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Introduction and Results

We study the magnetic scattering by several point-like fields at large separation
in two dimensions. The aim is to derive the asymptotic formula for scattering am-
plitudes as the distances between centers of fields go to infinity. Even if a magnetic
field is compactly supported, the corresponding vector potential does not necessarily
fall off rapidly, and in general, it has the long-range property at infinity. We discuss
from a mathematical point of view how the scattering by separate fields interacts
with one another through long-range magnetic potentials. A special emphasis is
placed on the case of scattering by fields with centers on an even line. The obtained
result depends on fluxes of fields and on ratios of distances between adjacent centers.
It is known as the Aharonov—Bohm effect ([3]) that magnetic potential has a direct
significance to the motion of quantum particles. An extensive list of physical liter-
atures on the Aharonov-Bohm scattering can be found in the book [2]. We refer to
the recent article [8] for the Aharonov-Bohm effect in many point-like fields, where
the term magnetic vortez is used for point-like magnetic field.

Throughout the whole exposition, we work in the two dimensional space R? with



generic point z = (z,,2;). We write

H(A) = (—iV — A = Y(-ity ~ s, = 0/om;,

for the magnetic Schrodinger operator with vector potential A(z) = (a1(z), a2(z)) :
R? — R?. The magnetic field b(z) is defined as

b=V x A=0ba; — Aa,

“and the quantity a = (27)~" / b(z) dz is called the total flux of field b, where the

integration with no domain attached is taken over the whole space. We often use
this abbreviation.

We first consider the case of a single point-like field. The Hamiltonian with
such a field is regarded as one of solvable models and the explicit representation for
scattering amplitude has been already obtained by [1, 2, 9]. Let 2rad(z) be the
magnetic field with flux o and center at the origin. Then the magnetic potential
A,(z) associated with the field is given by

Ao() = a(-Bslog o], Brlog e]) = & (~zo/lal’,zn/I2f) . (1)
In fact, we can easily see that
V x A, = aAlog|z| = 2rad(z).

We should note that A,(z) does not fall off rapidly at infinity and it has the long—
range property. We write H, = H(A,). The potential A,(z) has a strong singularity
at the origin, so that H, is not necessarily essentially self-adjoint in C°(R? \ {0})
([1, 4]). We have to impose some boundary conditions at the origin to define H, as
a self-adjoint extension in L? = L?(R?). We denote by the same notation H, the
operator with domain

D(H,) = {u € L?: H(A,)u € L? |}=i|1—?o lu(z)| < oo},

where H(A,)u is understood in D’ (distribution sense). Then H, is known to be
self-adjoint in L? and this operator is called the Aharonov—-Bohm Hamiltonian. If,
in particular, o € Z is not an integer, u € D(H,) is convergent to zero as |z| — 0.
As stated above, the amplitude f,(w — @; E) for the scattering from initial direction
w € S! to final one & at energy E > 0 has been already calculated. If we identify
the coordinates over the unit circle S! with the azimuth angles from the positive z,
axis, then f,(w — @; E) is explicitly represented as

fo = o(E)((cos ox — 1)8(& — w) — (i/)sinam G IF@ - w))  (2)
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with ¢(E) = (27/iv/E)!/?, where the Gauss notation [a] denotes the maximal integer
not exceeding o, and Fy(6) is defined by Fy = v.p. e /(e - 1).

We move to the scattering by point-like field supported on N points d; € R?, 1 <
J < N. We make large the distance |d;x| = |di — d;| between centers d; and dj, under
the assumption that :

the direction J,k = dji/|d;jx| remains fixed (3)
for all pairs (j, k) with j # k, 1 < j,k < N. We further assume that
max |djx| < ¢ min |dj| (4)

for some ¢ > 1. These two assumptions on the location of centers are always assumed
to be fulfilled. By translation, we may assume d;, to remain fixed, so that all the
centers are in a disk {|z| < cd} with another ¢ > 1, where d = min |d;,|. We write

Hd = H(Ad), Ad(m) = f:AJ(.’L‘) = ﬁ’:AaJ(x - dj), (5)
i=1 j=1

for the Schrédinger operator with field ), 2ma;6(z — d;), where A, (x) is defined
by (1). According to the results in [5], H; becomes a self-adjoint operator with
domain

D(Hy) = {u € L*: H(Az)u € L? ' ]ﬁnﬂ 0I'u,(at:)| <oo, 1<j< N}L
: T—aj|—
We also know from [5] that the wave operators
Wy (Hy, Hy) = s — t_l}ifl:nc° exp(itHy) exp(—itHp)

exist and are asymptotically complete, where Hy = —A is the free Hamiltonian. We
denote by fy(w — @; E) the scattering amplitude of pair (Hy, Hy). The aim is to
analyze the asymptotic behavior as d — oo of fi(w — @; E).

