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1 Introduction
In this paper we denote bounded positive semidefinite operators on aHilbert
space by $A$ , $B$ , $C$ and so on. Areal valued continuous function $\varphi(x)$ on $[0, \infty)$

is called an operator monotone function if $0\leq A\leq B$ implies $\varphi(A)\leq\varphi(B)$ .
The fact that $x^{a}(0<a\leq 1)$ is operator monotone is called the L\"owner-Heinz
inequality.

In [8] (see p.76 of [9] for the relavant topics) aquadratic operator equation
$B=XAX$ was studied and it was shown that if $A$ is nonsingular, then there
is asolution $T$ with $0\leq T\leq 1$ if and only if $(A^{1/2}BA^{1/2})^{1/2}\leq A$ and that $T$

is then given by the formula $T=A^{-1/2}(A^{1/2}BA^{1/2})^{1/2}A^{-1/2}$ if $A$ is invertible.
The solution of $B=XA^{-1}X$ is therefore given by $A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}$ .
On the other hand, in [7] it was shown that if $A$ is invertible, the maximum of
all $X$ such that

$(\begin{array}{ll}A XX B\end{array})\geq 0$

equals $A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}$ , which is called the geometric mean of $A$ and
$B$ and denoted by $A\# B$ . Therefore, by using this symbol, the solution $T$ of
$B=XAX$ is given by $T=A^{-1}\# B$ if $A$ is invertible. For $0<\lambda<1$ and for
invertible $A$ the weighted geometric mean is defined as:

$A\# B:=A^{1/2}(A^{-1/2}BA^{-1/2})^{\lambda}A^{1/2}\lambda$ .

Furuta $[3, 4]$ showed that $A\leq B$ implies for $1\leq s$ } $p$ and $0<r$

$A^{1+r}\leq$ $(A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{1+r}{p+\tau}}$ , (1)
$A^{1-t+r}$ $\leq$

$\{A^{r}T(A^{-\tau}B^{p}A^{-^{t}}\tau)^{s}A^{r1-\mathrm{t}+r}\mathrm{t}\tau\}\overline{\overline{p\cdot-\mathrm{u}+r}}$ $(0\leq t\leq 1, t\leq r)$ . (2)

Further, in [1, 2, 10] it was shown that $A\leq B$ implies for $0<p$ , $r$

$e^{rA}\leq(e^{\frac{r4}{2}}e^{pB}e^{\frac{rA}{2}})^{\frac{r}{r+p}}$ . (3)
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These inequalities can be rewritten with the symbol $\neq$ ;for instance, (1) is
equivalent to

$A \leq A^{-r}B^{p}\frac{1+r\#}{p+r}$
.

Now let us state asimple fact on numerical weighted geometric means: For
positive numbers $a$ , $b$ , $c$ , $x$ and $y$ , if $(x^{a})^{\frac{\mathrm{k}}{\overline{aa+}\mathrm{E}}}(y^{b})^{\frac{a}{a+\overline{\mathrm{k}}}}\leq 1$ , then for any $d$ with
$-a\leq d\leq bc$ , $(x^{r})^{\frac{\epsilon-d}{r+\cdot e}}.(y^{s})^{\frac{r+d}{r+\cdot \mathrm{e}}}$ is decreasing for $r$ $\geq a$ and for $s\geq b$ . We will
show that this result is true even if $x$ and $y$ are replaced by $A$ and $B$ and that
(1), (2) and (3) follow simply from it.

We study in amore general situation. Namely, we treat operator connec-
tions (or means) which include every weighted geometric mean. Kubo and
Ando [6] defined aconnection, which is denoted by $\sigma$ , and showed that there
is aone to one correspondence between $\sigma$ and an operator monotone function
$\varphi\geq 0$ on $[0, \infty)$ by the formula

$A\sigma B=A^{1/2}\varphi(A^{-1/2}BA^{-1/2})A^{1/2}$ (4)

if $A$ is invertible; $\sigma$ is called an operator mean if $A\sigma A=A$ , which is equivalent
to $\varphi(1)=1$ . The operator mean corresponding to $\varphi(x)=x^{1/2}$ is clearly
geometric mean.

