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1 introduction

The interplay of competition and predation can greatly influence species coexistence
or exclusion. A mixture of competition and predation is known as “Intra-guild Preda-
tion” (IGP). IGP is a subset of omnivory, which is defined as feeding on resources at
different trophic levels. Sea bass is one of an omnivorous fish. In Section 2, we will
consider an IGP model composed of a sea bass, a small fish as prey of a sea bass, and
plankton as the resource of sea bass and a small fish. Holt and Polis [3] showed that
IGP can lead to unstable population dynamics, even when all pairwise interactions are
inherently stable and each species can increase when rare. Under the unstable condi-
tion of the positive equilibrium point, we discover chaos occurs. Further, we obtain the
sufficient and necessary conditions for permanence. Permanence is the property which
assures all species in a system of coexistence for a long time. In case chaos occurs, it
looks like the trajectory is sticking to the boundary. However, we find it is strictly apart
from the boundary if the condition for permanence holds. In Section 3, we incorporate
a stage structure of sea bass into the IGP model and consider a time-delayed model.
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2 IGPymodel without young sea bass

2.1 model

First of all we consider a model without young sea bass, that is, without time delay.

The model is given as follows:

i(t) = a(t)(@(z() - by(t) — YZ(2),
'g?(t) = y(t)(—ry + ebz(t) — cZ(1)), (1)
Z@t) = Z(t)(—rs+ pbz(t) + bcy(t))-

The densities of the resource, prey, and sea bass are given by, respectively, z(t), y(t),
and Z(t). The quantities b'z(t) and cy(t) are functional responses of the sea bass to
the resource and prey, respectively; bz(t) is the functional response of the prey to the
resource; and 7, and 7, are density-independent mortality rates. The parameters € and p
convert resource consumption into reproduction for the prey and sea bass, respectively;
the parameter 6 scales the benefit enjoyed by the sea bass from its consumption of prey.
Finally, z(t)¢(z(t)) is recruitment of the resource.

Now we introduce the non-dimensional quantities by
b=ai, b =au, eb=as, c=au, pb' =a, 6c=0.

Let ¢(x(t)) = r1 — ap,2(t); the resource when alone grows according to a logisitic model.
By substituting these quantites, system (1) becomes

(t) = z(t)(r1 — anz(t) — a2y(t) — a14Z(t)),
y(t) = y(t)(—m + (121117(t) - a24Z(t)), (2)
Z(t) = Z(t)(—rs+ ax(t) + By(t)).

2.2 equilibrium
There exist five equilibria for system (2), namely

1. all species are at zero density: Egg = (0,0, 0) always exists,
2. only the resource is present: F = (i, 0, O) always exists,
a1

T2 aT1 — anr2 .
3. the resource and prey are present: E,, = (— ——— 0 ) exists

b
) ) Q21 a12a21
if and only if as7r; > @172,
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Table 1: Local stability conditions for non-negative equilibria of system (

Equilibrium point Local stability conditions

ap = a;;z* > 0,

Eryz a1 = a1201T*Y* + a2 fy* Z* + argax* Z* > 0,
ay = —z*y*Z*|A| > 0,
apa; —as >0

Ervo Z<0

E.oz y<o0

Ez00 217 < ATz, Mo < a;i7y
FEooo unstable

T4 T — Q11T .
4. the resource and sea bass are present: E,q; = (—, 0, ——————— ) exists
(0 Q14
if and only if r,a > ay;74, and
o. all species are present: F,,z = (z*,y*, Z*), where
* ~ * ~ * 7
= —z/|Al,y" = -§/|Al, Z* = -Z/|A|,
T = —a12024T4 + 14720 + 710240,
Y = —T10240 + 01482174 — Q14720 + 011G247 4,
Z = apra+r1a8 — aypa74 — a11720,
IAI = @124 — Q14090 — a1182403,

exists if and only if
|A| >0, <0,§<0,and Z <0or |[A] <0,Z>0,5>0, and Z > 0.

2.3 local stability

Conditions for local stability of equilibria are summarized in Table 1.
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2.4 permanence

We consider the following differential equation:
d;i:x’ifi(x)a 7':1a y (3)

on R™. We are interested in whether all species in the system can survive or not. There
are several mathematical concepts dealing with this aspect. In particular, a system of
type (3) is said to be permanent if there exists a compact set K in the interior of the
state space such that all orbits in the interior end up in K.

