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1 introduction
The interplay of competition and predation can greatly influence species coexistence

or exclusion. Amixture of competition and predation is known as “Intra-guild Preda-
tion”(IGP). IGP is a subset of omnivory, which is defined as feeding on resources at
different trophic levels. Sea bass is one of an omnivorous fish. In Section 2, we $\mathrm{w}\mathrm{i}\mathrm{U}$

consider an IGP model composed of asea bass, asmall fish as prey of asea bass, and
plankton as the resource of sea bass and asmall fish. Holt and Polis [3] showed that
IGP can lead to unstable population dynamics, even when all pairwise interactions are
inherently stable and each species can increase when rare. Under the unstable condi-
tion of the positive equilibrium point, we discover chaos occurs. Further, we obtain the
sufficient and necessary conditions for permanence. Permanence is the property which
assures all species in asystem of coexistence for along time. In case chaos occurs, it
looks like the trajectory is sticking to the boundary. However, we find it is strictly apart
from the boundary if the condition for permanence holds. In Section 3, we incorporate
astage structure of sea bass into the IGP model and consider atime delayed model
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2 IGP model without young sea bass

2.1 model

First of all we consider amodel without young sea bass, that is, without time delay.

The model is given as follows:

$\dot{x}(t)$ $=x(t)(\phi(x(t))-by(t)-b’Z(t))$ ,
$\dot{y}(t)$ $=y(t)(-r_{2}+\epsilon bx(t)-cZ(t))$ , (1)

$\dot{Z}(t)$ $=$ $Z(t)(-r_{4}+\mu b’x(t)+\theta cy(t))$ .

The densities of the resource, prey, and sea bass are given by, respectively, $x(t)$ , $y(t)$ ,

and $Z(t)$ . The quantities $b’x(t)$ and $cy(t)$ are functional responses of the sea bass to

the resource and prey, respectively; $bx(t)$ is the functional response of the prey to the

resource; and $r_{2}$ and $r_{4}$ are density-independent mortality rates. The parameters $\epsilon$ and $\mu$

convert resource consumption into reproduction for the prey and sea bass, respectively;

the parameter 0scales the benefit enjoyed by the sea bass from its consumption of prey.

Finally, $x(t)\phi(x(t))$ is recruitment of the resource.
Now we introduce the non-dimensional quantities by

$b=a_{12}$ , $b’=a_{14}$ , $\epsilon b=a_{21}$ , $c=a_{24}$ , $\mu b’=\alpha$ , $\theta c=\beta$ .

Let $\phi(x(t))=r_{1}-a_{11}x(t)$ ;the resource when alone grows according to alogisitic model.

By substituting these quantites, system (1) becomes

$\dot{x}(t)$ $=$ $x(t)(r_{1}-a_{11}x(t)-a_{12}y(t)-a_{14}Z(t))$ ,
$\mathrm{y}(\mathrm{t})$ $=y(t)(-r_{2}+a_{21}x(t) -a_{24}Z(t))$ , (2)

$\dot{Z}(t)$ $=$ $Z(t)(-r_{4}+\alpha x(t)+\beta y(t))$ .

2.2 equilibrium

There exist five equilibria for system (2), namely

1. all species are at zero density: $E_{000}=(0, 0, 0)$ always exists,

2. only the resource is present: $E_{x00}=( \frac{r_{1}}{a_{11}},0$ , $0$) always exists,

3. the resource and prey are present: $E_{xy0}=( \frac{r_{2}}{a_{21}}$ , $\frac{a_{21}r_{1}-a_{11}r_{2}}{a_{12}a_{21}}$ , $0$) exists

if and only if $a_{21}r_{1}>a_{11}r_{2}$ ,
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Table 1: Local stability conditions for non-negative equilibria of system $($

$\overline{\underline{\mathrm{E}\mathrm{q}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}\mathrm{u}\mathrm{m}}}$pointLocalstabilityconditions

$a_{0}=a_{11}x^{*}>0$ ,
$E_{xyZ}$ $a_{1}=a_{12}a_{21}x^{*}y^{*}+a_{24}\beta y^{*}Z^{*}+a_{14}\alpha x^{*}Z^{*}>0$,

