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Abstract

This paper investigates the existence of travelling waves for the two component higher
order autocatalytic reaction-diffusion systems with and without decay of autocatalyst for
two extreme cases: the non-diffusive reactant case and and the equal diffusive case. The
phase plane analysis of the travelling wave equations proves the existence of travelling waves,
and further gives the estimate of the minimal propagation speeds by in terms of the order
of autocatalysis.
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1Introduction

The reaction-diffusion equations have been employed to discuss the dissipative structures in
chemical systems maintained far-from-equilibrium. The autocatalytic reactions play an impor-
tant role in various pattern formations in chemical systems with diffusion (see [7], [16]). One
of the typical examples is the BZ reaction which was discovered by $\mathrm{B}.\mathrm{P}$ . Belousov [7, 605-613].
Autocatalytic reaction-diffusion systems including the Brusselator [24], the Field-Noyes model
[7, 93-144] and the Gray-Scott model [10], have stimulated an extensive amount of theoretical
studies on waves and patterns produced by chemical reactions (see for example, [16]). One of
the basic elements responsible for chemical pattern formation is travelling waves which describe
the development of chemical processes. The series of the papers by Needham at a1.([2]-[5], [7],
[21] $)$ studied extensively the travelling waves in autocatalytic reactions. Focant and Gallay [8]
and Hosono and Kawahara [14] also discussed the travelling waves for the mixed order autocat-
alytic two component systems. This paper concerns travelling waves and their speeds for the
autocatalytic reaction-diffusion systems with and without decay of autocatalyst. The system
without decay is give by

$.\{$

$u_{t}=d_{l}$ uエエー kuv ,
$v_{t}=d_{2}v_{xx}+kuv$ , (1)
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and the system with decay is

$\{$

$u_{t}=d_{1}u_{xx}-kuv^{m}$ ,
$v_{t}=d_{2}v_{xx}+k(u-\gamma)v^{m}$ . (2)

Here $u$ and $v$ are concentrations of $\dot{\mathrm{t}}\mathrm{h}\mathrm{e}$ reactant and the autocatalyst respectively and $d_{1}$

and $d_{2}$ are diffusion coefficients, $k$ and $\gamma$ are any positive constant. Here, travelling wave
solutions for (1) and (2) are nonnegative bounded solutions of the form $(u(x,t),v(x,t))=$
$(U(z),V(z))$ with $z=x$ $-ct$ satisfy the equations

$\{$

$d_{1}U’+\mathrm{c}U’-kUV^{m}=0$ ,
$d_{2}V’+\mathrm{c}V’+kUV^{m}=0$ , (3)

with the boundary conditions

$P_{-}\equiv(U(-\infty),V(-\infty))=(\alpha,$1), $P_{+}\equiv(U(+\infty),V(+\infty))=(1,0)$, (4)

and

$\{$

$d_{1}U’+\mathrm{c}U’-kUV^{m}=0$ ,
$d_{2}V^{u}+\mathrm{c}V’+k(U-\gamma)V^{m}=0$, (5)

with the boundary conditions

$P_{-}\equiv(U(-\infty), V(-\infty))=(\alpha,0)$ , $P_{+}\equiv(U(+\infty), V(+\infty))=(1,0)$ , (6)

respectively. Here ’
denotes $\frac{d}{dz}$ and $\alpha$ is an unknown nonnegative constant to be determined.

Without loss of generarlity, we may suppose $d_{2}=1$ if $d_{2}\neq 0$ and $k=1$ , and denote $d_{1}=d$ for
the later use.

In the next section, we prove the existence of traveling waves for (1) with $d=1$ and $d=0$ ,
and give the estimates of the minimal wave speed by terms of the order of autocatalysis $m$ for
both cases. The method of the proofs is the phase plane analysis. In section 3, we discuss the
travelling waves for (2) with $d=0$ , for which the phase plane analysis also works.