We fix the notation to state the obtained results. We denote by vy(#;w), & =

z/|z|, the azimuth angle from direction w € S*. Let A;(z), 1 < j < N, be as in (5)
and set ‘
H;=H(4;), 1<j<N. (6)

The operator H; admits a self-adjoint realization under the boundary condition
limy;_g;0 |u(z)| < 00 at center z = d; and the scattering amplitude of pair (H}, Hy)
is given by

fi(w = @&; E) = exp(—iVEd; - (& — w))fa,; (w = & E),
where f, is defined by (2). The first main theorem is formulated as follows.
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Theorem 1 Let the notation be as above. Assume (3) and (4). If w # dj and
@ # dji for all pairs (j, k) withj #k, 1 < j, k< N, andw # &, then fo(w — &; E)
obeys

fiw— G E) = - exp(ilr; — 7)) fi(w = 3 E) +of1), d oo,

Jj=1
where 7; = zﬁ:l, k#j ayy(dij;w) and 75 = Zf:l, k#j axy(dij; —@).

We can find the Aharonov-Bohm effect in the theorem above. As is seen from
the asymptotic formula, the scattering by field 2wa;0(z — d;) is influenced by other
fields through the coefficient exp(ir;), although the centers of fields are far away
from one another. This means that vector potentials have a direct significance to
quantum particles moving in magnetic fields. The magnetic effect is more strongly
reflected in the case when w = dj or @ = dj. We add the new notation. We

interpret exp(iay(w;w)) as
exp(iay(w;w)) := (1 + exp(i2am))/2 = cos ax exp(iar).

Then the same asymptotic formula as in Theorem 1 can be shown to remain true
even for w = di; or @ = di; under the assumption that

there is no other center on I for all pairs (3, k), (7

where [, is the line joining the two centers d; and d;. We do not intend to prove this
result here. We have studied the case N = 2 in [5]. If N = 2, (7) is automatically
satisfied. For example, we have obtained that the backward scattering amplitude
obey

filw = —w; E) = fi(w > —w; E) + (cos ay7)? fo(w = —w; E) + o(1) (8)

for w = d12.

Our emphasis is placed on the case without (7). As a typical case, we study the
scattering by point-like fields with centers on an even line. For brevity, we confine
ourselves to the simple case N = 3. The argument extends to the general case
N > 4. What is interesting is that the asymptotic formula depends not only on
fluxes of fields but also on ratios of distances between adjacent centers. We assume
that three centers are along the direction w; = (1,0) in the order of d,, d; and ds.
We further assume that

the ratio |das|/|d12| = do remains fixed ' (9)

for some dp > 0. This assumption can be weakened as limy_,, |das|/|d12| = do. We
define f.7 as

6.7 = angle between two vectors (0,+1) and (1,—63/2). ' (10)
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It is obvious that 6§, +0_ = 1and 0 < 6_ < 6, < 1. If, for example, three centers are
at even intervals, then &, = 1, so that .. are determined as . = 3/4 and 6_ = 1/4.
We are now in a position to state the second main theorem.

Theorem 2 Let the notation be as above. Assume that (9) is satisfied. If & # tw;
for the incident direction wy = (1,0), then fq = fi(wi — @; E) behaves like

fi = giea(r=y(~w1;—)) gias(r—y(-w1;-@)) fi
+ (cosaym) g (m=1(wii=@)) gias(r=1(~w1i=a)) f,

+ (84 cos(a + az)m + 6_ cos(ay — ap)T) g (m=(wi=d)) giaa(r—1(1i~@) £ 1 o(1)

as d — oo, where f; = f,-(wi — @;E) for 1 < j < 3. Moreover the backward
scattering amplitude fi(w, — —wn; E) obeys

fa= f1 + (cos ay7)? fy + (0, cos(a; + ag)m + 6_ cos(ay — ¢)zz)7r)2 fa+o(1)

with f; = fi(wn = —wy; E).

