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Eigenvalue problems on domains with cracks II

Kazushi Yoshitomi ( -é,'— g 40 /:5.)
Graduate School of Mathematics, Kyushu University,
Hakozaki, Fukuoka 812-8581, Japan

0. Introduction. Let Q be a bounded domain in R? with a smooth boundary and let - : [0, o] — R2
be a smooth curve without self-intersection. We assume that

(A1) Y(0t)cQ 10)=0€0Q,  7(to) €30

For € € [0, ), we put
Q. = Q\7([e, to)).

Let a € (0, 7). For b > 0, we define
I, = {(z1,22) €R%; x5 >0}\{(rcosa,rsina) eR%; r> b}.

For a € R? and r > 0, we denote by D(a,r) the open planar disk of radius r centered at a. We impose
the following assumptions on Q and +.

(A.2) There exist o > 0 and €g € (0,r9) such that
QN D(0, ro) = H; ND(0,ry) forall ee€ (0, 60].

The set (g consists of two connected components. Let 2, and 2_ be the connected components of g
which satisfy (€o,0) € 0, and (—e€p,0) € IN_, respectively. We define

Qe={ueH(Q); u=0 on 80},

Qt={ueH'(Q1); u=0 32NN},
ge(u,v) = (Vu,Vv)1aq) for u,veQ,,
a*(u,v) = (Vu, Vo) L3y for u,ve Q=.

Let L, be the self-adjoint operator associated with the quadratic form g.. The operator L. is the negative
laplacian on 2 subject to the Dirichlet boundary condition on 8 and the Neumann boundary condition
of the crack v((0,%p)). By \j(€) we denote by the jth eigenvalue of L, counted with multiplicity. The
aim of this paper is to find the asymptotic form of the first eigenvalue \;(¢€) as ¢ tends to zero. Let Lt
and L~ be the self-adjoint operators associated with the quadratic forms gt and ¢~, respectively. Let
M < Af < AF <--- be the eigenvalues of L* repeated according to multiplicity. We assume that

(A3) A} <)

We put
B=

We further impose the following assumption on a.

3

(A4) L+iB5¢Z forall (I,m)eZ?\{(0,0)}.



7

Let Wo(z) be the eigenvector of LT associated with the eigenvalue A} which is normalized by the
conditions

\I/()(.’L') >0 in Q+, 1|,\I/0“L2(Q+) = 1. (01)

The function ¥o(z) admits the following asymptotic expansion which can be differentiated term by term
arbitrary times.

00 oo . )
Yo(z) ~ Z Z Cj,kr%ﬁl“k sin Q’{EE as r —0, (0.2)
F=1k=0
Ci0>0, (0.3)

where (7, 8) stand for the polar coordinates of z € ;. Our main result is the following claim.

THEOREM 0.1. The function A1(e) admits the asymptotic ezpansion of the form

oo oo o0

Ai(e) ~ At + Z Z Z Amnp€B TToB 2P g5 €0, (0.4)

m=1n=0 p=0

where

T ‘ 0 T ve
— N g-141/8 — 2
A1,0,0 4ﬂ (/_1 =t 1)1_3(1_52 mpsy: dx) Cio- (0.5)

Our work is inspired and motivated by that of M. Dauge and B. Helffer. By using the method of
variation, they proved in [2] that
lin(x)/\j(e) =vy; for jeEN,
€—

where 11 < v < --- are the rearrangement of {)\j }321U{A; }32, counted with multiplicity. This result
interests us in the asymptotic behavior of A;(¢) as € tends to zero. In our previous work (8], the full
asymptotic expansions of A;(e) and \z(e) are obtained in the case when a = 7/2 and At =A7. In the
derivation of these asymptotic expansions, we made use of the reflection symmetry of €, in the vicinity
of the origin. The scope of this paper is to obtain the full asymptotic expansion of the eigenvalue of L,
as € tends to zero in the case when a # 7/2. In the proof of Theorem 0.1 we need a tool which differs
from the reflection argument used in [8] because the region Q¢ has no symmetry in any neighborhood
of the origin.

Throughout this paper we use the following expedient about summations and sets. For k, | € Z with
k > 1, we define Zl —x0; = 0 and {bj}k<j<t = 0. A formula that contains either + or F means two
formula.e which correspond to the upper sign and the lower sign, respectively. For example, the formula

= bF means that a* = b~ and a~ = bt. ‘

We prove the main theorem by using the method of matched asymptotic expansion (see [5] and [3]).
We define

¢ =¢lz.

We look for the approximate first eigenvalue of L. and the associated eigenvector in the following form.

[= s BN <IN o]

M=+ D Ampnpe? TTFT, (06)

m=1n=0p=0

out(z) ‘I’O(x) + i €é+iﬁ+21w;:k,l(x) in Q+\D(07 \/E)’ | (07)

01=0

M8
M8

i
A
x>
[

Ms
s

V3(z) = Yy, () i Q_\D(0,ve), (0.8)
j=1k=11=0
() =YD D 0 in 9.0 D(O,26). | (0.9)
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Inserting (0.6) and (0.7) into the equation (A, + A(e))¥Z,.(z) = O and identifying the power of ¢ in
view of (A.4), we obtain

i-1 k1
(Az +AN)¥H (2) = =X 40T (2) — Z > Z’\m,n,p‘l’;—m,k—n,l-—p(z) in Qy, (0.10);,k,

m=1n=0 p=0

7
vh(2)=0 on 3Q,NaQ, 5;‘1’;:1:,1("’)=0 on 7((0,t))-

In a similar way, we obtain the following equations from (0.6) and (0.8).
-1 k-1 1

(Az + A1), () = Z 3N MV mk-nip(@) in Q_, (0.11) 5,k

m=1n=0p=0

o _
Viki(@)=0 on 9Q_NaAQ, ?a-;‘-\llj’k',(x)=0 on ((0,t)).

Plugging (0.6) and (0.9) into the equation (A, + A(€))¥in(z) = 0 and equating the powers of ¢ in view
of (A.4), we get
-1 k 1-1

Agvjk1(€) = =Afvjka-1(€) — Z ZZ’\ npVi-mk—ni-p-1(§) in II, (0.12); k.1

m=1n=0 p=0

vk 1(,0) =0 on R, aniiv,-,k,g(ﬁ) =0 for €€ BI'I},\(R x {0}),

where 9 (6 + hng) = vya(€)
lim Uikt + hng) — vjk,
ony Ty Uikt (6) = h +0 h

and ng = (sina, —cosa) is the unit normal vector to 8IIL\(R x {0}). We shall construct ¥}, ¥,
and ¥;, in such a way that ¥}, W, . asymptotically coincide with ¥;, on the intermidiate regions
Q4 N (D(0,2/€)\D(0, /€)) and Q_ N (D(0,2\/€)\D(0, \/€)), respectively. We organize this paper as
follows. In section 1, we solve the outer equations (0.10);x; and (0.11);%;. We also analyze the
asymptotic behavior of the solutions to the equations (0.10); %, and (0.11);x,; in a neighborhood of the
origin. For this purpose we use the standard L2-theory of elliptic differential equations on coner domains
which was originated by V. A. Kondrat’ev. In section 2, we solve the inner equation (0.12);x;. We
give an explicit formula for the solution to this equation. Using this formula, we derive the asymptotic
expansion of the solution to (0.12); k, as |§| — oco. To construct this formula, we need a special conformal
map. Thanks to this map, we can derive the explicit formula (0.5). This map is the most significant
tool in the proof of Theorem 0.1. In section 3 we construct the coefficients of (0.6)—(0.9) by using an
induction procedure and the results in the previous sections. In the construction we need matching
conditions which ensures the mentioned coincidence of the expansions (0.7)—(0.9) on the intermidiate
regions. On inequalities we denote inessential constants by C.