2The system without decay
In this section, we consider the system

$\{$

$dU^{u}+cU’-kUV^{m}=0$ ,
$V’+cV^{r}+kUV^{m}=0$ , (7)

in the case of $d=1$ and $d=0$ . For the case of $d=1$ , (7) can be reduced to the travelling wave
equations corresponding to the density dependent diffusion equations. Then, the known results
prove our desired result. For the case of $d=0$ , (7) is reduced to the plane dynamical system
which can be analysed by the method employed to prove the existence of travellng waves for
the density dependent diffusion equations.
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2.1 The case $d=1$

For the case of $d=1$ , the system (7) is written as

$\{$

$U’+cU’-UV^{m}=0$ , (8)
$V’+\mathrm{c}V’+UV^{m}=0$ ,

and the boundary conditions are specified by (5).
Adding the above two equations and integrating the resulting equation, we have the relation

$U+$ $V=constant$ . By the boundary condition at $z=+\infty$ , we see that $U+V=1$ which implies

that $at=1$ . By eliminating $U$ from the second equation of (8) by the use of this relation, the

system (8) is reduced to the single equation

$\frac{d}{dz}(\frac{dV}{dz})+c\frac{dV}{dz}+(1-V)V^{m}=0$, (9)

and the boundary conditions for (9) become

$V(-\infty)--1$ , $V(+\infty)=0$ . (10)

Now, by the change of variables as $\frac{d}{dz}=V^{m-1_{\frac{d}{d\xi}}}$ , the equation (9) is written as

$\frac{d}{d\xi}(V^{m-1}\frac{dV}{d\xi})+c\frac{dV}{d\xi}+(1-V)V=0$ . (11)

Once we obtain the positive solutions $\tilde{V}(\xi)$ of (10)(11), we integrate $\frac{dz}{d\xi}=\tilde{V}^{1-m}(4)$ , and then

have the relation $z=\psi(\xi)$ . Since $\frac{dz}{d\xi}>0$ , there exists the inverse function $\xi$ $=\psi^{-1}(z)$ of

$z=\psi(\xi)$ . Let us define $\mathrm{v}(\mathrm{z})$ by $\mathrm{v}(\mathrm{z})=\tilde{V}(\psi^{-1}(z))$ . Then, it is easily seen that $V(z)$ satisfies
(9)(10).

Now, we should note that (11) just the equation of travelling waves for the density dependent
diffusion equation

$v_{t}=(v^{m-1}v_{x})_{x}+(1-v)v$ . (12)

Aronson [1] proved that there exists $c_{*}(m)$ such that (12) has aunique (modulo translation)

travelling wave solution only for each $c\geq c_{*}(m)$ (see also, [6]). This $c_{*}(m)$ is called the minimal
speed of travelling waves. Furthermore, de Pablo and Vazquez obtained the estimates of $c_{*}(m)$

(see, Theorem 4.1, 4.2, 4.3 and Lemma 4.4 in [25]).

Theorem 1 Assume that $d_{1}=d_{2}=1$ and $m>1$ . Then, there exists some positive $c_{*}(m)$

such that for each $c\geq c_{*}(m)$ , (1) has aunique monotone travelling wave solution. Furthermore,

the minimal speed $c_{*}(m)$ satisfies that

$\frac{2}{m(m+1)}\leq c_{*}^{2}(m)\leq\frac{2}{(m-1)m}$ . (13)

Remark 2Takase and Sleeman [26] showed the existence of travelling waves for each
$c>c_{0}(m)\equiv 2\sqrt{\frac{1}{m}(1-\frac{1}{m})^{m-1}}$ . We easily see that $\mathrm{c}\mathrm{o}(\mathrm{r}\mathrm{a})=O(\frac{1}{\sqrt{m}})>c_{*}(m)=O(\frac{1}{m})$ for large

$m$ , which implies that (13) is abetter estimate than this one. For $m=2$ , Aronson [1] also
proved that $c_{*}(m)=\tau_{2}^{1}$ .
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2.2 The case d $=0$