$a_{2}=-x^{*}y^{*}Z^{*}|A|>0$ ,
$a_{0}a_{1}-a_{2}>0$

$E_{xy0}$ $\tilde{Z}<0$

$E_{x0Z}$ $\tilde{y}<0$

$E_{x00}$ $a_{21}r_{1}<a_{11}r_{2},r_{1}\alpha<a_{11}r_{4}$

$E_{0\{n}$ unstable

–

4. the resource md sea baae are present: $E_{x0Z}=( \frac{r_{4}}{\alpha},0$, $\frac{r_{1}\alpha-a_{11}r_{4}}{a_{14}\alpha}$) exists
if and only if rxa $>a_{11}r_{4}$ , and

5. $\mathrm{a}\mathbb{I}$ species are present: $E_{xyZ}=(x^{*}, y^{*}, Z^{*})$ , where

$x^{*}$ $=$ $-\tilde{x}/|A|$ , $y^{*}=-\tilde{y}/|A|$ , $Z^{*}=-\tilde{Z}/|A|$ ,
$\tilde{x}$ $=$ $-a_{12}a_{24}r_{4}+a_{14}r_{2}\beta+r_{1}a_{24}\beta$,
$\tilde{y}$ $=$ $-r_{1}a_{24}\alpha+a_{14}a_{21}r_{4}-a_{14}r_{2}\alpha+a_{11}a_{24}r_{4}$ ,

$\tilde{Z}$

$=$ $a_{12}r_{2}\alpha+r_{1}a_{21}\beta-a_{12}a_{21}r_{4}-a_{11}r_{2}\beta$ ,
$|A|$ $=$ $a_{12}a_{24}\alpha-a_{14}a_{21}\beta-a_{11}a_{24}\beta$ ,

exists if and only if
$|A|>0,\tilde{x}<0,\tilde{y}<0$ , and $\tilde{Z}<0$ or $|A|<0,\tilde{x}>0,\tilde{y}>0$ , and $\tilde{Z}>0$ .

2.3 local stability

Conditions for local stability of equilibria are summarized in Table 1.
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2,4 permanence

We consider the following differential equation:

$\dot{x}_{i}=x_{i}f_{i}(\mathrm{x})$ , $i=1$ , $\cdots$ , $n$ (3)

on $\mathbb{R}_{+}^{n}$ . We are interested in whether all species in the system can survive or not. There

are several mathematical concepts dealing with this aspect. In particular, asystem of

type (3) is said to be per manent if there exists acompact set $K$ in the interior of the

state space such that all orbits in the interior end uP in K.

Equivalently, permanence means for (3) that there exists a $\delta>0$ such that

$\delta<\lim\inf x_{i}(t)tarrow\infty$
(4)

for all $i$ , whenever $x_{i}(0)>0$ for all $i$ . In addition permanence requires that there exists

a $d$ such that

$\lim_{tarrow}\sup_{\infty}x_{i}(t)\leq d$
(5)

for all $i$ , whenever $\mathrm{x}(0)\in \mathrm{i}\mathrm{n}\mathrm{t}$ $\mathbb{R}_{+}^{n}$ . If (5) holds for all $\mathrm{x}(0)\in \mathbb{R}_{+}^{n}$ , we shall say that the

orbits of (3) are uniformly bounded. Condition (4) means that if all species are initially

present, the dynamics will not lead to extinction. The threshold $\delta$ is auniform one,

independent of the initial condition (see Hofbauer and Sigmund [2]).

For most examples, the terms $f_{i}$ in (3) are linear. This yields the Lotka-Volterra equation

$\dot{x}_{i}=x_{i}(r_{i}+(A\mathrm{x})_{i})$ (6)

on $\mathbb{R}_{+}^{n}$ . Sufficient conditions for permanence of system (6) are given by the following

Lemma 2.1 which is used to obtain asufficient condition for permanence of system (2).

Lemma 2.1 (Hofbauer and Sigmund [2]) A Lotka-Volterra equation (6) with uniformly

bounded orbits is permanent if there exists a positive solution $\mathrm{p}$ for

$. \sum_{i.x_{\mathrm{i}}=0}p_{i}[r_{i}+(A\mathrm{x})_{i}]>0$

(7)

(where $\mathrm{x}$ runs through the boundary rest points).