for £ e OI\(R x {0}),

1. Outer equations. In order to solve the outer equations (0.10) and (0.11), we use the L?~theory of
elliptic differential equations on domains with conic singularities which was inspired by V. A. Kondrat’ev
(see [6] and [7]). For u € (0,27), we put

= {(r cos8,rsinb) € R% r>0, 0<0<u}

Let R, be the set of all positive real numbers. By (r,8) € R} x (0, #) we denote the polar coordinates
of z € K. Let us consider the equation

- Azu(r,0) = f(r,0) in K,
{u(-,O) =0 on Ry, go-u(-,u) =0 on R,.
By Z, we denote the set of all non-negative integers. For | € Z, and v € R, we define
VIK,) = {ue D'(K,); r"H3u(z) e L*(K,) for 6€Z%, |5 <I}.
From [6] we recall the following two theorems (see also (7, Chapter 2]).

(1.1)
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THEOREM 1.1 (V. A. Kondrat’ev). Letl € Z, and~y € R. Assume thaty—1—-1¢ {5-(2j-1); Jj€ Z}
and f € VI(K,). Then the equation (1.1) has a unigue solution in VIF(K,).

THEOREM 1.2 (V. A. Kondrat'ev). Letl € Zy, v1 <72, e —1—-1¢{F;(27—1); Jj€ Z} for k = 1,2,
and f € V! (K,) NVE (Ky). For k=1,2, let ux € VJ}?(K,) be the solution of (1.1). Then we have

uy(z) — ua(z) = Z car 35 @7V gin Q%EO in K,,
: " n€A(Y1,72:) : '

where _ o .
A1) ={neZ; l+1-m< —2—;(212— 1) <l+1-m}

 Now we introduce function spaces which we need in the sequel. For j € N, we define
. m l .
5 (Kyu) = () Vis7” ()

1=0
={ueD(K,); r-¥+1+lgly e L*(K,) forall §eZi}.

For an open set ¥ in R? and a ﬁnjte subset S of 9%, we define
CFE\S) ={u:T - R; ueC*ZT\A) foranyopen covering A of S}, k€N,

C™(T\S) = N1 CH(Z\S).
Choose x € C*°([0, 0)) such that

z(r)=1 on [0,70/4], z(r)=0 on [ro/2,00).
For m € Z,, we define

I3 = {u € C= @4 \{0,7(t0)});
(1—-x(r)ue L*(Q4), u=0 on NNy, Ba—nu =0 on ~((0,%)),
the function wu(z) admits the asymptotic expansion of the form

[o <IN o] i 2m )
u(z) ~ EZDMT’ 352k sin B2 a5 r 0, ze€Qy,
7=0 k=0 '
which can be differentiated term by term infinitely many times.}

For f, g € Nre(0,r0)L*(2£\D(0, 7)), we define
(f,9)a: = rlifgo(f ,9)L2(Q4\D(0,r))
if and only if the limit exists.

In this section we are mainly aimed to prove the following lemma.

LEMMA 1.3. Let m € Zy, f € J}, and {a;}7Lo C R. Then there exists pu € R such that the equation

A+M)p=—u¥+f in Q,
=0 on 8NNy,
d (1.2
=0 on 7((0, o)),

(‘p’ ‘IJO)Q+ =0
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has a solution ¢ € J} +1 Which admits the asymptotic expansion

©co ©o 2 i .
(P(z) NEZEj,krzz 2 _1+2ksin£31__2;5;lm as r— 0’ € Q+ (1-3)
=0 k=0
with
Ejo=a; for 0<j<m. (1.4)

In order to prove this Lemma, we need the asymptotic representation (0.2) of the function ¥,.
Supposing this formula for a moment, we shall complete the proof of this Lemma.

Proof of Lemma 1.8. Since f € J};, the function f admits the asymptotic expansion

(o < BN ]  —2m .
f(z) NZZDj,krz % 1+2ksing‘$)ﬁ as r—0. (1.5)

3=0 k=0

Let F' be the partial sum of the formal power series on the right side of (1.5):

m—1 oo —2m .
F(z) = Z ZDj’kr-‘—er—’ il +2k sin ﬁg%'ﬁ)ﬁ
=0 k=0

We introduce a formal power series ¥ satisfying (A + A})¥ = F term by term as follows. We put
m oo ame )
¥(z) = Z Z Ejpr 8=t 2k i Q.%g}-_l)ﬁ
3=0 k=0
where the coefficients {Ej s} are defined by the recurrent formulae
Ejo:=a; for 0<j<m,

Eovrr e BAY
Ok+1 == "ok + 1)(2j — 2m — 1)

Eox for keZ,,

B + .
. = . —_ . < < .

For N,j € Z,, we define

. _[N+m—j+1
M(],N) = [—T——} + 1.
Then we have 9 —9 1 aN +1
J —<«m — .
23 +2M(j,N) > I (1.6)
We introduce the following partial sum of W¥:
m MG,N) 2j—2am-1 .
wN(z) := Z E E_.,-,kr"'_”_"'”‘ sin LH—)-Z '?;"—1 8.
i=0 k=0
We seek a solution of (1.2) which admits the form
o(z) = x(r)¥N (z) + én(2), ¢n € D(Ly). (1.7)
Inserting this into the equation (1.2), we obtain the equation for ¢x:
(A+A1)on = —p¥ +gn in Q,
¢n=0 on NI,,
(1.8)

Zpn=0 on (0,k)),
(¢n:¥o)L3(a,) = —(x(r)¥N (z), ¥o)a, ,
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m—1M(j+1,N)-1
2j—2m+1 .
ov =(1—x)f ~UNAx - 2Vx - VI 4 x (f =5 S Dy e gy @it
§=0 k=0

m
L=2n=l LIM(5,N) o (2j—2m—1)0
XD B MG MU )Sm%)‘)'
=

From (1.5) and (1.6), we have gy € L%(924). Since —u¥g + gy € L2(Q4) and A} is a simple eigenvalue
of L, the equation (1.8) has a solution in D(L,) if and only if (—u¥o + an, Yo)r2a,) = 0; ie.
B = (9n,%o)r2(n,). We define uxy = (gn,¥o)r2(,)- For p = pn, let g5 € D(L4) be the unique
solution of the equation (1.8). We put () = x(r)¥" (z) + ¢n(2).

Let us show that ux and pn are independent of the choice of N € Z,.. For N,M € Z_, we have

(A+X)en —om) = (un — pm)¥o in Qy,
(N — oM, ¥o)a, =0,
on(2) = pm(z) = x(r)(TY () = ¥M(2)) + ¢~ (2) — dm(z) € D(Ly).
Since A is a simple eigenvalue of L, weget uy — up =0 and o — ppr = 0. Thus py and gy are
independent of the choice of N € Z,, which we denote by u and ¢, respectively.