Equivalently, permanence means for (3) that there exists a d > 0 such that
d < lltII_I) glf z;(t) 4

for all 4, whenever z;(0) > 0 for all 4. In addition permanence requires that there exists
a d such that

limsupz;(t) < d (5)

t—oo

for all 4, whenever x(0) € int R?. If (5) holds for all x(0) € R}, we shall say that the
orbits of (3) are uniformly bounded. Condition (4) means that if all species are initially
present, the dynamics will not lead to extinction. The threshold ¢ is a uniform one,
independent of the initial condition (see Hofbauer and Sigmund [2]).

For most examples, the terms f; in (3) are linear. This yields the Lotka-Volterra equation
&; = zi(r; + (AX):) (6)

on R%. Sufficient conditions for permanence of system (6) are given by the following

Lemma 2.1, which is used to obtain a sufficient condition for permanence of system (2).

Lemma 2.1 (Hofbauer and Sigmund [2]) A Lotka-Volterra equation (6) with uniformly

bounded orbits is permanent if there ezists a positive solution p for

Z pi[ri + (AX)z] >0 (7)

i:Ii=0
(where x runs through the boundary rest points ).

By using Lemma 2.1, we obtain the following theorem:
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Theorem 2.1 System (2) with uniformly bounded orbits is permanent if the following

conditions hold:

9>0,Z>0,and

((1217'1 - (1117'2)(01'1 — (1117'4) <0or a1 — Q1172 > 0, ary; — 01174 > 0.

(8)

Proof Let us apply Lemma 2.1 to system (2):
For x = (E,y), (7) becomes

T a7y — AT ‘
Ps (_m +alt ﬂu> 0. 9)
a2 a12021

If ayaroa+ 110218 — a12a2:74 — a11728 > 0 which is equivalent to Z > 0, (9) holds for any
p>0.
For x = (Eyoz), (7) becomes

Ty Tix — a7y
- — —ay— | >0. 10
D2 ( T2 + as o O s ) (10)

If —ria24a + a14a2174 — @142 + a11a2474 > O which is equivalent to § > 0, (10) holds for
any p > 0.
For x = (E,p), we have

r
po(—rs + agll) + p3(—ry + a—l) > 0. (11)
an an

If

(az1m1 — ayre)(ar; — anry) <0

or a1y —anry > 0,ar; —ayry > 0,
there exists p, > 0, p; > 0 such that (11) holds.
For x = (Epg),
p171 + pa(—72) + p3(—r4) > 0.

This inequality holds for sufficiently large p; > 0.
This shows that system (2) is permanent if (8) hold.

Next, necessary conditions for permanence of system (6) are given by the following
Lemma 2.2 and 2.3, which are used to obtain a necessary condition for permanence of

system (2).
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Lemma 2.2 (Hofbauer and Sigmund [2]) If (6) is permanent, then there ezists a unique

interior rest point X.

Lemma 2.3 (Hofbauer and Sigmund [2]) Let (6) be permanent and denote the Jacobian

at the unique interior rest point X by J. Then

(=1)"detJ > O, o (12)
trJ < 0, - (13)
(-1)"detA > 0. (14)

By using Lemma 2.2 and 2.3, we obtain the following theorem:
Theorem 2.2 If (2) is permanent, |A| < 0.
Proof In system (2),

—a11 —Qai2 —0i14
A = aa1 0 —Qa94
Qa I} 0

It is easy to check that we have |A| < 0 by (14).

3 IGP model with young sea bass

We consider a model with a stage structure for sea bass. Sea bass breeds young sea
bass and some time later young sea bass grows up into sea bass. By incorporating this

phenomenon into system (2), the model becomes

Z'(t) = m(t)(rl - a11$(t) - algy(t) - algz(t) — (114Z(t)),

y(t) = y(t)(—r2 + a21m(t) - a24Z(t)), (15)
i) = —r32(t) + az(t) Z(t) + By(t) Z(t) — e " (ax(t — ) + By(t — 7)) Z(t — 7)),
Z(t) = —r4Z(t)+e T (az(t— 1)+ Byt —T)Z(t - 7),

where z(t) is the density of the young sea bass and r3 is its density-independent mortality
rate. A constant 7 is the length of time from birth of the young sea bass to grow up
into the sea bass. Since the mortality rate of the young sea bass is r3, the density of the
sea bass at time t is given by e ™" (azx(t — 7) + By(t — 7))Z(t — 7). Here we suppose
that a young sea bass eats only the resource. Further, note that (15) becomes (2) if 7 is
neglected(when 7 = 0, 2(t) = —r3z(t)).
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There exist five equilibria for system (15), namely

1. all species are at zero density: Eg0=(0,0,0,0) always exists,
2. only the resource is present: E,gpo= ((:—l, 0,0, 0) always exists,
11

3. the resource and prey are present:

T 1 a . . .
Ezyo0= (—2, —(r; — irg),O, 0) exists if and only if r1a5; > ay;72,
Q21 a2 az .