We make several comments on the two theorems above.

Remark 1 The quantity |fs(w, — @; E)|? is called the differential cross section.
We figure the approximate values of cross sections obtained from the asymptotic
formula on the right side in the appendix and we see how the pattern of interferences
changes with three flux parameters a;, o; and os.

Remark 2 The idea in the proof of Theorem 2, in principle, enables us to prove
Theorem 1 without assuming that w # dk, and @ # dk, For example, it is pos-
sible to extend Theorem 2 to the case of scattering by several chains of point-like
fields. However the formula takes a rather complicated form and we do not have yet
obtained a unified form of representation.

Remark 3 If we make a change of variables z — dy, then Theorems 1 and 2 can be
easily seen to yield the asymptotic behavior at high energy of scattering amplitudes
when the distances between centers of fields remain fixed.

We write R(z; H) = (H — z)™' : L* — L?, Imz # 0, for the resolvent of self-
adjoint operator H. We know ([5, Propositions 7.2 and 7.3]) that H; has no bound
states and that the boundary values to the positive axis

R(E +1i0; Hy) = lim R(E + ie; Hy) : L*(R?) — L2 ,(R?) (11)
exist as a bounded operator from the weighted L? space L?(R?) = L*(R?; (z)** dz)

into L2 ,(R?) for s > 1/2, where (z) = (1 + |z|?)"/2. We take 0 < 0 < 1 small
enough and denote by s;(z) the characteristic function of set

={zeR?:|z—-dj|<Cd}, 1<j<N, (12)
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with C > 1. The proof of the main theorems is based on the resolvent estimate
||s; R(E % i0; Hy)si|| = O(d~Y/*+) (13)

for j # k, where || || denotes the norm of bounded operators acting on L2.

The work [7] has studied the same problem in the case of potential scattering
for the operator —A + ﬁ__l Vj(z — d;) with potentials falling off rapidly at infinity.
The obtained result is that the scattering amplitude

falw 2> @, E) = E fi(w = &; E) + o(1)

=1

is completely split into the sum of amplitudes f;(w — @; E) corresponding to poten-
tials V;(-—d;), and we do not have to modify the phase factors. A new difficulty arises
in the case of magnetic scattering. Roughly speaking, this is due to the long-range
property of magnetic potentials and several new devices are required to overcome
such a difficulty. We work in the phase space and the microlocal analysis plays an
important role in proving the theorems. We conclude the section by stating that
in the scattering by point-like magnetic fields, the fields interact with one another
through long-range magnetic potentials by the Aharonov-Bohm effect, although the
trapping effect between fields is weak, as is seen from resolvent estimate (13).
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Appendix : Figures of differential cross sections

- The differential cross section is a quantity observable through actual experiments
and it is one of the most important quantities in the scattering theory. We here
figure the approximate values for |fi(w; — @;E)|?, w1 = (1,0), to see how the
intensity of scattering changes with three flux parameters a;, a; and a3 and with
positions of centers d;, d;, d3 as stated in Remark 1. We first consider the case that
the three centers d; = (0,0),d; = (100,0) and d; = (200,0) are at even intervals
along direction w; = (1,0), i.e., |di2| = |d2s] = d = 100. The figures are drawn
for |fa(wn — @;F)|? with E = 1 and 47/9 < y(@;w;1) < 57/9. For example,
the scattering angle v(&;w;) = 7/2 corresponds to the value 7/2 = 1.57.... on the
horizontal axis in the figures below.

Figure 1 (ay =1/4, a; =1/4, a3 =1/2) : three coefficients do not vanish.

Figure 2 (a; = 1/2, as = 1/2, asz = 1/2) : coefficient of fo(w; — @; E) vanishes.

Figure 3 (a; = 1/4, oy = (arctan2) /m, a3 = 1/2) : coefficient of f3(w; — @; E)
vanishes.

Next we consider the case that d; moves only a little from (200, 0) to (200, 2) so
that three centers are not on the same line. Fluxes are the same as in the case of
Figure 3. Figure 4 represents this case. Though the movement of dj is small, there
is remarkable differences between them.
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Figure 1 oy =1/4, a2 =1/4, a3 = 1/2; dy = (0,0), d; = (100,0), d5 = (200,0)
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Figuwe2 o1 =1/2, oy =1/2, as=1/2 d=(0,0), & = (100,0), d3 = (200,0)
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