Our next task is to prove that ¢ € JF +1- As a preliminary, we first prove that x¢o € S*(K,) by
induction. Since ¢9 € D(L, ), we have the Hardy inequality

/ ‘ |Vedo|? dz > / 772|180 |? dzx
Q4ND(0,79) Q4+ND(0,r0)

a 70
- / / r=1|8odo|? drdd
0 1] :
2 o To
"2/‘/ r~1|¢o|? drdd
: 0 0

2
/ 72| |? dz.
ﬂ+nD(0,ro) .

So we get x¢o € V3 (Ko). Now we assume that x¢o € ka“(Ka) for some k € Z,. For N € Z,, we
obtain

v
% &

>
N

QY

{ A(xdn) = x(=ATdn — %o + gn) + 2VX - Vén + dnAx = hy in K,,
(L9~

6 .
(x¢n)(1,0) =0 on Ry, —-(xén)(@)=0 on Ry.
Since ho € V¥, ;(K,), we infer from Theorem 1.1 that there exists v € kaflz (Kq4) such that
Av = ho in Ka,
v(-,0)=0 on R,, aﬂev(-,a) =0 on Ry.
Since A(x¢o — v) = 0 and v € V&2 (K,), we have Jx, IV (x#o — v)|?dz = 0. So we get v = x¢o €

V2 (Ko). Thus we obtain x¢g € V¥ (K,) for all k € Z, and hence x¢o € S*(Ka).
For n € Z,, we define I(n) = [gh—‘;yl] + 1. Then we get

2(i(n) —1) < (l"-# <oAm). (1.10)

Let us demonstrate the following claim.
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CLAIM. For any n € Z,, the function x¢, admits the representation

min M(j.ﬂ) 3j—-2m-—1 :
xPn = Xx( Z Z Ajpr T 2k gy Ql:%;_;—_l)i) + wy, (1.11),,
j=m+1 k=0

where wy, € S"t)(K,) and

2j—-2m-1 ;e Der— 2j—3m-—1 _2 . P Y
A(Ajr -8 ¥2k gin QI-3m80) o ()} Ajp1—pCj-mp-1+Dj-1h-1)r % T2¢ Zsin (i-tm-18
form+1<j<m+n,1<k<M(,n)

We prove this Claim by induction on n. Let us show that (1.11), holds for n = 0. Note that
x¢o € S}(K,)NS°(K,). By induction, let us prove that x¢o € S7(K,) for j < (1). Let 1 < k < I(1) and
assume that x¢o € S*(K,). Since x¢o € S°(Kqa) N S¥(K,), we have hg € S°(K,) N S*¥(K,). Combining
this with Theorem 1.2, (1.9)o, and the fact that —3% < 0 < 2k < 77, we obtain x¢o € Sk+1(K,). Hence
we have x¢o € S'M(Ka).

Assume that (1.11),, is valid for some n € Z. Inserting (1.11),, into (1.9),, we obtain the equation
for wy,:

Awy, = -] w, + h, in K,
3 (1.12)
wp(-,0)=0 on Ry, %w,.(-,a) =0 on Ry,
where
-~ min 2j—2m-—-1 . . -
Jj=m+1
n M@+mn)-1 _
—ux(Bo—), Y. Ciur 7 tsin 20
I=1 k=0
n+m-1M(+1,n)-1 25— amal 2i 0
txlgn— Y Y Dyur T (im0 | 9y . Vg + dalx
m+n M(jrn) 2i—2m—1 A
— (Ax) E z Aj,k" 38 +2k sin L?J%?—_l)g
j=m+1 k=0
m+n M(]:") 2i—am—1 .
—2Vx-V( Y Y Ajur I ¥Pkgin BTN
j=m+1 k=0
Using (1.6) and (1.10), we have h,, € S'»**D(K,). So we get
At wp + by € S'OFD(K,) N SM(K,).
This together with Theorem 1.2 and (1.12) implies that w,, admits the representation
Wn = cor B sin OB 4 g g, € SUMDH(K,). (1.13)

Notice that the asymptotic expansion of h,(z) as r — 0 is given by the formal power series

m+n

2j—-3m-—1 . . i -
H, =-\f Z A,-,M(,-,,.)r'z_”_"'zM("") sin -(—-77—)—2 ";"' 10

j=m+1
:. m oo n+l oo 3%51-}-2):  (2i-1)0
—uQ Y+ D> X )G sin 2

j=1 k=M(j+m,n) j=n+1k=0

m
U=3p=112M(jn) i (25—2m—1)0
- A'l" z E-,M(,-,,.)r Gom) s 2';
j=0

1 oo n+m-—1 oo n+m oo

SN YD VD S 9T Mo s FHCE- 50

i=0 k=M(j+1,n) j=m k=M(j+1,n) j=n+mk=0
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oo m+n 00 e .
G = Zgn,krz_insl"‘% sin L—Mz;l ® 4 Z Z Bj,krng?i_l”k sin g___23—2215-1)9
k=0 3=0 k=M(j,n)+1
be the formal power series satisfying
9n,0 =Cn : (1.14)
and . ‘ o
(A+XNG = H,. (1.15)

By the construction of the formal power series G and ¥, we have
Bjx=E;;x for 0<j<m, k>M(j,n)+1. (1.16)
We introduce the following partial sum of G.

M(m+n+1,n+1) m+n M(jn+1)

¢ % 2j—2m—1 o
G= X o Feanlyta N N By MHT e i,
k=0 §=0 k=M(jm)+1
We put )
@n = wn —XC. . (1.17)

From (1.13) and (1.14), we have §, € S{®+t)+1(K,). Inserting w,, = g, + xG into the equation (1.12),
we obtain :

Agn = A dn + hn — X(A + 2H)G - 2Vx - VG — GAx
=: =A}Gn + kn. (1.18)

From (1.6), (1.10), and (1.15), we have k, € S*"+2)(K,). By induction, let us show that §, € S7 (Ka)
for i(n+1)+1 < j <l(n+2). Assume that §, € S*(K,) for some I(n+1)+1 < k <Il(n+2)—1.
Since —A} Gn + kn € S*1(K,) N S*(K,) and since Q"T'*;l)l <2(k—-1) <2< KZ"T':?E, Theorem 1.2
and (1.18) imply that g, € S¥*1(K,). So we get Gn € SH "+ (K,). Notice that

XPn+1 = XPn + X2(‘I’n - \I’n+1)
= X¢n + x(T" — ™) — x(1 — x)(T" — ™).

This together with (1.11),, (1.16), and (1.17) implies that

m+n M(@G,n) 2 2m1 M(m+n+1n+1) -
_ Lizpp=1 4ok o (2j—2m-1)8 Ipftyok o (2n+1)0
XPn+1 =x( E Z Ajir sin 28+ Z Gn kT SInL—{E‘)‘
j=m+1 k=0 ' k=0
m+n M(@Gn+1)

2j—2m—1 P 2m— - n
+ 32 D B # e G 4 g, (1 )X (T - T,

J=m+1k=M(j,n)+1

Combining this with (1.15), we infer that (1.11),4; is valid. Hence we obtain the assertion of the Claim.
Since wy, € S'™*+1(K,), Sobolev’s imbedding theorem implies that

wp € C2l(n+1)—3(m)

and
|08wy,| < Cor®+-3-18l on K, for €22, |§|<2(n+1)-3.