We proceed to the case $d=0$ . Let us put $d=0$ in (7). Then we have

$\{$

$cU’-UV^{m}=0$ ,
$V^{u}+\mathrm{c}V’+UV^{m}=0$. (14)

The boundary conditions are $(U(-\infty),V(-\infty))=(0, \alpha)$ and $(U(+\infty),V(+\infty))=(1,0)$ . Asin the previous subsection, adding two equations of (14) and integrating the result under the
above boundary conditions, we obtain again the relation that $U+V=1$ . This implies ce $=1$
and reduces (14) to

$\{$

$U’= \frac{UV^{m}}{c}$

$V’=\mathrm{c}(1-U-V)$ . (15)

By introducing $W$ by $\ovalbox{\tt\small REJECT}ovalbox{\tt\small REJECT}=c(1-U-V)$ , (15) is written as

$\{$

$V’=W$

$W’=-cW-(1-V)V^{m}+ \frac{W}{c}V^{m}$ , (16)

and the boundary conditions are $(V(-\infty),W(-\infty))=(1, 0)\mathrm{m}\mathrm{d}$ $(V(+\infty), W(+\infty))=(0,0)$ .In order to resolve the singularity at the origin, we define the new dependent variables $p$ and
$q$ by $V^{m-1}=q$ and $p= \frac{1}{q}d\Delta dz$ . Then we easily see that $\frac{dV}{dz}=\frac{1}{m-1}q^{\frac{1}{m-1}}p$ and $\frac{dW}{dz}=\frac{d^{2}V}{dz^{2}}=$

$\frac{1}{m-1}q^{\frac{1}{m-1}}(_{z}\frac{d}{d}R+\frac{1}{m-1}p^{2})$. These equlities rewrite (16) as

$\{$

$\underline{d}\mathrm{g}$

$dz=pq$

$\frac{d}{d}\mathrm{g}_{=-p(_{m-\overline{1}}^{X}+c-\mathrm{g}_{\frac{1+_{m}\star_{-}}{c})-(m-1)(1-q^{\frac{1}{m-1}})q}}z$. (17)

The system (17) has the three critical points $P_{0}=(0,0)$ , $P_{c}=(0, -c(m-1))$ , and $P_{1}=(1,0)$ .The eigenvalues of the linearized equation about the critical point at $P_{0}$ are 0and $-c$ . The
corresponding eigenvectors are ${}^{t}(1, - \frac{m-1}{c})$ and ${}^{t}(0,1)$ , respectvely. The eigenvalues at $P_{c}$ are $c$

and $-c(m-1)$ , and the corresponding eigenvectors are ${}^{t}(0,1)$ and ${}^{t}(1, \frac{m-1}{cm})$ . The eigenvaluesat $P_{1}$ are $\frac{1}{c}$ and $-c$ , and the corresponding eigenvectors are ${}^{t}(1, \frac{1}{c})$ , and ${}^{t}(1, -c)$ . The criticalpoints $P_{c}$ and $P_{1}$ are saddle, and $P_{0}$ is topologicaly node.
To show the existence of travelling waves is equivalent to finding an orbit connecting thecritical point $P_{1}$ and another critical point $P_{c}$ or Po. To study the behavior of an orbit through

