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1 Main Results

We study equilibrium statistical mechanics of Fermion lattice
systems which require different treatment compared with quan-
tum spin lattice systems due to the non-commutativity of local
algebras on disjoint regions.

In this talk, we focus on the entropy and show some difference
and similarity on its behavior between Fermion systems and
quantum spin systems [2], [9].

The following table shows our main results:
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2 Entropy and Relative Entropy

2.1 Definitions

We introduce the definitions of density matrix and entropy.

Lemma 2.1. Let $\mathcal{M}$ be a finite type Ifactor.
(i) Let $\varphi$ be a positive linear functional on M. Then there exists
a unique $\hat{\rho}_{\varphi}\in \mathcal{M}_{+}$ (called adjusted density matrix) satisfying

$\varphi(a)=\tau(\hat{\rho}_{\varphi}a)$ $(\forall a\in \mathcal{M})$ .

(ii) Let $N$ be a subfactor of $\mathcal{M}$ and $\varphi N$ be the restriction of $\varphi$ to
N. Let $\hat{\rho}_{\varphi N}\in N_{+}$ be the adjusted density matrix of $\varphi N$ . Then

$\hat{\rho}_{\varphi N}=E_{N}^{\mathcal{M}}(\hat{\rho}_{\varphi})$

Remark. The above definition of density matrix is given in terms
of tlte tracial state in contrast to the standard definition using
the matrix $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ Tr. Hence we use the word “adjusted”

Definition 2.2. Let $\hat{\rho}_{\varphi}$ be the adjusted density matrix of a pos-
itive linear functional $\varphi$ of a finite type Ifactor. Then

$\hat{S}(\varphi)\equiv-\varphi(\log\hat{\rho}_{\varphi})$

is called the adjusted entopy of $\varphi$ .

Remark. The adjusted density matrix and the adjusted entropy
for atype $\mathrm{I}_{n}$ factor $\mathcal{M}$ with the dimension Tr(l) $=n$ are related
to the usual ones by the following relations:

$\hat{\rho}_{\varphi}=n\rho_{\varphi},\hat{S}(\varphi)=S(\varphi)-\varphi(1)\log n$ . (2.1)

The range of the values of entropy is given by the following
well-known lemma
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Lemma 2.3. If $\mathcal{M}$ is a type $\mathrm{I}_{n}$ factor and $\varphi$ is a state of $\mathcal{M}$ ,
then

$0\leq S(\varphi)\leq\log n$ . (2.2)

The equality $S(\varphi)=0$ holds if and only if $\varphi$ is a pure state
of $\mathcal{M}$ . The equality $S(\varphi)=\log n$ holds if and only if $\varphi$ is the
tracial state $\tau$ of $\mathcal{M}$ .

3Fermion Lattice Systems

We introduce Fermion lattice systems where there exists one
spinless Fermion at each lattice site and they interact with each
other. The restriction to spinless particle (i.e., one degree of
freedom for each site) is just amatter of simplification of nota-
tion. All results and their proofs in the present work goes over
to the case of an arbitrary (constant) finite number of degrees
of freedom at each lattice site without any essential alteration.

The lattice we consider is $\nu$-dimensional lattice $\mathbb{Z}^{\nu}(\nu,$ $\in \mathrm{N}$ , an
arbitrary positive integer).

Definition 3.1. The Fermion C’-algebra $A$ is a unital C’ al-
gebra satisfying the following conditions:
(1-1) For each lattice site $i\in \mathbb{Z}^{\nu}$ , there are elements $a_{i}$ and $a_{i}^{*}$ of
$A$ called annihilation and creation operators, respectively, where
$a_{i}^{*}$ is the adjoint of a$\{$ .
(1-2) The folloing CAR(canonical anticommutation relations)
are satisfied for any $i,j\in \mathbb{Z}^{\nu}$ .