This together with (1.11),, and (1.7) implies that o € J;},,,. O
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Proof of (0.2) and (0.3). We omit the proof of (0.2) because it is easier than that of (1.3). It remains
to prove (0.3). We extend Wo(r, ) to the function ¥o(r,8) on W = {(r,6); 0<r<mr, 0<6<2a}
by the formula

Wo(r,0) for 0<60<aq,

Yo(r,2a-0) for a<6<2a.

Then we have ¥ € HY(W) N C>(W\{0}), ¥ >0 on W, ¥o(+,0) = ¥o(-,2a) = 0 on (0,70), and the
asymptotic representation

Bo(r,0) = {

oo oo . A
Wy (r,8) ~ ZZCj,kr%ﬂl“ksin 2 ;l ® as r—0, (r,0) e W.
3=1k=0

By mimicking the proof of [1, Proposition 19.2], we have (0.3). O
Next we look at the other outer equation. For m € Z,., we define
Im = {u € C*(Q-\{0,7(t0)});
(1-x(r)ueL?}(N-), u=0 on NNN_, %u =0 on ~((0,%0)),
the function u(z) admits the asymptotic expansion of the form

[o < BN o]
2j—-2 1 .
u(z) ~ Y3 Djr HEH ok gin @GImNE0) 45 .0 geq,

=0 k=0
which can be differentiated term by term infinitely many times.}

As in the proof of Lemma 1.3, we have the following claim.
LEMMA 14. LetmeZy, fe J,, and {a,-}_',-";ol C R. Then the equation

A+Xe=f in Q,
=0 on QNM_,

. %‘p=0 on 7((01t0))’
((P, ‘I’O)Q— =0

has a solution ¢ € J,, which admits the asymptotic ezpansion

[o <IN -] i 2m i
¢(z)~zsz,krag n §1.+2ksin£31-ﬁ22'"li_1}§ﬂl as 10, reQ_

J=0 k=0
with
Dj,o=aj for OSjSm—l.

2. Inner equations. Our first task in this section is to derive an explicit formula for a solution to the

equation
{Aeu(€)=f(£) in II,

2.1
u(-,0)=0 on R, 52—14({) =0 for ¢ e OML\(R x {0}). 1)
+
For this purpose we use the technics of conformal maps. We identify R? with C by the map R? >
(z,y) — z + iy € C. We put
P={z2€C; Imz>0}.

We have )
M} = P\{re'*; r>1}.
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It is readily seen that the Green function for the equation

Au(x)=g(z) n R,
u(-,00=0 on Ry, 9

a—ﬁu(O,-)zO on R,

is given by the formula
i 2 wllz+ 9

G(z,w) = |z+w||z—w|

Thus, it suffices to construct a conformal map ¥ from I onto R2 which maps Rx {0} and 811 \(Rx{0})
onto R4 x {0} and {0} x Ry, respectively.

We shall construct the conformal map ¥ by composing some elementary conformal maps. We first
define the Schwarts-Christoffel map F by the formula

z

F) = | Grese o LE)s 4z,

w € P,

where 2* = exp(tIn z) for z € C\{0} and the branch cut of Inz is Ry. We put

0
T
T= -—/ — dz,
-1 (:L‘ + l)l_ﬂ(l—ﬁé - Z)ﬁ

Q={z€C; Imz>-Tsina}\{re**eC; 0<r<T}
Let us demonstrate the following claim.

PROPOSITION 2.1. The function F is a conformal map from P onto Q which maps R\(-1, 7;-@) and
(-1, —é) onto {z€ C; Imz=—Tsina} and {re”** € C; 0 <r < T}, respectively. '

Proof. By the Schwartz-Christoffel theorem, we see that F' maps P onto a polygon with vertices F(—1),
F(0), and F(l%g). The angles of the polygon at the vertices F(—1), F(0), and F(l%é) are a;, 27, and
T — a, respectively. We have

1—
z

(=) -FE = /_1 (z+ 1)1-8(z — E)p dz

e
1 (@+ 1)L —z)B

. % y—-1
—e~i7P / —_—— dy
0 yl_ﬁ(% -y)P

_inp /% 1y /% 1 P
=e —_— y — e ——— y .
o ¥ P(5-v)P o Yy A(5-y)P

_o-ind [%3(1 £ 1—p) - B(B,1- [3)]
=0,

where B(-,-) stands for the beta function. So we get
F(%) = F(~1) = e~T.

Since F'(w) > 0 on R\[-1, I—Eé], F(R\[-1, 1—7,@]) is a line parallel to the real axis. This completes the
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Next we define the Mébius map S by the formula
-T
S6) = et
Then S is a conformal map from Q onto I} which maps {z € C; Imz = —Tsina} and {re~** €
C; 0<r <T}onto R x {0} and JII,\(R x {0}), respectively. Finally, we define

z+1

_1=-8
2= 73

for zeP.

Then K is a conformal map from P onto R% which maps R\(—1, l‘%ﬁ) and (-1, 1—;2) onto iR, and R,
respectively. Now, we define :
V=KoFlos!

Then the function ¥ is a conformal map from II} onto R2 which maps R x {0} and 8II%\(R x {0})
onto Ry x {0} and {0} x Ry, respectively. Thus a solution to the equation (2.1) is given by the formula

w(w) = /n G(R(w), ¥(E)f(€) &, w € T, (22)

Thanks to this formula, we can get the asymptotic expansion of a solution to the equation (2.1). Let
T = min{1 - 3, 8}.
We define _
Hlp(i) ={u:TI} > R; ue H'(A) for any non-void bounded open subset A of I.}.

PROPOSITION 2.2. Let N e Nand N > 2+ ;5; Assume that f € L°(I1}) and f is locally Lipschitz
continuous in I1.. We also suppose that f obeys the condition

F(&)=0®EI™™) as €] - oo

Then the function u(w) from (2.2) admits the following asymptotic ezxpansions as |w| — oo which
can be differentiated term by term one time:

M g — .
w(w) = Y ejp~ % sin Gz 4 0~ 4 5N +2np) for 0<O<a, (2.3)

i=1

M § — -
u(w) = Zdjp_5?21—315 sin %7{:%; +O(p 3B 4+ p¥2Inp) for a<B<m, (2.4)

=1
where (p,0) € R, x (0,7) are the polar coordinates of w and M = [(N-2-1 N_22 =11 —1(>1). Moreover, we
have u € Hlpmp(IT5) N C*(II) N L>(IT;) and ula, € C'(Ax\{e**}).
Proof. We have

z

C)]-

47G(z,¢) = Re[In(1 — g) +In(1+ %) —In(1 + %) —In(1-

Since

LAY ]
In(1-8)+ Y Zl<Calt™*! for teC, [t-122,
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tP <Cjllnj1—t|| for teC, |t—1|< %
we infer that the kernel G(z,¢) admits the following expression:
G(z,¢) = Z o ) ————TIm(¢~ ) Im(% 1) + Hum(,¢), (2.5)

. |HM(Z’ C)l < CM|<|_2M*IIZI2M+1 for C EM,; = Qz nQ-—z ﬁﬂzﬂ Q—'z'a
\Hy(2,0)] < CarllIn |1 — 2|+ |In 1+ 2} + |1+ 2|+ |1 = 2| for ¢e M,
¢ ¢ ¢ ¢

where

Q= {CeC |z—¢> 2K}
—{CeC; |¢- 32> 2l

Notice that F~!(z) admits the Puiseux series expansions

had j . .
Flz)=-1+ Epj(z —e )8, gm_a<arg(z—e °T)<m, |z—eT|<T,
j=1

Fl(2)= I——B_—E + gi(z- e eT)™8, O<arg(z—e*T)<m—aqa, |z—e°T|<T.