By using Lemma 2.1, we obtain the following theorem
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Theorem 2.1 System (2) with uniformly bounded orbits is permanent if the following
conditions hold:

$\tilde{y}>0,\tilde{Z}>0,ari$

$(a_{21}r_{1}-a_{11}r_{2})(\alpha r_{1}-a_{11}r_{4})<0$ or $a_{21}r_{1}-a_{11}r_{2}>0,\alpha r_{1}-a_{11}r_{4}>0$ .
(8)

Proof Let us apply Lemma 2.1 to system (2):
For x $=(E_{xy0})$ , (7) becomes

$p_{3}(-r_{4}+ \alpha\frac{r_{2}}{a_{21}}+\beta\frac{a_{21}r_{1}-a_{11}r_{2}}{a_{12}a_{21}})>0$ . (9)

If $a_{12}r_{2}\alpha+r_{1}a_{21}\beta-a_{12}a_{21}r_{4}-a_{11}r_{2}\beta>0$ which is equivalent to $\tilde{Z}>0$, (9) holds for any
$\mathrm{p}>0$ .
For $\mathrm{x}=(E_{x0Z})$ , (7) becomes

$p_{2}(-r_{2}+a_{21} \frac{r_{4}}{\alpha}-a_{24}\frac{r_{1}\alpha-a_{11}r_{4}}{a_{14}\alpha})>0$. (10)

$\mathrm{I}\mathrm{f}-r_{1}a_{24}\alpha+a_{14}a_{21}r_{4}-a_{14}r_{2}\alpha+a_{11}a_{24}r_{4}>0$ which is equivalent to $\tilde{y}>0$ , (10) holds for
any $\mathrm{p}>0$ .
For $\mathrm{x}=\mathrm{C}\mathrm{L}_{00}$ ), we have

$p_{2}(-r_{2}+a_{21} \frac{r_{1}}{a_{11}})+p_{3}(-r_{4}+\alpha\frac{r_{1}}{a_{11}})>0$ . (11)

If

$(a_{21}r_{\mathrm{I}}-a_{11}r_{2})(\alpha r_{1}-a_{11}r_{4})<0$

or $a_{21}r_{1}-a_{11}r_{2}>0$ , $\alpha r_{1}-a_{11}r_{4}>0$ ,

there exists $p_{2}>0$ , $p_{3}>0$ such that (11) holds.
For $\mathrm{x}=(E_{0\alpha)})$ ,

$p_{1}r_{1}+p_{2}(-r_{2})+p_{3}(-r_{4})>0$ .

This inequality holds for sufficiently large $p_{1}>0$ .
This shows that system (2) is permanent if (8) hold.

Next, necessary conditions for permanence of system (6) are given by the following
Lemma 2.2 and 2.3, which are used to obtain anecessary condition for permanence of
system (2):
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Lemma 2.2 (Hofbauer and Sigmund [2]) If (6) is per manent, then there exists a unique

interior rest point $\hat{\mathrm{x}}$ .

Lemma 2.3 (Hofbauer and Sigmund [2]) Let (6) be permanent and denote the Jacobian

at the unique interior rest point $\hat{\mathrm{x}}$ by J. Then

$(-\mathrm{l})^{}$ $\det J$ $>$ $0$ , (12)

$\mathrm{t}\mathrm{r}J$ $<$ $0$ , (13)

$(-\mathrm{l})^{}$ $\det A$ $>$ $0$ . (14)

By using Lemma 2.2 and 2.3, we obtain the following theorem:

Theorem 2.2 If (2) is per manent, $|A|<0$ .

Proof In system (2),

$A=(\begin{array}{lll}-a_{11} -a_{12} -a_{14}a_{21} 0 -a_{24}\alpha \beta 0\end{array})$ .

It is easy to check that we have $|A|<0$ by (14).

3IGP model with young sea bass

We consider amodel with astage structure for sea bass. Sea bass breeds young sea

bass and some time later young sea bass grows up into sea bass. By incorporating this

phenomenon into system (2), the model becomes

$\dot{x}(t)$ $=$ $x(t)(r_{1}-a_{11}x(t)-a_{12}y(t)-a_{13}z(t)-a_{14}Z(t))$ ,

$\dot{y}(t)$ $=$ $y(t)(-r_{2}+a_{21}x(t)-a_{24}Z(t))$ , (15)
$\dot{z}(t)$ $=$ $-r_{3}z(t)+\alpha x(t)Z(t)+\beta y(t)Z(t)-e^{-r_{3}\tau}(\alpha x(t-\tau)+\beta y(t-\tau))Z(t-\tau)$ ,

