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Hilbert 16th Problem (Second Part) is the following:

Given

$\frac{dy}{dx}=\frac{P(x,y)}{Q(x,y)}$ , (1)

where $P$ and $Q$ are real polynomials of $x$ and $y$ , what may be said about the number

of limit cycles and their relative positions.

Infinitesimal Hilbert 16th problem is one of the restricted version of Hilbert 16th
problem, it was posted by V. I. Arnold in 1977 [1] as follows:

Given
$H(x, y)=h$ , $\omega$ $=Q_{n}dx-P_{n}dy$ ,

where $H$ , $P_{n}$ and $Q_{n}$ are real polynomials of $x$ and $y$ ,

Fig. 1

$\max(\deg P_{n}, \deg Q_{n})=n$ , $\deg H=m+1$ . Then

$\Gamma_{h}\subset(H=h)$ ,

$I(h)= \int_{\Gamma_{n}}\omega$ .

Problem: What is the number of isolated zeros of $I(h)$ ?
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This problem is closely related to the problem of estimating the number of limit
cycles of the following Hamiltonian System with small perturbations:

$\frac{dx}{dt}=\frac{\partial H}{\partial y}+\epsilon P_{n}$ ,
(2)

$\frac{dy}{d\mathrm{t}}=-\frac{\partial H}{\partial x}+\epsilon Q_{n}$ ,

where $0<|\epsilon|\ll 1$ .

$H=h$ ,

Fig. 2

Then we have

$\Delta H=\int_{0}^{T(P,e)}\frac{dH}{dt}|_{(2)}d\mathrm{t}$

$= \epsilon\int_{0}^{T(P,\epsilon)}(\frac{\partial H}{\partial x}P_{n}+\frac{\partial H}{\partial y}Q_{n})dt$

$= \epsilon\int_{\Gamma_{h}}(Q_{n}dx-P_{n}dy)+O(\epsilon^{2})$

$=\epsilon I(h)+O(\epsilon^{2})$ , $h_{1}<h<h_{2}$ ,

where $T(P, \epsilon)$ is the time along $\overline{PP_{1}}$ . Hence, there exists aperiodic orbit of (2) passing
through $P\in\Gamma_{h}$ if and only if $\Delta H(h)=0$ , i.e. $I(h)$ is the first approximation of the
Poincar\‘e return map $\Delta H$ with respect to $”\epsilon"$ .
Relationship:

(i) If $I(h)=0$ , $I’(h)\neq 0$ $\Rightarrow$ $\exists hyp$ . limt cycle $L_{h(\epsilon)}arrow\Gamma_{h}(\epsilonarrow 0)$ ;conversely, if
3 $hyp$.limt cycle $L_{h(\epsilon)}arrow\Gamma_{h}(\epsilonarrow 0)\Rightarrow I(h)=0$ .

(ii) If $I(h)=I’(h)=\cdots=I^{(k-1)}(h)=0$ , $I^{(k)}(h)\neq 0\Rightarrow$ there are at most $k$ limit
cycles bifurcated from $L_{h}$ .

(iii) $\neq$ {limit cycle $s.t$ . $L_{h(\epsilon)}arrow\Gamma_{h}(\epsilonarrow 0)$} $\leq\#\{I(h)=0\}=Z(m, n)$ .
Here multiplicity taking into account
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In this talk it will be introduced the main results and main methods of how to

stimate the number of isolated zeros of $I(h)$ .

The main methods are as follows:

1. Argument principle [2], [3];
2. Generalized Rolle Theorem [4], [5];
3. Estimate zeros of analytic functions [6], [7].
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