Combining these with S~}(w) = —L + Te~* and ¥ = K o F~1 0§71, we claim that ¥ admits the
Puiseux series expansions

¥(w) = Zp,(——)%r lw|>1, 0<argw<a, (2.6)
Jj=1 - E

V(w) = iqj(—g)ﬁ lw|>1, a<argw<m. ‘ (2.7)
3=0

Let 0 < argw < « and |w| > 1. Using (2.5), (2.6), and (2.7), we express the kernel G(¥(w), ¥(§)) as
follows.

G(¥(w), ¥(€)) = ZK (€)p™ % sin G218 4 Lyi(w,6),

J=1
(&) < C;1+ 1N F,
ILar(w,8)] < Car(1+ 1) 5 w|~ 25 for € € U} (Myw)), - (28)

Y (w) U (w) U (w) _ Y(w) .
\Il(g)”+|l n|l+ kTG )||+l1n|1+ \I,(g)||+ll I1- \I,( ==|l] ‘(2-9)

for § € ¥~1(Mg,,,)). From (2.2), we obtain

(Lm(w, &) < Cuf|In]1 —

M . .
u(w) = chp;z% stJ{ED—Q +/

j=1 V-1 (My(w)

LuwOf@d+ [ Lu(e.05O % (210)

\P(w))
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where ¢; = fni K;(€)f(&) d¢. It follows from (2.8) that
Ji La(w, (@) de] < Cp~ 5 [ (14165 -V az (211)
Y- (My(w)) L5
Since M = [ﬂN—;’)"—l] — 1, we have f‘i 1+ |§|)*_N d§ < oco. From (2.9), we get

J AR YOGS

M‘P(w))

Y(w V(w U(w U(w
< im0 T O -
Mg, y y Y y

x [ F(EH@)IE™Y (W) dy.

Since M§,,, C {¢ €C; [¢| < 2|¥(w)[} and |¥(w)] < K|w|~ 7, we have

| / Las(w, €)£(€) dé]
Y-1(M3,)

V(w  W(w ¥(w ¥(w
e[ . iwi- T2 22 g 2O - 2
D(0,Kp ) y Yy Yy y
x |y|2PN |y|2(=26-1) gy
<CpN- 4 0
D(0,Kp™ %)

+|In[y — ¥(w)|| + 4| In [y|]] dy.

In|y — ¥(w)|| + |In | + ¥(w)|| + |In |y + ¥(w)||

Since [ |In|y||dy = O(p~# In p), we get

D(0,Kp™ %)
[ u85©)dl =06 np)
‘I'“(ﬂ"'(w))
Thus we obtain
M g - I3
U(w) = zc]'p—zhl sin Q%Qg + O(p-!% + p—N+2 lnp) for argw € (0’ a).
=1

Applying a similar method to the derivatives of u, we arrive at (2.3). The proof of (2.4) is similar to
that of (2.3).
From (2.2) we have

w(¥0) = [, G0 @@ @) da

Since f(¥~(g))|(¥~1)(g)I* = O(lg|~2N(1-A)1+2(1-28)) g5 |g| — oo and since F(T~1(-))|(¥~)()I? is
bounded and locally Lipschitz continuous in R2 , we claim from the regularity theorem for the Newtonian
potential (see [4, Lemmas 4.1 and 4.2]) that u(¥~2(-)) € C*(R%) N C?(R%). This implies that u €
Hiomp(T1) N C3(IT) N L(I1}) and ula, € CY(As\{e*}). O

Finally we introduce harmonic functions in I1}, which we need in the sequel. For j € Z,., we put
+(0) — -1-2j5
Vit (n) =Im(n="~%),

V7 (n) = Im(y*+%).
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We immediately see that
AVF =0 in R},

0

0)=0 on Ry, —
ViE(-,0) o

Vji(O, )=0 on Rj.
We define
YE(E) = ViE(R(9).

Since ¥ is a conformal map from II} onto R% which maps R x {0} and JTIL\(R x {0}) onto R, x {0}
and {0} x R, respectively, we have

AYE =0 in I,
0
+ — + =
Y (,0)=0 on R, anY;. ()=0 for ¢ e dIL\(R x {0}).

We put
A+ = Kaa

A_ ={(pcosb,pcosf) €R?, p>0, a<b<m}

By a straightforward computation, we infer that the function in (&) admits the following power series
expansions for p > 1 which can be differentiated term by tern infinitely many times.

oo 2j—2k+1 | . 0
YHE) = pBren ;" p P sin Q-Lg—g*'—lL for €€ AL,
Y reoB;, 11—35 s1ni—%_1—1_xﬁ’;—7o-z for £€A_,
kw0 4; szgz_I“ésl g_%_)_g__zz =2kt 15 =6 for £e€A_,
Y7 (€)= ’

Zk=ij’kp L sm‘——2—'2°}3—IL for €€ Ay,

where

Aty = —g T
Aso= _g-Hoh T,
Af, = __;.51373&7'7%,

It is convenient to normalize the functions Yj* (&) (j = 0). We inductively define harmonic functions
X ;-t(ﬁ) (j € Z,) by the formulae

X5 (€) = (450) Y5 (6),
XJ'i(g) (AJ,O) 1(Y:{:(ﬁ) ZAi X‘t = L&) for j>1.

Then X ;*: (&) admits the following power series expansions for p > 1.

XHE) { p % sin Q%E +Y oo /i;:kp—lﬁu sin%m for €€ Ay,

~ . =2kl ok 1)(r—0
Yoo ijkpzll-m sin ﬁ___ﬂ_l__ﬂﬁg_l for £€€A_,

- 2 - _
X5 (€)= { pTH sin 22Z91+1/350 + Yo A7 P’ =5 Sm%%@%rrol for £€A_,
T8 =

5 =2kl 2k—1)8
SheoBixp P smi—TL for £€€Ay,

where

Ago = %ﬂl—‘_’ET%‘

3. Matching procedure. In this section, we are mainly aimed to prove the following theorem.
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THEOREM 3.1. There exist {U}, }i>1k20020, {¥x liz1k21020,  {vika}iz1k20020, and

{Amnp}m>1,n>0,p>0 satisfying (0.10), (0.11), (0.12), and the conditions below.

(i) The functions \Il;f:k,, e Jf, Vi1 € Ji s and vk, admit the following asymptotic ezpansions.

oo oo
3j-altl . (2j—2141)8
Vnn@) ~ DY Clpjur # T *sin B 05 70, z€0y.

