii) in Theorem 4are too strong. They should be made

weaker for the permanence of (23), which is left for future work.
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