In this paper we write $\sigma_{\varphi}$ for acorresponding to $\varphi$ . In [11], to extend (1)
and (3) we constructed afamily $\{\phi_{r}(x)\}_{r>0}$ of non-negative operator monotone
functions which satisfies

$\phi_{r}(g(x)f(x)^{r})=f(x)^{e+r}$ $(0\leq c\leq 1)$ ,

where $g$ and $f$ are appropriate increasing functions; here by replacing $f(x)$ by
$x$ and $g(f^{-1}(x))$ by another function $g(x)$ , $\phi_{r}$ satisfies $\phi_{r}(g(x)x^{r})=x\mathrm{r}x\mathrm{c}$. In
[12] we also studied the operator monotone function $\phi_{r,t}(x)$ defined by

$\phi_{r,t}(x)$ $=x^{\frac{r}{r+1}}f(x^{\frac{}{r+t}}‘)$ , i.e., $\phi_{r,t}(x^{r}x^{t})=x^{r}f(x^{t})$ ,

where $f\geq 0$ is agiven operator monotone function and $r>0$ and $t>0$ . These
investigations have led us to set up apair of operator monotone functions $\{\psi_{r}\}$

and $\{\phi_{r}\}$ with the following situation:

$\psi_{r}(x^{r}g(x))$ $=x^{r}$ , i.e., $x^{-r}\sigma_{\psi_{r}}g(x)$ $=1$ , (5)
$\phi_{r}(x^{r}g(x))$ $=x^{r}h(x)$ , i.e., $x^{-r}\sigma_{\phi_{r}}g(x)=h(x)$ . (6)

In this situation, $\psi$, may be considered to be the subsidiary function of $\phi_{r}$ .
Prom now on, we assume that $\{\psi_{r}\}_{r>0}$ and $\{\phi_{r}\}_{r>0}$ are families of non-

negative functions on $[0, \infty)$ satisfying (5) and (6) respectively, where $g$ and
$h$ are continuous and $g$ is increasing and that $\psi$, and $\phi_{f}$ are both operator
monotone for every $r$ which is not less than anon-negative real number. Note
that $\psi$, is strictly increasing on $[0, \infty)$ with $\psi_{r}(0)=0$ and $\psi_{r}(\infty)=\infty$ , so the
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inverse function $\psi_{r}^{-1}$ on $[0, \infty)$ exists. We remark that $h(x)$ is not necessarily
increasing and that the region of $r$ for which $\psi_{f}$ is operator monotone is not
necessarily coincident with that of $r$ for which $\phi_{f}$ is: for instance, in (5) and
(6) set $g(x)=x^{t}$ for afixed $t>0$ and $h(x)=x^{-1}$ , then $\psi_{r}(x)=x^{r/(t+r)}$

is operator monotone for $r>0$;on the other hand $\phi_{r}(x)=x^{(-1+r)/(t+r)}$ is
operator monotone for $r\geq 1$ .

2Criteria for Monotonicity
Theorem 2.1. Let $\{\psi_{r}\}_{r\geq a}$ and $\{\phi_{r}\}_{r>a}(a>0)$ be families of non-negative
operator monotone functions satisfying (5) and (6). Then the following hold:

(a) if $A^{a}\sigma_{\psi_{a}}B\geq 1_{2}$ then $A^{r}\sigma_{\psi_{r}}B$ and $A^{r}\sigma_{\phi_{r}}B$ are increasing for r $\geq a$;

(b) if A and B are invertible and if $A^{a}\sigma_{\psi_{a}}B\leq 1$ , then $A^{r}\sigma_{\psi_{r}}B$ and $A^{r}\sigma_{\phi_{r}}B$

are decreasing for r $\geq a$ .