3=0 k=0
2 2j—-2m+1
— - ﬁ__ +2k _. 25—2m+1)(x—0
‘I,lrmr"(z) ~ Z Z Cl.m,n,.‘i,kr ! sin 2(1— as T 0’ zT€E Q"
3=0 k=0

U,0,(€) ~Crnp # +3" sin 210

[o o] n
+ =203 125 . (2-2k-3)8
+ Z ZKLO,n,k,sP . sin 3 as p—oo, EE€A,,

k=0 s=0
o o} n
- 3kl 195 . (=2k—1)(x—0
v1,0,n(€) ~ z:ZI(,,O‘,.,,:,,p’Rl—Fi+ ® sin == 1—; as p—oo, E€A_.
k=0 s=0 '

For m # 0, we have

oo n
Apr=3 428 . (2-2k—3)0
U,m,n(€) ~ ZZKfm,n,k,ap T2 sin KTL as p— oo, {€Ay,

k=0 s=0
[o ] n
2m-—2k-1
- —5(—’5—'0-26 s (2m—2k—1)(x—6
Ul,m,ﬂ({) ~ Z ZKl,m,n,k,sp - sin 2(1- as p - w’ g € A—'
k=0 s=0

(3-1)l,m,n

(3-2)l,m,n
(3'3)F’o)n
(3-4)1,0,n

(3-5)l,m,n

(3-6)l,m,n

The above asymptotic expansion for \Ilfk', can be differentiated term by term arbitrary times and that
for vj k1 can be differentiated term by term one time. Moreover we have vjx1 € HL,,,(II3) N C%(I1L)

and vjkilas € C'(Ax\{e}).
(ii) Forl>1,m>0,n>0, k>0, and 0 < s < n, the matching conditions hold:

+ — ot
Kl,m,n,k,n = Ck+1,m,n—a,l-l,s (3'7)1,'"’“,’:,8

Kl?m,n,k,a = CEk+l,n—s,m,a’ (3'8)1,'".",’5,8

This theorem immediately follows form the following lemma and induction.

LEMMA 3.2. Let L+1, K+1, J € Z,. Assume that there erist sequences

(T iz 0,00ty ¥k pritoskek, >, (¥ qr a1 hsica
{\II;k,l}J-ZI, k>1,0<I<L, {‘I’;k'L+l}15k5K+l,j2h {‘I’;K+2,L+1}ISJ'SJ7
{vika}i>1,k20,0<1<L,  {Vik,L+1}o<k<k, 21 {vi.k+1,L+1h<ji<s,
{Njkatiz1,k20,0<i<Ls  {Ajk,L+1}osk<k, 21, {Mi.x+1,L+1hsi<a

which satisfy (0.10), (0.11), (0.12), (i) in Theorem 3.1, and the conditions

B-Ni,m,n.k,s for 121,m>0,0<n<L,k>0,0<s<n,
GDimrs1ks for 121,0<m<K, k>0,0<s<L+]1,
BN ,k+1,L41,k0 for 1<I<J 0<k<J-1,

B Nik+1,L41,ks Jor 1<I<J,0<k,1<s<L+1,
(3.8)1,m,n,k,s for 121, m>20,0<n<L,k>0,0<s<n,
(3.8)1,m,L+1,k,2 for 1>21,0<m<K,k>20,1<s<L+1,
(3-8)t,m,L+1,k,0 for 121,0<m<K,0<k<K,
(38)i,k+1,L+1,k,s for 1<1<J k>0,1<s<L+1,
(3-8)tm,L+1,k+10 for 1<I<J,0<m<K,

(3-8)1,k+1,L41k0 for 1<I<J0<k<K+1
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Then there exist \II-.;+1,K+1,L+1’ \I’;+1,K+2,L+11 VJ41,K+1,L+1, 0nd AJy1 K+1,L+1 satisfying (0.10),
(0.11), (0.12), (i) in Theorem 3.1, and the conditions

B Nik+1,L4+1,ks for 1<1<JTJ+1,0<k, 1<s<L+1,
(3. Ni,x+1,L+1,k0 for 1<I<T+1,0<5k<
(3-8)1,k+1,L+1,ks Jor 1<I<J+1,k>0,1<s< L+1,
(38),k+1,L4+1,k0 for 1<I<J+1,0<k<K+1,
(3:8)im,L+1,k+10 for 1<I<J+1,0<m<K.

Proof. We first construct vs+1,k+1,.+1 Which is a solution to the equation

J K+1 L
. 1
Agvyi1k+1,0+1 = —AT Vi1, k41,0 — Z Z ZAm,n,pvJ+l—m,K+1—n,L—p in I, (3.9)

m=1 n=0 p=0

0 ' ,
’UJ+1,K+1,L+1(',0) =0 on R, %;UJ+1,K+1,L+1(£) =0 for 5 € 31_.[‘11\(R X {0})

By H(¢) we denote the right side of (3.9). The function H({) admits the asymptotic expansions

g) ZZH":’ 2J—2k— 1..+28 Me as p — 00, € € A+’ (3_10)
k=0 s=0
it L - 2K—2k— 1+28 2K 2%—1
H(£)~§_‘3‘:6H o 2Bt gin MEBL(r —9) as p—oo, £E€A, (3.11)
—0 5=

where

: min{J,k} K+1L-s
+ _ +rt+
Hk,a - _)‘1 KJ+1,K+1,L,k,s - ’\k+1,0,L—sCJ—k,a - Z Z Z Am anJ+1 -m,K+1-n,L—p,k—m,s’

m=1 n=0 p=0

. J min{K+1,k} L—-s
P — + — —_—
Hk,s = _’\1 KJ+;I.,K+1,L,k,a - Z Z Z A"’l,"l,PI{J+1—m,K+1—'n,L—p,Ic—n,.s'

m=1 n=0 p=0

By H*(¢) and H~(¢) we denote the formal power series on the right sides of (3.10) and (3.11), respec-
tively. Let

ff"(f) ililL p P+ gy 2J=2k-1
20
k=0 s=1
and o L+l 2K~ Zk 1+2 k
K-
L7(€) = 3 3 Liap A sin M2 (r = )
—0 o=

be formal power series which satisfy AL*(¢) = H*(£). We put

L+1 + 3J-2k- 1+2.s 2J—2k~1 +
. L; 28 n #=2=20 on A
L;(&) - { Ek 02 28 j
on A,
- Zk—o Y L,p a2 28 in WL (1 —6) on A7,
sz(&) = +
on -At.

We choose xo € C*°[0, 00) such that

xo=0 on [0,2], xo=1 on [3,00).
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We seek a solution #x to the equation (3.9) which takes the form

I8 = xo(P)LF (€) + x0(pP) Ly (£) + wn. (3.12)

Inserting this into the equation (3.9), we derive the equation for wy:
Awy =Hy in II, (3.13)
wn(~0)=0 on R, anii“’”(f) =0 for £edM\(Rx {0}),
where

Hy(§) = H(£) — x0(P)A¢ (L3 (€) + Ly (€)) —2Vexo(p) - V(L (€) + Ly (€)) —2(L (€) + Ly (£)) Aexo ().
We have

Z ZH 3J—2k— 1+23 2J—2k-_10 as p— 00, £€A+’
k_N+ls—0
Hy(§) ~
K -2k
S oy P GO0 4y o gen.
k=N+13=0

From Proposition 2.2, we infer that the equation (3.13) has a solution wy which admits the asymptotic
expansions

3 AL # sm e+ 0™ ) as p—oo, £€A,,

J_

wn(€) =
M(N) LAy . eane—s N
EAj.kp -7 s 2(1'—[372 +O(p -2 ) as p— oo, £€A_.
i=1

Next we shall show that the function @iy from (3.12) is independent of the choice of N. We get

AN —Ty)=0 in I,

(v — M)(~0)=0 on R, %m-mw 0 for £ecOML\(R x {0}).