4. the resource, young sea bass, and sea bass are present:

T4 T4 _ PPN
EszZZ (_a_era'r’O, r_era-r(l —e rsr)Z, VA
3

-1
5 Tq - T4 .
where Z = | a14 + a13—e™" (1 —¢ '37)) (r1 - au—e""’) exists
T3 o

if and only if rya > a;,74€™7, and

5. all species are present: E.,.z = (z*,y", 2*, Z*) exists if and only if

ap a a G11G24 Q@120  T4(e™" —1
(1'1 —— Ty — — | 14€™ — —1y - — + ( )

as az B an T3

To + Qo Z*

(=2Z*)>0and r4e™” > a
a

5 local stability
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-1
a3 + 014)

In this section, we will discuss the local stability of the equilibiria. Denote a nonnegative

equilibrium point of (15) as X = (Z, 7, Z, Z). Let define
x(t) = (2(t) - Z,y(t) — §,2(t) — 2, Z(t) — Z).
Then the linearzied equation of (15) at X is described by
x(t) = Cx(t) + Dx(t — 1)

where C and D are 4 x 4 matrices given by

T1 — 20117 — 6197 — a13Z — a1 Z —a12% —a13T —a14T
o 021_?7 —r2 + 021_5 —anZ 0 —0a24y
aZ BZ -r3 aZ+ By
0 0 0 —7T4

b



179

0 0 0 0
0 0 0 0
—eqZ —e™BZ 0 —e " (aZ + BY)
e™"qZ e ™ BZ 0 e (af + [Y)

D=

The characteristic equation of (15) at X is given by
A(X) = det[C + De™ — M| =0
where I is an identity matrix and A denotes the characteristic roots.

Theorem 5.1 (i) Eoooo is always unstable.

(i) Exo00 is locally asymptotically stable if r1as < anre and ria < a;re™’.

T a T
(ii3) Egyoo s locally asymptotically stable if r4 > e’ (—201 - B+ -—l-ﬂ).
as1 412021 a2

Proof (i) Since
A(Eoo0) = (11 — A)(—r2 — A) (=13 = A)(—T4 — A),
the characteristic roots are given by
A=r711,—Ty, —T3,—T4.

Since one characteristic root 7 is positive, Egoo is always unstable.
(ii) Since
A(Ezo00) = (—anZ — A)(—r2+anZ — A)(—r3 — A)(—Ta + e TNz — )
= 0, '

its solutions are given by A = —r3 < 0, A = —anZ < 0,and A = -1 + anZ < 0 if

ria < a1172. Now we consider the fourth factor and define
R(A) = A+74 — e Naz,
Then h(A) = 0 implies that
A+ 71y = aze TN

If Re A > 0, then

re < |A+ry| = aze e V| < aze "

’
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which gives a contradiction to rja < aj374€™7. This shows that all roots of h(A) =0
have negative real parts and E,gq0 is locally asymptotically stable.
(iii) Since

A(Eryo0) = (=73 = (N + anZA + @120 Z7)(—14 + €N (az + By) — A) = 0,

we have A = —r3 < 0. The solutions A obtained from the second factor have negative
real parts by Routh-Hurwitz criterion. Like (ii) we consider the third factor and define

R(A) = A+ 14 — e N (o + By).
If the solution A of h(A) = 0 has nonnegative real parts, then we have
T4 < |A+r14| = (aZ + BY)e " |e ™| < (aZ + By)e ™,
which gives a contradiction. This shows that E;y00 is locally asymptotically stable.

Remark 5.1 : Theorem 5.1(ii) implies that E.o is locally asymptotically stable if
neither E, 00 nor F,y,z exists.

6 discussion

We only obtain the local stability conditions of E,qe and E;y00- With respect to E,q, 2

and E,,.z, it is not easy to analyze the local stability rigorously. Furthermore, global
stability, permanenée, and boundedness of the model with a stage structure are also
future problems.
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