Proof We only prove the first statement of (a). To do it, it suffices to
show

$A^{s}\sigma_{\psi}$. $B\geq 1$ for some $s\geq a\Rightarrow A^{r}\sigma_{\psi_{r}}B\geq A^{s}\sigma_{\psi}.B$ for every $r\in[s, 2s]$ .

Indeed, from $A^{a}\sigma_{\psi_{a}}B\geq 1$ it follows that $A^{r}\sigma_{\psi_{f}}B$ is increasing in $[a, 2a]$ and
hence not less than 1; by the mathematical induction, we can see the statement.
Since $A^{r}=(A^{s})^{r/s}$ , we may show that

$A$ $\sigma_{\psi}.B\geq 1$ for some $s\geq a\Rightarrow A^{r/s}\sigma_{\psi_{r}}B\geq A\sigma_{\psi}.B$ for every $r\in[s, 2s]$ . (7)

Notice $(A+\epsilon)\sigma_{\psi_{f}}(B+\epsilon)\geq A\sigma_{\psi}$. $B\geq 1$ for $\epsilon>0$ . If we could show $(A+$
$\epsilon)^{r/s}\sigma\psi$, $(B+\epsilon)\geq(A+\epsilon)\sigma\psi$. $(B+\epsilon)$ , then we would get (7) as $\mathrm{e}$ $arrow+0$ . We
therefore assume that $A$ and $B$ are invertible. Put $y=x^{s}$ in $\psi_{s}(x^{s}g(x))=x^{s}$

and $\psi_{r}(x^{r}g(x))=x^{r}$ . Then, by setting $b= \frac{r-\epsilon}{s}$ , we obtain

$\psi_{f}(y^{b}\psi_{s}^{-1}(y))=y^{b}y$ , i.e., $y^{-b}\sigma\psi_{r}\psi_{s}^{-1}(y)=y$ . (8)

The assumption A $\sigma_{\psi}$. $B\geq 1$ implies $\psi_{s}(A^{1}-\tau BA^{-^{1}}\pi)\geq A^{-1}$ . Here, denote the
left-hand side by $H$ and the right-hand side by $K$ . Since $H\geq K$ and $0\leq b\leq 1$ ,
by the L\"owner-Heinz inequality, $K^{-b}\geq H^{-b}$ . Hence we have

$K^{-b}\sigma_{\psi_{r}}\psi_{s}^{-1}(H)\geq H^{-b}\sigma_{\psi_{r}}\psi_{s}^{-1}(H)=H$.

Multiplying the above from the left and the right with $A^{1/2}$ yield$\mathrm{s}$

$A^{b+1}\sigma_{\psi_{r}}B\geq A\sigma_{\psi}$. $B$ .
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Consequently, we have (7). $\square$

In the second statement (b) of the above theorem, we assumed $A$ and $B$

are invertible, because the norm of $(A+\epsilon)^{a}\sigma_{\psi}$. $(B+\epsilon)$ may not necessarily
converge to that of $A^{a}\sigma_{\psi}.B$ as $\epsilonarrow+0$ . We do not know if the invertibility
of $A$ and $B$ can be removed.

Theorem 2.2. Let $\{\psi_{r}\}_{r>0}$ and $\{\phi_{r}\}_{r>0}$ be families of non-negative
operator monotone functions satisfying (5) and (6). If $A\leq B$ or if $\log A\leq$

$\log B$ for invertible $A$ and $B$ , then for $r>0$

$A^{r}\leq\psi_{r}(A^{r}\tau g(B)A^{r}\tau)$ , $\psi_{r}(B^{r}\tau g(A)B^{r}\tau)$ $\leq B^{r}$ , (9)
$A^{r}\tau h(B)A^{r}\tau\leq\phi_{r}(A^{r}\tau g(B)A^{r}\tau)$ , $\phi_{r}(B^{r}\tau g(A)B^{r}\tau)$ $\leq B^{r}\tau h(A)B^{r}\tau$ . (10)

Remark 2.1. In the above theorems, we assumed that the families $\{\psi_{r}\}_{r>0}$

and $\{\phi_{r}\}_{r>0}$ satisfy (5) and (6) respectively. However their proofs are still valid
if

