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Monotonicity of Sequences of Operator Means
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1 Introduction

In this paper we denote bounded positive semidefinite operators on a Hilbert
space by A, B, C and so on. A real valued continuous function ¢(z) on [0, c0)
is called an operator monotone function if 0 < A < B implies ¢(A) < ¢(B).
The fact that ® (0 < a < 1) is operator monotone is called the Léwner-Heinz
inequality.

In [8] (see p.76 of [9] for the relavant topics) a quadratic operator equation
B = X AX was studied and it was shown that if A is nonsingular, then there
is a solution T with 0 < T' < 1 if and only if (AY2BAY2)}/2 < A and that T
is then given by the formula T = A~Y2(AY2BAY?)1/2A-1/2 if A is invertible.
The solution of B = XA~1X is therefore given by AY2(A-1/2BA~1/2)1/241/2,
On the other hand, in [7] it was shown that if A is invertible, the maximum of

all X such that A x
(X B)ZO

equals AY2(A~Y2BA-1/2)1/2 A1/2 which is called the geometric mean of A and
B and denoted by A#B. Therefore, by using this symbol, the solution T' of
B = XAX is given by T' = A~'#B if A is invertible. For 0 < A < 1 and for
invertible A the weighted geometric mean is defined as:

A#B — A1/2(A—1/2BA—1/2)AA1/2_
A

Furuta [3, 4] showed that A < B implies for 1 < s,pand 0 <r

AT < (ABPA%)HT | (1)
Al < {A{v(A-%BPA-%)’A%}FF—'ﬁ? 0<t<1l, t<r). (2

Further, in [1, 2, 10} it was shown that A < B implies for 0 < p,r

et < (e!flepae%)'_i?. 3)
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These inequalities can be rewritten with the symbol #; for instance, (1) is
equivalent to A < A~" # B’ '
14r

lir
ptr

Now let us state a simple fact on numerical weighted geometric means: For
positive numbers a,b,c,z and y, if (:1:“)#1":(y")ﬂ_wfE < 1, then for any d with
—a < d < be, (m')':":ﬁ%(y")ﬁt-? is decreasing for r > a and for s > b. We will
show that this result is true even if  and y are replaced by A and B and that
(1), (2) and (3) follow simply from it.

We study in a more general situation. Namely, we treat operator connec-
tions (or means) which include every weighted geometric mean. Kubo and
Ando [6] defined a connection, which is denoted by o, and showed that there
is a one to one correspondence between o and an operator monotone function
¢ 2 0 on [0,00) by the formula

AoB = AY2p(AV2BAY/2) A2 (@

if A is invertible; o is called an operator mean if AcA = A, which is equivalent
to ¢(1) = 1. The operator mean corresponding to ¢(z) = z'/2 is clearly
geometric mean.

In this paper we write o, for o corresponding to ¢. In [11], to extend (1)
and (3) we constructed a family {@,(z)}r>0 of non-negative operator monotone
functions which satisfies

¢(9(2)f(@)") = f(=)*" (0<e<1),

where g and f are appropriate increasing functions; here by replacing f(z) by
« and g(f~1(z)) by another function g(z), ¢, satisfies ¢.(g(x)z") = z"z°. In
[12] we also studied the operator monotone function ¢, ¢(z) defined by

() = T f(27), e, @re(a"a’) =" f(2"),

where f > 0 is a given operator monotone function and » > 0 and ¢ > 0. These
investigations have led us to set up a pair of operator monotone functions {,}
and {¢,} with the following situation:

Y(z"g(z)) = 1", i.e, z "oy g(z)=1, - (%)
¢r(z7g(z)) = a'h(z), ie, 7704 g(z) = h(z). (6)

In this situation, 9, may be considered to be the subsidiary function of ¢,.
From now on, we assume that {i,},50 and {¢,},>0 are families of non-
negative functions on [0,00) satisfying (5) and (6) respectively, where g and
h are continuous and g is increasing and that 1, and ¢, are both operator
monotone for every r which is not less than a non-negative real number. Note
that 1, is strictly increasing on [0, 00) with ,(0) = 0 and ¥,(0c0) = o0, so the
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inverse function ¢! on [0, 00) exists. We remark that h(z) is not necessarily
increasing and that the region of r for which 1, is operator monotone is not
necessarily coincident with that of r for which ¢, is: for instance, in (5) and
(6) set g(x) = =t for a fixed t > 0 and h(z) = ™, then ¢ (z) = z"/C+7)
is operator monotone for r > 0; on the other hand ¢,(z) = z(-1+7)/(+7) ig
operator monotone for r > 1.