$P_{1}$ , we examine the vector field of (17) in the negative half strip $H=\{(q,p)|0\leq q\leq 1,p\leq 0\}$ .We first note that the critical point $P_{1}=(1,0)$ is saddle and its 1-dimensional unstable manifoldhas a slope $\frac{1}{c}$ . Let us examine the behavior of the orbit corresponding to the part of this unstablemanifold in $H$ , which is denoted by $\mathcal{U}$ in the following. Since the $p$-axis $\{(q,p)|q=0\}$ is aninvariant manifold, the orbit $\mathcal{U}$ cannot traverse the line $q=0$ . On the segment $\{(q;p)|p=$
$0,0<q<1\}$ , $\Delta_{=0\mathrm{a}\mathrm{n}\mathrm{d}=-(m-1)(1-q^{1+\frac{1}{m-1}})q<0,\mathrm{s}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}\mathcal{U}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{o}\mathrm{t}}dz\frac{d}{d}zdE$ go outacross this segment from $H$ . Hence we see that the orbit $\mathcal{U}$ stays in $H$ for all $z$ .
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Next, we consider the region $\Omega=\{(q,p)$ | $0\leq q\leq 1, c(m-1)(q-1)\leq p\leq 0\}\subset H$ and the
vector field on the boundary segment $S_{1}=\{(\mathrm{q},\mathrm{p})0<q<1,p=c(m-1)(q-1)\}$ . Since $\mathcal{U}$ and
$S_{1}$ have slopes $\frac{1}{c}$ and $c(m$ -1) respectively, the following condition assures that $\mathcal{U}$ enters $\Omega$ :

$\frac{1}{c}\leq c(m-1)$ ,

which is equivalent to

$c^{2} \geq\frac{1}{m-1}$ . (18)

The vector field of (17) has aslope

$\frac{dp}{dq}=-\frac{1}{q}(\frac{p}{m-1}+c-\frac{q^{1+\frac{1}{m-1}}}{c})-\frac{(m-1)}{p}(1-q^{\frac{1}{m-1}})$.

This becomes

$\frac{dp}{dq}=-(c-\frac{q^{\sigma}}{c})-\frac{1}{c(q-1)}(1-q^{\sigma})$

at each point on $S_{1}$ , where $\sigma=\frac{1}{m-1}$ . We now consider the condition which assures that $\mathcal{U}$

does not traverse the boundary $S_{1}$ of $\Omega$ from the inside to the outside, so that we impose the
condition

$-(c- \frac{q^{\sigma}}{c})-\frac{1}{c(q-1)}(1-q^{\sigma})$ $<$ $c(m-1)$ .

This implies

$\frac{1-q^{\sigma+1}}{c(1-q)}$ $<$ cm,

which is written as

$c^{2}> \frac{1}{m}(\frac{1-q^{\sigma+1}}{1-q})$ . (19)

Asimple calculation shows that $f(x)= \frac{1-x^{1+\sigma}}{1-x}$ is strictly monotone increasing on the interval
$0<x<1$ and $\lim_{xarrow 1}f(x)=\sigma+1=\frac{m}{m-1}$ . Hence, we have $1<f(x)< \frac{m}{m-1}$ for $0<x<1$ .
Applying this to (19), we see that $\overline{d}qd_{l}<c(m-1)(0<q<1)$ holds if

$c^{2} \geq\frac{1}{m-1}$ . (20)

Therefore, if (20) is satisfied, the orbit &enters $\Omega$ from $P_{1}$ and cannot leave $\Omega$ from $S_{1}$ .
Since we already showed that&stays in $H$ for all $z$ , we conclude that $\mathcal{U}$ stays in $\Omega$ for all $z$ .
Noting that in the interior of $H$ , there exits no critical point and $\frac{d}{d}Rz=pq<0$ , we see that the

135



orbit $\mathcal{U}$ tends to $P_{0}$ or $P_{c}$ as $zarrow+\infty$ . It is ovbious that $\mathcal{U}$ cannot approach $P_{c}$ . In fact, the
l-dimensional stable manifold of the critical point $P_{c}=(1, -\mathrm{c}(\mathrm{m}-1))$ has aslope $\frac{m-1}{cm}$ , which
is less than the slope $c(m-1)$ of $S_{1}$ . This implies that the orbit corresponding to the above
stable manifold in $H$ , denoted by $\mathcal{U}_{c}$ , has to lie strictly below $S_{1}$ for $0<q\leq 1$ . The unequness
of the orbit which enters $P_{c}$ from the inside of $H$ proves that $\mathcal{U}$ tends to $P_{0}$ as $zarrow+\infty$ , which
gives atraveling wave solution of (14) satisfying the boundary conditions.