$\phi_{r}(y^{b}\psi_{s}^{-1}(y))=y^{b}\phi_{s}(\psi_{s}^{-1}(y))$ (y $>0)$ , (11)

and (8) hold. Therefore, theorems are true even if we assume that $\psi_{r}$ and $\phi_{r}$

are non-negative operator monotone functions on $[0, \infty)$ with $\psi_{r}(0)=0$ and
$\psi_{r}(\infty)=\infty$ and that for all $r$ and $s$ with $r>s>0$

$\psi_{r}(\psi_{s}(x)^{\frac{r-}{}}.\cdot x)=\psi_{s}(x)^{\underline{r}}$. and $\phi_{r}(\psi_{\iota}(x)\cdot x)=\psi_{s}(x)^{i^{-}}.\phi_{s}(x)\underline{r-\cdot}r$

instead of (5) and (6); because they satisfy

$\psi_{r}(y^{\frac{r-}{}}.\cdot\psi_{\ell}^{-1}(y))=y^{\underline{r}}$. and $\phi_{r}(y^{\underline{r-}}.\cdot\psi_{s}^{-1}(y))=y^{\frac{r-}{}}.\cdot\phi_{s}(\psi^{-1}.(y))$ ,

from which (8) and (11) follow.

Remark 2.2. Let $\{A_{r}\}_{r>0}$ be aweakly continuous semi-group of positive
semidefinite operators, that is, $A_{r+s}=A_{r}A_{s}$ . Then we get $(A_{r})^{a}=A_{ra}$ for
$a>0$ . Thus from Theorem 2.2 we obtain

(a) if $A_{a}\sigma_{\psi}$. B $\geq 1$ , then $A_{ar}\sigma_{\psi_{b}}B$ is increasing for r $\geq 1j$

(b) if $A_{a}\sigma_{\psi_{l}}B\leq 1$ for invertible $A_{a}$ and B, then $A_{ar}\sigma_{\psi_{4}}B$ is decreasing for
r $\geq 1$ .

74



3Weighted Geometric Means
Our objective in this section is to apply the results we got in the preceding
section to the weighted geometric means. As we mentioned in the first section
the symbols $\#$ and $\sigma_{oe^{\lambda}}$ express the same weighted geometric mean for $0<\lambda\leq$

$1$ . We have $A^{\lambda}\# B=B\# A\lambda 1-\lambda$ .

Lemma 3.1. Let $a>0$ , $c>0$ and $c>d$ . Then the folloing hold:

(a) if A and B are invertible and if $A^{a}B \frac{\# a}{\neg a\overline{aae}}\leq 1$

, then
$A^{r}\# B+rdraae$

is decreasing

for r $\geq\max(a,$-d);

(b) if $A^{a}B \frac{\# a}{a+aae}\geq 1$
, then

$A^{r}\# Br+d\overline{\overline{r+c}}$

is increasing for r
$\geq\max(a,$

-d).

Theorem 3.2. For a given $c>0$ define a function $F(r, s)$ by

$F(r,s)=A^{r}\# B^{s}\overline{r}\mathrm{T}^{r}\overline{\cdot ae}$

$f\sigma r$ $r>0$ , $s>0$ . (12)

Then, for $r\geq a>0$ , $s\geq b>0$ the following hold:

(a) if $A$ and $B$ are both invertible and $F(a, b)\leq 1$ , then $F(r, s)\leq F(a, b)$ ;

(b) if $F(a, b)\geq 1_{\lambda}$ then $F(r, s)\geq F(a,$b).