2 Criteria for Monotonicity

Theorem 2.1. Let {1, },>, and {¢,}r>4 (a > 0) be families of non-negative
operator monotone functions satisfying (5) and (6). Then the following hold:

(a) if A®oy, B > 1, then A" 0y, B and A" o4, B are increasing for r > a;

(b) if A and B are invertible and if A0y, B < 1 then A" Ty B and A" 0y, B
are decreasing for r > a.

Proof. We only prove the first statement of (a). To do it, it suffices to
show

A oy, B 21 for some s > a = A" oy, B > A’ 0y, Bfor everyr € [s, 2s].

Indeed, from A%cy, B > 1 it follows that A" oy, B is increasing in [a,2a] and
hence not less than 1; by the mathematical induction, we can see the statement.
Since A” = (A®)"/*, we may show that

Aoy, B > 1for somes > a = A"*0y B > Aoy, Bfor everyr € [s,2s]. (7)

Notice (A + €) oy, (B+¢€) > Aoy, B > 1 for € > 0. If we could show (A +
€)/* oy, (B +€) > (A +€)ay, (B +¢€), then we would get (7) as € = +0. We
therefore assume that A and B are 1nvert1ble Put y = z° in ,(z%g(z)) = =*
and ¥, (z"g(z)) = " . Then, by setting b = =%, we obtain

¥ (y % W) =vty, ie, v "0¢,¢;'1(y) =v. (8)

The assumption Aoy, B > 1 implies 1,(A"#BA~%) > A~!. Here, denote the

left-hand side by H and the right-hand side by K. Since H > K and 0 < b <1,
by the Léwner-Heinz inequality, K~° > H~%. Hence we have

Koy, y; (H) 2 H oy, 47" (H) = H.
Multiplying the above from the left and the right with A1/2 yields
AvH oy, B> Aoy, B
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Consequently, we have (7). (]

In the second statement (b) of the above theorem, we assumed A and B
are invertible, because the norm of (A + €)® oy, (B + €) may not necessarily
converge to that of Aoy, B as € — +0. We do not know if the invertibility
of A and B can be removed.

Theorem 2.2.  Let {¢,},>0 and {¢,}r>0 be families of non-negative
operator monotone functions satisfying (5) and (6). If A< B oriflogA <
log B for invertible A and B, then forr > 0

A" <y, (A%g(B)A%), v, (B%g(A)B¥) <B (9)
A%h(B)A% < ¢,(A%g(B)A%), ¢,(Big(A)B%) <B h(A)B% (10)

Remark 2.1. In the above theorems, we assumed that the families {4/ },>0

and {¢, }r>o satisfy (5) and (6) respectlvely However their proofs are still valid
if

¢ (¥"¥; () = v'4: (¥ (%) (v > 0), (11)

and (8) hold. Therefore, theorems are true even if we assume that v, and ¢,
are non-negative operator monotone functions on [0,00) with 1,(0) = 0 and
¥y(00) = 0o and that for all r and s withr > s >0

¢r("/}a($)r';.w) = ¢,(:n)':' and d’r("/’a(x)r';.w) = "/)3(33)!_:4‘#3(3')
instead of (5) and (6); because they satisfy

vy =¥ W) =+ and (T Y) =¥ 40 ),
from which (8) and (11) follow.

Remark 2.2. Let {4,},>0 be a weakly continuous semi-group of positive
semidefinite operators, that is, Ary, = A,A,. Then we get (A4,)* = A,q for
a > 0. Thus from Theorem 2.2 we obtain

a) if Agoy, B > 1, then A, 0y, B is increasing for r > 1;
¥ , Yor

(b) if Ayoy, B <1 for invertible A, and B, then A, oy, B is decreasing for
r2>1.
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3 Weighted Geometric Means

Our objective in this section is to apply the results we got in the preceding
section to the weighted geometric means. As we mentioned in the first section
the symbols # and 0. express the same weighted geometric mean for 0 < A <

1. We haveA#B B # A.

1-
Lemma 3.1. Leta >0, c > 0 and ¢ > d. Then the following hold:
(a) if A and B are invertible and if A # B <1, then A" # B is debreasing

for r > max(a, —d);

(b) if A # B > 1, then A" # B is increasing for r > max(a, —d).
2 rid
a+c r+c
Theorem 3.2. For a given ¢ > 0 define a function F(r,s) by

F(r,s) = A’#B" forr >0, s>0. (12)

rac

Then, forr > a >0, s> b > 0 the following hold:
(a) if A and B are both invertible and F(a,b) < 1, then F(r,s) < F(a,b);

(b) if F(a,b) > 1, then F(r,s) > F(a,b).