$\dot{Z}(t)$ $=$ $-r_{4}Z(t)+e^{-r_{3}\tau}(\alpha x(t-\tau)+\beta y(t-\tau))Z(t-\tau)$ ,

where $z(t)$ is the density of the young sea bass and $r_{3}$ is its density-independent mortality

rate. Aconstant $\tau$ is the length of time from birth of the young sea bass to grow up

into the sea bass. Since the mortality rate of the young sea bass is $r_{3}$ , the density of the

sea bass at time $t$ is given by $e^{-r_{3}\tau}(\alpha x(t-\tau)+\beta y(t-\tau))Z(t-\tau)$ . Here we suppose

that ayoung sea bass eats only the resource. Further, note that (15) becomes (2) if $\tau$ is

neglected(when $\tau=0,\dot{z}(t)=-r_{3}z(t)$ ).
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4equilibrium

There exist five equiUbria for system (15), namely

1. all species are at zero density: $E_{0000}=(0,0,0,0)$ always exists,

2. only the resource is present: $E_{x}\alpha$)$0=( \frac{r_{1}}{a_{11}},0,0$ , 0) always exists,

3. the resource and prey are present:
$E_{xy00}=( \frac{r_{2}}{a_{21}}$ , $\frac{1}{a_{12}}(r_{1}-\frac{a_{11}}{a_{21}}r_{2}),0,0$) exists if and only if $r_{1}a_{21}>a_{11}r_{2}$ ,

4. the resource, young sea bass, and sea bass are present:
$E_{x0zZ}=( \frac{r_{4}}{\alpha}e^{r_{3}\tau},0,$ $\frac{r_{4}}{r_{3}}e^{r_{3^{T}}}(1-e^{-r_{3}\tau})\hat{Z},\hat{Z})$

where $\hat{Z}\equiv(a_{14}+a_{13}\frac{r_{4}}{r_{3}}e^{r_{3}\tau}(1-e^{-r_{3}\tau}))^{-1}(r_{1}-a_{11}\frac{r_{4}}{\alpha}e^{r_{3}\tau})$ exists
if and only if $r_{1}\alpha>a_{11}r_{4}e^{r_{3}\tau}$ , and

5. all species are present: $E_{xyzZ}=(x^{*}, y^{*}, z^{*}, Z^{*})$ exists if and only if
$\{$

$($

$r_{1}- \frac{a_{11}}{a_{21}}r_{2}-\frac{a_{12}}{\beta}(r_{4}e^{r_{3}\tau}-\frac{\alpha}{a_{21}}r_{2}))($

$\equiv Z^{*})>0$ and $r_{4}e^{r_{3}\tau}>\alpha\underline{r_{2}+a_{24}Z^{*}}$ .

$\frac{a_{11}a_{24}}{a_{21}}-\frac{\alpha}{\beta}\frac{a_{12}a_{24}}{a_{21}}+\frac{r_{4}(e^{\infty\tau}-1)}{r_{3}}a_{13}+a_{14})^{-1}$

$a_{21}$

5local stability

In this section, we will discuss the local stability of the equilbiria. Denote anonnegative
equilibrium point of (15) as $\overline{\mathrm{x}}=(\overline{x},\overline{y},\overline{z},\overline{Z})$ . Let define

$\mathrm{x}(t)=(x(t)-\overline{x}, y(t)-\overline{y},$ $z(t)-\overline{z}$ , $Z(t)-\overline{Z})$ .

Then the linearzied equation of (15) at $\overline{\mathrm{x}}$ is described by

$\dot{\mathrm{x}}(t)=C\mathrm{x}(t)+D\mathrm{x}(t-\tau)$

where $C$ and $D$ are $4\cross 4$ matrices given by

$C=($ $r_{1}-2a_{11}\overline{x}-a_{12}\overline{y}-a_{13}\overline{z}-a_{14}\overline{Z}a_{21}\overline{y}\alpha_{0}\overline{Z}$
$-r_{2}+a_{21}-a_{24}\overline{Z}-a_{12}\overline{x}\beta^{\frac{\overline{x}}{Z}}0$

$-a_{13}\overline{x}-r_{3}00\alpha\overline{x}+\beta\overline{y}-a_{14}\overline{x}-a_{24}\overline{y}-r_{4}$ ),
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$D=(\begin{array}{llll}0 0 0 00 0 0 0-e^{-r_{3}\tau}\alpha\overline{Z} -e^{-r_{3}\tau}\beta\overline{Z} 0 -e^{-r_{3}\tau}(\alpha\overline{x}+\beta\overline{y})e^{-r_{3}\tau}\alpha\overline{Z} e^{-r_{3}\tau}\beta\overline{Z} 0 e^{-r_{3}\tau}(\alpha\overline{x}+\beta\overline{y})\end{array})$ .