$Pro\mathrm{o}/$. We show only the first statement. Prom Lemma 3.1 it follows that

1 $\geq$

$F(a, b) \geq F(r, b)=A^{r}B^{b}=B^{b}A^{r}=B^{b}A^{r}\frac{\# r}{r+be}\frac{\# bae}{r+k}\frac{\#_{b}}{b+r/ae}$

$\geq B^{s}.\cdot A^{r}=A^{r}.B^{s}=A^{r}B^{s}=F(r, s)\frac{\#}{+r/c}\frac{r/ae\#}{+r/aae}\frac{\#_{r}}{r+\cdot ae}$
. $\square$

By using the above theorem twice, from $F(a,b)\leq 1$ it follows that $F(r_{2}, s_{2})\leq$

$F(r_{1}, s_{1})\leq F(a,b)$ for $r_{2}\geq r_{1}\geq a$ and for $s_{2}\geq s_{1}\geq b$ .
The case $\mathrm{A}=1/2$ of the following corollary resembles the result shown in

[1].

Corollary 3.3. For a given Aas $0<\lambda<1$ the following hold:
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(a) ifA $\# B\lambda\leq 1$ for invertible A and B, then $A^{r}\# B^{r}\lambda$ is decreasing for r $\geq 1j$

(b) if $A\# B\lambda\geq 1$ , then $A^{r}\# B^{r}\lambda$ is increasing for r $\geq 1$ .

Proof Define c by $\lambda=\frac{1}{1+c}$ and use Theorem 3.2 to get this. $\square$

Now we treat aquadratic equation $B=XAX$ given in the first section.
Assume that $A$ and $B$ are invertible. Then the solution is given by $A^{-1}\# B$ .
By Corollary 3.3 we get:
(a) if $A^{-1}\# B$ $\geq 1$ then the solution $A^{-r}\# B^{r}$ of $B^{r}=XA^{r}X$ is increasing for

$r\geq 1_{j}$

(b) if $A^{-1}\# B$ $\leq 1$ then $A^{-r}\# B^{r}$ is decreasing for r $\geq 1$ .
The following is the main theorem of this section.

Theorem 3.4. For real numbers $c>0$ and $d$ , define $F(r, s)$ by (12) and
$G(r, s)$ by

$G(r,s)=A^{r}B \frac{r+d\#}{r+\cdot ae}$

. for $r>0$ , $s>0$ with $0 \leq\frac{r+d}{r+sc}\leq 1$ . (13)

Let $a>0$ , $b>\mathrm{O}and-a\leq d\leq be$ . Then for $r_{2}\geq r_{1}\geq a$ and for $s_{2}\geq s_{1}\geq b$

the folloing hold:
(a) if $A$ and $B$ are both invertible and $F(a, b)\leq 1$ , then $G(r_{2}, s_{2})\leq G(r_{1}, s_{1})i$

(b) if $F(a, b)\geq 1$ , then $G(r_{2}, s_{2})\geq \mathrm{G}(\mathrm{r},$ s).

The above theorem says that if $F(a, b)\leq 1$ , $G(a, b)\leq K$ then $G(r,s)\leq K$

for $r\geq a$ , $s\geq b$;moreover, if $F(a,b)=1$ then $G(r, s)$ is constant, though
this directly follows from the definitions of $F(r, s)$ and $G(r, s)$ . Notice that
$G(r, s)=F(r, s)$ if $d=0$.

So far, we have seen that $F(a,b)\leq 1$ (or $F(a,b)\geq 1$ ) has agreat influence
on $G(r, s)$ . Now we give asufficient condition on $G(r, s)$ in order that $F(a, b)\leq$
$1$ (or $F(a,b)\geq 1$).

Proposition 3.5. Let $A$ and $B$ be invertible. Let $a>0$ and $c>d>0$ .
Then the folloeuing hold:

$A^{a}B \leq A^{-d}\frac{a\dagger d\#}{a+ae}$ $\Rightarrow A^{a}\# B\leq 1_{1}\overline{ae}+\overline{aae}\simeq$

.

$A^{a}B \geq A^{-d}\frac{a+d\#}{a+e}$ $\Rightarrow A^{a}B\geq 1\frac{\# a}{a+aae}$
.
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4APPLICATIONS
We mentioned after Theorem 2.3 that (9) and (10) are extensions of (1) and
(3). However we give asimple proof of (1) to explain how Theorem 3.4 is
useful, and we give an extension of (2).