Proof. We show only the first statement. From Lemma 3.1 it follows that

1 > F(a,b)> F(r,b)=A" # B*=B® # A" =B # A"

r¥be r_-ﬁ? +:c
> B®* # A"=A" # B*=A" # B*=F(r,s). O

By using the above theorem twice, from F(a,b) < 1 it follows that F(ra, s2) <
F(r1,81) < F(a,b) for ro > r1 > a and for s > 81 2 b.
The case A = 1/2 of the following corollary resembles the result shown in

[1].

Corollary 3.3. For a given A as 0 < XA < 1 the following hold:
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(a) if A#B <1 for invertible A and B , then A" #B" is decreasing forr > 1;
A 2

(b) if A#B > 1, then A"#B" is increasing for r > 1.
A A
Proof. Define c by A = 13- and use Theorem 3.2 to get this. 0

Now we treat a quadratic equation B = X AX given in the first section.
Assume that A and B are invertible. Then the solution is given by A~14:B.
By Corollary 3.3 we get: -

(a) if A~14B > 1 then the solution A~"#B" of B" = X A" X is increasing for
r2>1; ' :

(b) if A7'#B <1 then A~"#B" is decreasing for r> 1.
The following is the main theorem of this section.

Theorem 3.4.  For real numbers ¢ > 0 and d, define F(r,s) by (12) and
G(r,s) by

rHd 1 (13)
r + sc

G(r,s)=A" # B* forr>0,3>0 with 0<
Leta >0,b>0and —a <d < bc. Then forry > 1, > a and for sg > s, > b
the following hold:

(a) if A and B are both invertible and F(a,b) < 1, then G(r3, s3) < G(r1,81);

(b) if F(a,b) > 1, then G(ry, 82) > G(ry,s;).

The above theorem says that if F(a,b) < 1, G(a,b) < K then G(r,s) < K
for r > a, s > b; moreover, if F(a,b) = 1 then G(r,s) is constant, though
this directly follows from the definitions of F(r,s) and G(r,s). Notice that
G(r,s) = F(r,s) ifd =0.

So far, we have seen that F(a,b) < 1 (or F(a,b) > 1) has a great influence
on G(r, s). Now we give a sufficient condition on G(r, s) in order that Fi(a,b) <
1 (or F(a,bd) >1).

Proposition 3.5. Let A and B be invertible. Let a > 0 andc > d > 0.

Then the following hold:

A* #B< A% = A*#B<1;
atd e _

ate ate
A* #B>A% = A*4#B>1.
atd —a

atc atc
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4 APPLICATIONS

We mentioned after Theorem 2.3 that (9) and (10) are extensions of (1) and
(3). However we give a simple proof of (1) to explain how Theorem 3.4 is
useful, and we give an extension of (2).

(1): We may assume A and B are invertible. From A < B it follows that
A~® > B¢ for every a with 0 < a < 1. Substitute A~? for A in (12) and (13),
and put c =1 and d = 1. Then

F(a,1)=A"#B>B" #B=1, G(a,1)=A"#B=B.

Thus by Theorm 3.4
: G(r,s) = A" # B*
o

is increasing for r > a and for s > 1; especially, G(r,s) > G(a,1) = B > A.
Since a is arbitrary, we have G(r,s) > A for r > 0,s > 1. Replace p for s to
get (1). : O

Proposition 4.1. If A < B < C and if B is invertible, then for0 <t <1,
t<r,1<pandl<s ,
Al-ttr < {Ar/2(B—§-CpB—%)sAr/2_};i—:-:ﬁ;’ (14)
(CT/3(B-% AP B-+) Oty st < C1t,

Proof. Ift =0, (14) reduces to (1). So we assume 0 <t < 1. We may,
without loss of generality, assume A is invertible. Put

- K=B"%C*B3
Then (14) is equivalent to

A< AT # K* (t<r, 1<p 1<Ls).

r4l1-t

r4ps—ts
Put S :
F(r,s)=A" # K° and G(r,s)=A"" # K°

Bt > At yields A¥B~*A% < 1; since z+ is operator concave (see [5]) we obtain

A3B%$(CP)s B3 A% < (AYB-5CPB1 Ad)3,

7
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from which it follows that
F(t,1) = A"'#K'> B 1C'B™% >1,
t
t |
G(t,1) = A'#K'> B iCB~%> B"*> Al",
A2
I 4

By virtue of Theorem 3.4, G(r,s) is therefore increasing for » > t and for
8 > 1; in particular, G(r,s) > A'"*. Thus we get (14). The second inequality
follows from (14) by taking the inverse of it. 0
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