The characteristic equation of (15) at $\overline{\mathrm{x}}$ is given by

$\Delta(\overline{\mathrm{x}})\equiv\det[C+De^{-\lambda\tau}-\lambda I]=0$

where I is an identity matrix and Adenotes the characteristic roots.

Theorem 5.1 (i) $E_{0000}$ is always unstable.
(ii) $E_{x000}$ is locally asymptotically stable if $r_{1}a_{21}<a_{11}r_{2}$

(ii) $E_{xy00}$ is locally asymptotically stable if $r_{4}>e^{-r_{3}\tau}\{$

and $r_{1}\alpha<a_{11}r_{4}e^{r_{3}\tau}$ .
$\frac{r_{2}}{a_{21}}\alpha-\frac{a_{11}}{a_{12}a_{21}}r_{2}\beta+\frac{r_{1}}{a_{12}}\beta)$ .

Proof (i) Since

$\Delta(E_{0000})=(r_{1}-\lambda)(-r_{2}-\lambda)(-r_{3}-\lambda)(-r_{4}-\lambda)$ ,

the characteristic roots are given by

$\lambda=r_{1},$ $-r_{2},$ $-r_{3},$ $-r_{4}$ .

Since one characteristic root $r_{1}$ is positive, $E_{0000}$ is always unstable.

(ii) Since

$\triangle(E_{x000})$ $=$
$(-a_{11}\overline{x}-\lambda)(-r_{2}+a_{21}\overline{x}-\lambda)(-r_{3}-\lambda)(-r_{4}+e^{-\tau(r_{3}+\lambda)}\alpha\overline{x}-\lambda)$

$=$ $0$ ,

its solutions are given by $\lambda=-r_{3}<0$ , $\lambda=-a_{11}\overline{x}<0$, and $\lambda=-r_{2}+a_{21}\overline{x}<0$ if

$r_{1}a_{21}<a_{11}r_{2}$ . Now we consider the fourth factor and define

$h(\lambda)=\lambda+r_{4}-e^{-\tau(r_{3}+\lambda)}\alpha\overline{x}$ .

Then $h(\lambda)=0$ implies that

$\lambda+r_{4}=\alpha\overline{x}e^{-\tau(r_{3}+\lambda)}$

If ${\rm Re}\lambda\geq 0$ , then

$r_{4}\leq|\lambda+r_{4}|=\alpha\overline{x}e^{-r_{3}\tau}|e^{-\lambda\tau}|\leq\alpha\overline{x}e^{-r_{3}\tau}$ ,
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which gives acontradiction to rxa $<a_{11}r_{4}e^{r_{3}\tau}$ . This shows that $\mathrm{a}\mathbb{I}$ roots of $h(\lambda)=0$

have negative real parts and $E_{x01\mathrm{N}}$ is locally asymptotically stable.
(iii) Since

$\Delta(E_{x\mathfrak{M}})=(-r_{3}-\lambda)(\lambda^{2}+a_{11}\overline{x}\lambda+a_{12}a_{21}\overline{x}\overline{y})(-r_{4}+e^{-\tau(r_{3}+\lambda)}(\alpha\overline{x}+\beta\overline{y})-\lambda)=0$ ,

we have $\lambda=-r_{3}<0$ . The solutions Aobtained from the second factor have negative
real parts by Routh-Hurwitz criterion. Like (ii) we consider the third factor and define

$h(\lambda)=\lambda+r_{4}-e^{-\tau(r_{3}+\lambda)}(\alpha\overline{x}+\beta\overline{y})$ .

If the solution Aof $h(\lambda)=0$ has nonnegative real parts, then we have

$r_{4}\leq|\lambda+r_{4}|=(\alpha\overline{x}+\beta\overline{y})e^{-r_{3}\tau}|e^{-\lambda\tau}|\leq(\alpha\overline{x}+\beta\overline{y})e^{-r_{3^{T}}}$,

which gives acontradiction. This shows that $E_{xy\mathrm{M}}$ is locally asymptotically stable.
Remark 5.1 :Theorem 5.1(\"u) implies that $E_{x\mathrm{R}}$ is locally asymptoticaly stable if
neither $E_{xy00}$ nor $E_{x0zZ}$ exists.

6discussion

We only obtain the local stability conditions of $E_{x000}$ and $E_{xy00}$ . With respect to $E_{x0zZ}$

and $E_{xyzZ}$ , it is not easy to analyze the local stability rigorously. Furthermore, global
stability, permanence, and boundedness of the model with astage structure are also
future problems.
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