Since Uy — ¥ is bounded in H},, we have iy — i = 0. Thus the function ¥y is independent of the
choice of N, which we denote by 9541, k41,.+1- We define

J-1 K

vy+1,k+1,L+1(8) = Vy41,641,0+1(€) + Z Cif i1 k41,041,00X0 (€) + Z Crivk+1,041,k+1,0Xk (£)-
k=0 k=0

Then v741,k+1,.+1(£) admits the asymptotic expansion (3.5)y41,k+1,0+1 and (3.6)741,k+1,L+1. Be-
sides, (3.7)s4+1,K+1,L+1,k,0 holds for 0 < k< J —1 and (3.8)s41,K+1,L+1,k,0 holds for 0 < k < K.
We shall prove that (3.7) j41,k+1,L+1,k,s holds for £ > 0, 1 < s < L+1. Identifying the coefficients of

p AR A=) g 2T ‘2" 2J-2t-19 in the asymptotic expansions of the both sides of (3.9) as p — 0o, £ € A4,

we get
2J—-2k~1
+ 3o3ho1 49 o 2J—2k—1
A(KT 41, k41,041,k,0P ' 8in S55=20)

3J—-2k—1
23kl 42(s-1) oo 2J—2k—1
== M K] 1 k1,0 k0-1P sin <520

J K+1 L

el 42(s—1) i\ 2J—2k—1
- E 2 E Am,n,pK;+1_m,K+1_,.,L_p,k_m,,_lp (s-1) sin Tz 6.
m=1 n=0 p=0 (3.14)



93

Note that the function W}, ; ;. 7., solves the equation

Fyp+
(A+ A1 K41, 0419
k K+1L+l—s

== Akt1,K+1,L+1-s Vo — Z Z Z )‘m,n,p‘I’Z+1—m,K+1-n,L+1—s—p in Q.
m=1 n=0  p=0 (3.15)

Equating the coefficients of r A2 iy 2""2?‘10 in the asymptotic expansions of the both sides
of (3.15) as r — 0, we get

2J -2k~ 1+28

sin 2J— 2; 16)

+
A(Ck+1,K+1,L+1—.e3,.],.s
k K+1L+4+1-s

—(_\t+ +
_( A1 Ck+1,K+1,L+1—s,J,a—-1 - Z Z Z A"7'-,"'lyl7cvk:+1—m,K-i-l—‘n,L-i-l—.!—p,J—-m,s«l)

m=1n=0 p=0
% rZJ—Zk—l +2(8—1) Sin 2‘]_22‘;:—1 0. (3.16)
Since (3.7)i,mnk/,s holds for 1 > 1, m >0,0<n <L, k' >0,0< s <n, it follows from (3.14) and
(3.16) that

2J—2k— 1_._2.s

sin 2J2‘;c 10)

+ +
Az((KJ+1,K+1,L+1,k,s - Ck+1,K+1,L+1—s,J,s)7’

This implies that (3.7)j41,k+1,L+1,k,s holds for £ > 0,1 < s < L+ 1. In a similar manner, we infer
that (3.8)741,K+1,L+1,k,s holds for k > 0,1 <s < L +1. v

Next we shall construct \I’j—+1,K+1,L+1’ Asrrk+1,L+1, and Uy, g0 pog. It follows from Lemma
1.3 that there exist ¥}, x\; 117 € Jfy; and Ajy1k41,0+41 € R which satisfy (0.10)741 k41,241,
(3-1)y41,5+1,0+1, and (3.7)j4+1,k+1,L+1,50 for 0 < j < J. From Lemma 1.4, we claim that there

exists Wy, reya 141 € Jrqo satisfying (0.11)s41, k42,041, (3-2)u41,Kk+2,041, and (3.8)741,5,L+1,K+1,0
for 0 < j < K + 1. This completes the proof of Theorem 3.1. O

LEMMA 3.3. The number A10,0 is given by the formula (0.5).
Proof. The procedure in the proof of Lemma 3.2 with (L, K, J) = (-1, —1,0) shows that
v1,0,0() = C10Xq (€)-
It follows from (3.3)1,0,0 and (3.7)1,0,0,0,0 that
Cito.o,o,o =K i':o,o,o,o = CI,OAO,O-
Since (A 4+ X})¥T 1.0,0(z) = —=X1,00%0(z) in 24, we have

AL0,0 = — }lm o(z)(A + M) ¥ o(x) dx
Q. \D(0,)

. 0 7]
= - Jim [ (90(6,6) 5 W0(6,6) ~ W 0,(6,0) 5 To(6,0)6 0

™
— +
—501 0,0,0,0C1,0

=_01 OAO (12}

where we used an integration by parts in the second line and we used (0.2) and (3.1)1,0,0 in the third
line. O

Proof of Theorem 0.1. Let N € N. We define the approximate eigenvector of L, by the formula

N N N N N N
, ) 2j-1_ 3k—1 _
(@) =(1 —x( ) (Wo(@) + 303 S AU @)+ 3D D e TG (=)
N N N 251 .
+x(eV/?r) Z YN eI Ty, (8).
1 k=01=0

We immediately obtain ®Y(z) € D(L.) from the following claim.
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CLAIM. Let ny be the interior unit normal to dQy. Assume that f € Q. N C*(Q,), Af € L*}(Q),
fla. € C*Qx\{7(€),7(t0)}), f =0 0n 39Q, and E.L(a:) 0 for z € ¥((e,t0)). Then we have f € D(L,).

We first prove this claim. Let u € Q.. The standard mollifier techmque shows that there exist two
sequences {v"}J_1 C C’°°(Q+) and {v; }$2; C C*®(Q) such that v — u|g, in H}(Q4) as j — oo,
v;' = v; on v((0,¢)), and v = 0 on 024 N 8S2. Combining these with the density argument in
the proof of (8, Proposition D 1] we claim that there exist two sequences {u'*}]_1 C C°°(Q+) and
{uj}R, C C'°°(Q ) such that u — u|g, in H(Q4) as j — oo, u.; = u; on ¥((0,¢)), uf =0 on
004 N AN, and u vanish on an open covering of {(e), ¥(to)}. Pick é; > 0 such that u* = 0 on

D(+(e), 9; )UD(‘Y(to) 8;)- We put @} = 2:\D(7(e), 5;) U D(7(to), 3;). We obtain
(Vf,Vu)r2q)
= lim Vf-Vu;‘dz+j13§°/m Vf-Vu; dz

j—o0 05

by using f € CI(Q’i) NC*(Q,), Af € L*(), uf € C*(Qx), and Green’s theorem
— Tim (— +_8 - + - gugit - - = ]
= fim(- |, i sds - | ufAsds /w_ uy 32-fdS /ﬂ_uJ Af dz)

We conclude that

+

/mj ufg,‘—?-—fds+/m’__ uy 2= fdS =0
+
J

because 3n—f = 0 on v((e,t0)), u = 0on NI, uy =0 on D('y(e),é'j) U D(~(te),9;), and