By noting that $f(x)>1$ for $0<x<1$ , the same argument in the above also prove that
$\frac{d}{d}Rq>c(m-1)(0<q<1)$ holds if

$c^{2} \leq\frac{1}{m}$ . (21)

Under (21), $\frac{1}{c}\geq cm>c(m-1)$ , That is, the slope of $\mathcal{U}$ at $P_{1}$ is greater than the slope of $S_{1}$ .
Hence $\mathcal{U}$ lies strictly below $S_{1}$ for $0<q<1$ and cannot reach $P_{0}$ and $P_{c}$ . Thus we know that
there exists no traveling wave of (14) under (21).

Ebrthermore, the monotone dependence of the orbits $\mathcal{U}$ and $\mathcal{U}_{c}$ on the parameter $c$ proves
that there exists aunique $c^{*}(m)$ such that the orbit&enters $P_{c}$ only for $c=c^{*}(m)$ and enters
$P_{0}$ only for each $c>c^{*}(m)$ (see, for the detailed proof, Propositions 2.2 and 2.4 in [12]). Ofcourse, $c=c’(m)$ satisfies

$\frac{1}{m}<c^{*2}(m)\leq\frac{1}{m-1}$ . (22)

Finally, we have obtained the following theorem.

Theorem 3Assume that $d_{1}=0,d_{2}=1$ and $m>1$ . Then, there exists a $c^{*}(m)$ , such
that for each $c\geq c^{*}(m)$ , (1) has aunique monotone travelling wave solution. Furthermore, the
minimal speed $c^{*}(m)$ satisfies the estimate (22).

Remark 4For the case $d=0$ , Takase and Sleeman [26] proved the existence of travellng
waves for any $c>c_{1}(m) \equiv\min\{2, \sqrt{2^{m-1}(1-\frac{1}{m})^{m-2}}\}$. Metcalf, Merkin and Scott [22] also
proved the existence of travelling waves for any $c> \mathrm{C}2(\mathrm{m})\equiv\frac{1}{\sqrt{m+1}}$ . It is easily seen that the
estimate (22) is better than these two estimates since $c_{1}=2>c_{*}(m)=O( \frac{1}{\sqrt{m}})$ for large $m$ .

3The system with decay
In this section, we consider travelling waves for the system (2). When $m=1,(2)$ is the epidemic
model, proposed by Kermack-McKendrick, with diffusion. For this case, we already had the
existence of travellng waves for each $c\geq 2\sqrt{1-\gamma}$ assuming that $0<\gamma<1$ (see, A.K\"aU\’en [15],
Hosono and Ilyas [13] $)$ . Therefore, we may consider only the case $m>1$ . We further restrict
our attention to the case $d=0$ , since it is difficult to analyse the case $d>0$ . Then, (2) is
written as

$\{$

$u_{t}=-uv^{m}$ ,
$v_{t}=v_{xx}+(u-\gamma)v^{m}$ , (22)
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and the corresponding travelling wave equations are

$\{$

$-cU’=-UV^{m}$ , (24)
$-cV’=V’+(U-\gamma)V^{m}$ ,

with the boundary conditions

$U(+\infty)=1$ , $U(-\infty)=\alpha$ , $V(+\infty)=V(-\infty)=0$ . (25)

By the use of the first equation of (24), we can eliminate the term of $UV^{m}$ from the second
equation. This leads to the single equation

$V’+cV’+cU’-c \gamma\frac{U^{r}}{U}=0$ . (26)

Integrating this under the boundary condition (25), we have $V’+c(V+U-\gamma\log U)=c$ . Then
the system (24) is reduced to the plane dynamical system

$\{$

$U’= \frac{1}{\mathrm{c}}UV^{m}$ , (27)
$V^{l}=\mathrm{c}(\gamma\log U-U-V+1)$ .