(1): We may assume $A$ and $B$ are invertible. Prom $A\leq B$ it follows that
$A^{-a}\geq B^{-a}$ for every $a$ with $0<a<1$ . Substitute $A^{-1}$ for $A$ in (12) and (13),
and put $c=1$ and $d=1$ . Then

$F(a, 1)=A^{-a}B \frac{\#_{a}}{a+1}\geq B^{-a}B=1\frac{\# a}{a+1}$
,

$G(a, 1)=A^{-a}B=B \frac{a+1\#}{a+1}$
.

Thus by Theorm 3.4
$G(r, s)=A^{-f}\# B^{s}r+1\overline{\overline{r+\cdot}}$

is increasing for $r\geq a$ and for $s\geq 1$ ;especially, $G(r, s)\geq G(a, 1)=B\geq A$ .
Since $a$ is arbitrary, we have $G(r, s)\geq A$ for $r>0$ , $s\geq 1$ . Replace $p$ for $s$ to
get (1). $\square$

Proposition 4.1. If $A\leq B\leq C$ and if $B$ is invertible, then for $0\leq t\leq 1$ ,
$t$ $\leq r$ , $1\leq p$ and $1\leq s$

$A^{1-t+r}\leq\{A^{r/2}(B^{-^{t}}TC^{p}B^{-\tau})^{s}A^{r/2}\}^{\frac{1-t+r}{ps-t\cdot+r}}\mathrm{c}$ , (14)
$\{Cr/2(B^{-}\tau‘ A^{p}B^{-^{\mathrm{t}}}\tau)^{s}U/2^{1-\mathrm{c}\mapsto r_{T}}\}?\cdot\neg-\cdot\dagger\leq C^{1-t+r}$ .

Proof. If $t=0$ , (14) reduces to (1). So we assume $0<t\leq 1$ . We may,
without loss of generality, assume $A$ is invertible. Put

$K=B^{-\frac{t}{2}}C^{p}B^{-\frac{t}{2}}$ .

Then (14) is equivalent to

$A^{1-t} \leq A^{-r}.K^{\epsilon}\frac{\gamma+1-l\#}{r+p\cdot-t}$ $(t \leq r, 1\leq p, 1\leq s)$
.

Put
$F(r, s)=A^{-r}.K^{s} \frac{\#_{r}}{r+p\cdot-t}$

and
$G(r, s)=A^{-r},.K^{s} \frac{r+1-t\#}{+p\cdot-t}$

.

$B^{t}\geq A^{t}$ yield$\mathrm{s}$

$A^{\iota\iota}\tau B^{-t}A\tau\leq 1$ ;since $x^{\frac{t}{p}}$ is operator concave (see [5]) we obtai$\mathrm{n}$

$A^{\frac{t}{2}}B^{-\frac{t}{2}}(C^{p})^{\frac{t}{p}}B^{-\frac{t}{2}}A^{\frac{t}{2}}\leq(A^{\frac{t}{2}}B^{-\frac{\ell}{2}}C^{p}B^{-\frac{t}{2}}A^{\frac{t}{2}})^{\frac{t}{p}}$ ,
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from which it follows that

$F(t, 1)$ $=$
$A^{-t} \# K^{1}\geq B^{-_{\mathrm{I}C^{t}B^{-\mathrm{p}}}^{\iota \mathrm{t}}}\frac{t}{p}\geq 1$

,

$G(t, 1)$ $=$
$A^{-t} \# K^{1-^{t}}\geq B\tau CB^{-f}\geq B^{1-t}\geq A^{1-t}\frac{1}{p}\mathrm{t}$

.

By virtue of Theorem 3.4, $G(r,s)$ is therefore increasing for $r\geq t$ and for
$s\geq 1$ ;in particular, $G(r, s)\geq A^{1-t}$ . Thus we get (14). The second inequality
follows from (14) by taking the inverse of it. $\square$
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