J,:,Mf+u, 3n f= Oon'y((Oe——é)) Hence we obtain

(Vf, V‘u)La(n) = —(u, Af)La(n) forall ue Qe.
Thus we get the assertion of the Claim.
Next we shall show that there exist P > 0 and Q € R such that the estimate
N N N
1Az + 25 + )" DD Aminpe BF 820N (2)| L3y = O(PV+9) as € —0 (3.17)
m=1n=0p=0 .
holds for all N € N. Using (0.10), (0.11), and (0.12), we obtain
N N N
B+ A+ YD Y Bt (z) = Ly + Lea + Les + Lea,

m=1n=0 p=0
where

N N
1=x(€ V2 Y0 Y TNy v (E)

i=1k=0

+ Z eaﬁl+7-§3+2(l—l) z Am,n,pvj—m,k—n,l—p—l(é)]y

G,k ET max{j—N,1}<m<min{N,j—1}
max{k—N,0}<n<min{N,k}
max{l-N-1,0}<p<min{N,l-1}

L2 =(1 - x("?r))
x | E ehtript Z '\m.n.p‘I’tm,k—n,l—p(z)

4,k DET2 max{j—N,1}<m<min{N,j-1}
max{k—N,0}<n<min{N, k}
max{l—N,0}<p<min{N,l}

2j-1_ 2k—1 _
+ Z e 7 taip Z A0 ¥ _mk—n1—p(T)]s
(G.k1ET, max{j—N,1}<m<min{N,j—-1}
max{k—N,0}<n<min{N,k—1}
max{l—N,0}<p<min{N,l}
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N N N
Ls =2¢712(Vx)(eV2r) - V2 [) E > Tty 4 1(€) — Wo(z)
=1 k=0 l=0
LA Ay ke NNNZ'—l 2k—1
- Z Z Z e%‘*’m“l\ll;:k’l(x) - Z Z Z e_lﬁ_+m+2l‘1’j_,k,l(1’)]»
J=1k=01=0 j=1k=11=0
N N N _ ~
Ics =e'1(Ax)(e‘1/2r)[Z Z E ezﬁ‘l‘*ﬁ“‘vj’k,l(g) — Wy (z)
: j=1k=01=0 ‘
AL A NNN:'—1 2k—1
=D FTEEEL () - YN e B sy, (),
3=1k=0 =0

3j=1k=11=0

Ty ={(j,k, ) €Z% 2<j<2N, 0<k<2N, 1<I<2N+1}
\{(,k,)) €23 2<j<N, 0<k<N, 1<I<N},

T, ={(j,k, 1) € 2% 2<j<2N, 1<k<2N, 0<I<2N}
\{(G:k, ) €Z% 2<j<N, 1<k<N, 0<I<N}).

So it suffices to show that, for j =1, 2, 3, 4, there exist P; > 0 and Q; > 0 such that the estimate
e sllz2 ) = O(FN*94) as e—0 : (3.18);

holds for all N € N.
We first estimate I, ;. By (i) of Theorem 3.1 we have

lomn(€)] < C(1+p5 + pFEH) in ML,

Using this estimate, we have, for 1 < j < Nand0< k< N,

egﬁl*i%ﬁ+2N||X(6—1/2T)vj,k,N(§)||Lg(n) Sce%ﬁl+l—fﬁ+2N[/ (1 + |e—lxlgj3—_l + le—lzlgﬁl) dx]l/z
lel<261/2
SCegﬁl+r§3+2N(61/8 +€—Zﬁl+% +e_‘2t:'1 +§)
<CeN+itis,

Similarly, we obtain, for (j,k,1) € T, m > 1, and n > 0,
2j-1, & _ _
e o7 =t 1)”X(f 1/27')”j—m,k-n,l—p—1(§)||L2(n)
SCegﬁl*’l—fE*’z(l_l) (51/8 + 5_g%"u+% + e—ﬂﬁ?_ffrl+%)
sincem>1andn>0

<CeHF it (/8 4 Mt | AR T
<CeEF+mtay20-1+}
<Cemin{ s aritpy 2} G+k+) - &5 +3

sincej+k+I>N+1

SCemi“{E‘ﬂ’m‘:,ssﬂ}(N+1)_gH+§.
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Hence we obtain (3.18),.
Next we estimate I 2. By (i) of Theorem 3.1 we have

¥ ()] < or ¥ on Q4 N D(0,ro),

and hence . l.
I - X(f-llz"))‘l’zfm,n(z)||L2(n+) <C(+e

Using this estimate, we have, for (j,k,1) € T and m > 1,
ehrria a1 - X(f—l/zr))‘l’ i—mk—n,i-pliL3@s) < Ce(N+Dmin{sg. 15,2}
In a similar fashion, we have, for (j,k,l) € T; and n > 0,

62;.3_4.,%;7;,-;21"(1 x(e~V2r) 07 |L,(n_)SC¢(N+1)min{i,ﬂ-‘-nl_ 2}~ qrspy

j-m,k-n l-—p'

Thus (3.18); holds.
Next we estimate I, 4. It follows from (ii) of Theorem 3.1 that

N N N
1<Ax><e-wr>[zz Zefr*‘ﬁ“‘y,k 16) = To(@) = YN S ebtrint it ()]
j=1 k=0 I=0 Jj=1k=01=0
on 2, where
N-1 1 as .
T ea(€) =05t (€) = DN Kfiyp.p B t2ein G0 for gy,
p=0 =0

g _ N-1 1 o ‘
F04(€) = vioa(€) — Ciap ¥ *Hoin G0 _ N N gch, o2 giy Q=250

0 0 J 9 7p7‘p 2ﬂ ’
p=0 s=
N N 251 .
\I’o(z) = ‘I’o(:t) - ZZCJ‘JT 53 +2 sin 2 2_1 0,
i=11=0
N-1N-1 .
N o—— + -L,-j-t- +2s . (2p—2j+1)6
(@) =¥, (x) - Zo z(:) CikipsT * sin 3=
p=0 s=

By (i) of Theorem 3.1 we have
[560(€) S CA+p"FF—*%) on A,

[Bo(z)| < Cr¥+Vmin{23}-3 on  Q, N D(0,ro),
I\Il (@ < Cr gt +WN-hmin(3.2} Q4 N D(0,7o).
Using these estimates, we have

e allL2a,) < CetNmin{}.2}+3-45

Similarly, we get |
eallz2_) < Ce¥ min{rdz.2}+i+4y

Therefore (3.18)4 holds.
The proof of (3.18)3 is similar to that of (3.18)3. Thus we conclude that the estimate (3.17) holds
It is readily seen that
"@iv"Lz(n) =1 + 0(1) as e€—0.
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Combining this with (3.17) and the fact that ®Y € D(L,), we get

N N N
dist(o(Le), M + 3 303 A pe )
m=1n=0 p=0
N N N
<Az +AF + D D) Amnpe 22 T2)0N (2) | 13 @) /1 BF (2) |20

m=1n=0 p=0
=0(ePN+Q), ' (3.19)

On the other hand, we have Az(€) > min{\], A} > A for € € (0,%,], because Q. C Q* & Q~. This
together with the estimate (3.19) implies that

N N N
MEO =M+ 33 Mnnpe BT8P L O(PV9) a5 e—0.

m=1n=0 p=0 .

The proof is complete. [
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