By an elementaray calculus, we see that the function $g(u)=\gamma\log u-u+1$ has aunique zero
$u=\beta$ in the interval $(0, 1)$ when $0<\gamma<1$ , and that $\beta$ satisfies $0<\beta<\gamma$ . Thus we know
that (27) has two critical points $Q_{1}=(1,0)$ and $Q_{\beta}=(\beta, 0)$ . The linearized equation about
these critical points have the same eigenvalues 0and $-c$ . The corresponding eigenvectors at
$Q_{1}$ are $\mathrm{P}\mathrm{o}={}^{t}(1,\gamma-1)$ and $\mathrm{p}_{c}={}^{t}(0,1)$ , and at $Q\beta$ they are $\mathrm{q}0={}^{t}(1, f-\beta 1)$ and $\mathrm{q}_{c}={}^{t}(0,1)$ ,
respectively. We should note here that the order of the reaction terms $m$ does not affect the
eigenvalues and the eigenvectors.

Now, our problem of the existence of travelling waves is reduced to find an orbit of (27)
connecting two critical points $Q_{\beta}$ and $Q_{1}$ . In the next subsection 3.1, we show that the critical
point $Q_{\beta}$ has the 1-dimensional stable manifold and the 1-dimensional ceter unstable manifold,
that is, it is topologically saddle. In the subsection 3.2, we examine the condition which assures
that the orbit corresponding to the above center unstable manifold reaches another critical point
$Q_{1}$ .

3.1 The local analysis of the flow near $Q_{\beta}$

We first discuss the local property of the flow of (27) near the critical point Qp. By putting
$\tilde{u}=U-\beta$ and $\tilde{v}=V$ , we write (27) in the matrix form

$( \frac{d\tilde{u}}{\frac{d_{v}^{t}}{dt}})=(\begin{array}{lll} 0 0c(_{\beta}^{f} -1) -c\end{array}) (\begin{array}{l}\tilde{u}\tilde{v}\end{array})$
$+(c \gamma\{1\mathrm{o}\mathrm{g}(1+\frac{\tilde{u})}{\beta})-\frac{\tilde{u}}{\beta}\}\frac{1}{c}(\beta+\tilde{u}v^{m})\cdot$ (28)

Here, it should be noted that

$\log(1+\frac{\tilde{u}}{\beta})-(\frac{\tilde{u}}{\beta})$ $=$ $- \frac{1}{2}(\frac{\tilde{u}}{\beta})^{2}+\frac{1}{3}(\frac{\tilde{u}}{\beta})^{3}-\cdots$ .
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By the change of the variables

$(\begin{array}{l}\overline{u}\tilde{v}\end{array})=\mathrm{P}$ $(\begin{array}{l}xy\end{array})$ , $\mathrm{P}=(\begin{array}{ll}0 \mathrm{l}1 \mu\end{array})$ , $( \mu=\frac{\gamma}{\beta}-1>0)$ ,

we have the following canonical form of (28) at $Q_{\beta}$

$( \frac{dx}{Af^{t},dt},$ $)=(\begin{array}{ll}-c 00 0\end{array})(\begin{array}{l}xy\end{array})$ $+($
$\frac{1}{c}(\beta+y)(x+\mu y)^{m}$

$-_{c}\mathrm{g}(\beta+y)(x+\mu y)^{m}+c\gamma\{\log(1+\#)-\#\})$ .

This can be written in componentwise as

$\{$

$\frac{dx}{d^{\mathrm{t}}}=-\mathrm{c}x+F(x, y)$ ,
$\neq_{t}=G(x,y)$ , (29)

where $F(x, y)=-c\mu(\beta+y)(x+\mu y)^{m}+c\gamma\{\log(1+\#)-\beta \mathrm{A}\}$ and $G(x,y)= \frac{1}{c}(\beta+y)(x+\mu y)^{m}$ .
In the following, we assume $m=2$ for simplicity and look for the representation of the center

manifold (see, for example, [11]). Let us denote the center manifold as

$x=h(y)=c_{1}y^{2}+c_{2}y^{3}+\cdots$ .
Inserting this into the relation $\frac{dx}{dt}=h’(y)_{dt}^{\mathrm{p}d}$ , we have

$-c(c_{1}y^{2}+c_{2}y^{3}+c_{3}y^{4}+\cdots)+F(h(y),y)=(2c_{1}y+3c_{2}y^{2}+4c_{3}y^{3}+\cdots)G(h(y), y)$ . (30)

Noting that

$F(h(y), y)$ $=$
$- \frac{\mu}{c}(\beta+y)y^{m}(\beta+c_{1}y+c_{2}y^{2}+\cdots)^{m}+c\gamma\{-\frac{1}{2}(\frac{y}{\beta})^{2}+\frac{1}{3}(\frac{y}{\beta})^{3}-\cdots\}$

$G(h(y), y)$ $=$ $\frac{1}{c}(\beta+y)y^{m}(\mu+c_{1}y+c_{2}y+\cdots)^{m}$ ,

and equating the coefficients of like powers of $y$ in (30), we obtain

the coefficient of $y^{2}$ : $-cc_{1}- \frac{\mu}{c}\beta\mu^{2}-\frac{c\gamma}{2}(\frac{1}{\beta})^{2}=0$

the coefficient of $y^{3}$ : $-cc_{2}- \frac{\mu}{c}(\mu^{2}+2c_{1}\mu\beta)+\frac{c\gamma}{3\beta^{3}}=2c_{1}\frac{\beta\mu^{2}}{c}$.

These relations assert that

$c_{1}=- \frac{\mu^{3}}{c^{2}}\beta-\frac{\gamma}{2\beta^{2}}$ , $c_{2}= \frac{1}{c}\{-\frac{\mu}{c}(\mu^{2}+2c_{1}\mu\beta)+\frac{c\gamma}{3\beta^{3}}-2c_{1^{\frac{\beta\mu^{2}}{c}\}}}$ .

Thus, we have the equation of the flow on the center manifold

$\frac{dy}{dt}=G(h(y),y)$
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$= \frac{[perp]}{c}\mu^{m}(\beta+y)y^{m}(1+h_{1}(y))$ . (31)

Since $h(0)=h’(0)=0$, it holds that $h_{1}(y)=o(1)$ . Integrating this equation, we see that
an orbit starting from any point $(x(0),y(0))$ with $y(0)>0$ in the neighborhood of the origin
goes away from the origin. This implies that there exists an orbit entering the region $H_{1}=$

$\{(U,V)|\beta\leq U\leq 1,V\geq 0\}$ from the critical point $Q_{\beta}$ .
The above argument also true for the case that $m>1$ , so that we obtain an orbit entering

the region $H_{1}$ from $Q\beta$ .

3.2 The global behavior of the center unstable manifold

We denote an orbit obtained in the previous subsection by $\mathcal{U}_{\beta}$ and study the global behavior of
this orbit by the phase plane analysis.

With the aid of the expression of $g(U)=\gamma\log U-U+1$ , (27) is written as

$\{$

$U’= \frac{1}{c}UV^{m}$ ,
$V^{J}=c(g(U)-V)$ . (32)

Let us now consider the curve $V=Rg(U)$ with some $R>1$ and the region $\Omega_{1}=\{(U, V)|\beta<$

$U<1,0<V<Rg(U)\}$ . Since the slopes of this curve and the orbit $\mathcal{U}\rho$ at $U=\beta$ are $R(_{\beta}^{f}-1)$

and $1_{-}1\beta$ respectively, the orbit $\mathcal{U}_{\beta}$ enters $\Omega_{1}$ from $Q_{\beta}$ for any $R>1$ . It is also obvious that
$\mathcal{U}\rho$ cannot leave $\Omega_{1}$ across the segment $\{(U, V)|\beta<U<1, V=0\}$ because $U’=0$ and
$V’=cg(U)>0$ . Therefore, in order to assure that $\mathcal{U}_{\beta}$ stays in the region $\Omega_{1}$ for all $z$ , it suffices
to impose the condition that the slope of the vector field is less than the slope of the curve
$v=Rh(u)$ at each point of this curve, that is,

$\frac{dV}{dU}=\frac{c^{2}(g(U)-V)}{UV^{m}}<\frac{d}{dU}(Rg(U))=R(\frac{\gamma}{U}-1)$ .

Substituting $V=Rg(U)$ in the above, we have

$c^{2}> \frac{R^{m+1}}{R-1}g(U)^{m-1}(U-\gamma)$ . (33)

The inequlity (33) is trivially satisfied for $U<\gamma$ , so that it suffices to examine (33) for $\gamma\leq$

$U\leq 1$ .
We now calculate $R_{1} \equiv\inf_{R>1}\frac{R^{m+1}}{R-1}$ . Since

$( \frac{R^{m+1}}{R-1})’=\frac{R^{m}}{(R-1)^{2}}\{mR-(m+1)\}$,

$\frac{R^{m+1}}{R-1}$ attains its minimum at $R= \frac{m+1}{m}\equiv R_{*}$ and we have

$R_{1}= \frac{R_{*}^{m+1}}{R_{*}-1}=\frac{1+\frac{1}{m}}{\frac{1}{m}}(1+\frac{1}{m})^{m}$
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Hence, (33) holds if $c^{2}\geq R_{1}g(U)^{m-1}(U-\gamma)$ for $\gamma$ $\leq u\leq 1$ .
Next, we estimate $K(U)\equiv g(U)^{m-1}(U-\gamma)$ . It is not easy to obtain an accurate value of

$K^{*} \equiv\max_{[]\leq U\leq 1}K(U)$ , so that we try to give an upper bound of $K^{*}$ . Noting that $\log$ U $=$

$\log(1+U-1)\leq U$ -1, we have

$K(U)\leq(U-\gamma)\{\gamma(U-1)-U+1\}^{m-1}=(U-\gamma)^{m-1}(U-\gamma)(1-U)^{m-1}\equiv\tilde{K}(U)$ .
Since

$\tilde{K}(U)’=(1-\gamma)^{m-1}(1-U)^{m-2}\{(1-U)-(m-1)(U-\gamma)\}$ ,

we know that $\tilde{K}(U)$ takes its maximum $\tilde{K}^{*}$ at $U= \frac{1+\gamma(m-1)}{m}=\gamma+\frac{1-\gamma}{m}$ , and we have

$K^{*}\leq\tilde{K}^{*}=(1-\gamma)^{2m-1_{\frac{(m-1)^{m-1}}{m^{m}}}}$ .

Thus, for any $c$ satisfying

$c^{2}\geq R_{1}\tilde{K}^{*}=(1-\gamma)^{2m-1}(m+1)^{m+1}(m-1)^{m-1}$

$\overline{m^{2m}}$ ,

the condition (33) is valid for $\gamma\leq U\leq 1$ .
Finally, we obtain the following theorem.

Theorem 5Let $d_{1}=0$ , $d_{2}=1$ and $m>1$ . Assume that $\gamma<1$ and $at=\beta$ . Then for each
$c$ satisfying

c $\geq\overline{c}=[(1-\gamma)^{2m-1_{\frac{(m+1)^{m+1}(m-1)^{m-1}}{m^{2m}}]^{\frac{1}{2}}}},$ (34)

there exits atravelling wave solution for (23).

Remark 6Theorem 5asserts that the minimal wave speed is less than or equal to $\overline{c}$ if
it exists. However, for the system (24), the monotone dependence of orbits on the parameter $c$

does not hold, so that we cannot assure the existence of the minimal wave speed.

Remark 7The estimate (34) for $m=1$ is $2\sqrt{1-\gamma}$. This is the minimal wave speed for
the diffusive Kermack-McKendrick model stated in the beginning of this section. Also note that

$\overline{c}$ tends to zero as $m$ goes to infinity.
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