$\{a_{\dot{l}}^{*}, a_{j}\}=\delta_{i,j}1$

$\{a_{i}^{*}, a_{j}^{*}\}=\{ai, aj\}=0$ , (3.1)

where $\{A, B\}=AB+BA$ (anticommutator), $\delta_{i,j}=1$ for $i=j$ ,
and $\delta_{i,j}=0$ for $i\neq j$ .
(1-3) Let $A_{0}$ be $the*$ -algebra generated by all $a_{i}$ and $a_{i}^{*}(i\in \mathbb{Z}^{\nu})$ ,
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namely the (algebraic) linear span of their monomials $A_{1}\cdots$ $A_{n}$

where $A_{k}$ is $a_{i_{k}}$ or $a_{i_{k}}^{*}.’ i_{k}\in \mathbb{Z}^{\nu}$ . Then $A_{0}$ is dense in $A$ .
(2) For $eac/i$ subset Iof $\mathbb{Z}^{\nu}$ , the C’-subalgebra of A generated by
$a_{i}$ , $a_{i}^{*}$ , $i\in 1$ , is denoted by $A(\mathrm{I})$ and called a local algebra for I.
If the cardinality $|1|$ of the set Iis finite, then $A(\mathrm{I})$ is refered to
as a local algebra or more specifically the local algebra for I. For
the empty set 0, we define $A(\emptyset)=\mathrm{C}1$ .

Remark For finite $\mathrm{I}$ , $A(\mathrm{I})$ is known to be isomorphic to the
tensor product of $|\mathrm{I}|$ copies of the full $2\cross 2$ matrix algebra M2 (C)
and hence isomorphic to $\mathrm{M}_{2}|\mathrm{I}|(\mathbb{C})$ . Then

$A_{0}=\cup A(1)|\mathrm{I}|<\infty$

has the unique C’-norm. $A$ together with its individual ele-
ments $\{a_{i}, a_{i}^{*}|i\in \mathbb{Z}^{\nu}\}$ is uniquely defined up to isomorphism
and is isomorphic to the UHF-algebra $\overline{\otimes}_{i\in \mathbb{Z}^{\nu}}$ M2 $(\mathbb{C})$ , where the
bar denotes the norm completion. $A$ has the unique tracial state
$\tau$ as the extension of the unique tracial state of $A(1)$ , $|1|$ $<\infty$ .

Definition 3.2. $\Theta$ denotes a unique automorphism of A satis-
fying

$\Theta(a_{i})=-a_{i}$ , $\Theta(a_{i}^{*})=-a_{i}’$ , $(i\in \mathrm{I})$ . (3.2)

The even and odd parts of $A$ are defined as

$A_{+}\equiv\{a\in A|\Theta(a)=a\}$ , $A_{-}\equiv\{a\in A|\Theta(a)=-a\}$ . (3.3)

Remark 1. Such $\Theta$ exists and is unique because (3.2) preserves
CAR. It obviously satisfies

$\Theta^{2}=id$ . (3.4)
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Remark 2. For any $a\in A(1)$ ,

$a=a_{+}+a_{-}$ , $a_{\pm} \equiv\frac{1}{2}(a\pm\Theta(a))$ (3.5)

gives the (unique) splitting of $a$ into a sum of $a_{+}\in A(1)+\mathrm{a}\mathrm{n}\mathrm{d}$

$a_{-}\in A(1)_{-}$ , where the even and odd parts of $A(1)$ are denoted
by $A(1)_{+}$ and $A(1)_{-}$ , respectively.

Remark 3. For ally $a\in A_{-}$ , we have

$\tau(a)=\tau(\Theta(a))=-\tau(a)=0$ . (3.6)

4Entropy for Fermion Systems

4.1 SSA for Fermion Systems

We first show the SSA property of entropy for the Fermion case.

Theorem 4.1 (SSA). For finite subsets Iand $\mathrm{J}$ of $\mathbb{Z}^{\nu}$ , the fol-
lowing strong subadditivity of $\hat{S}$ holds for any state $\psi$ of $A$ :

$\hat{S}(\phi_{\cup \mathrm{J}})-\hat{S}(\phi)-\hat{S}(\psi_{\mathrm{J}})+\hat{S}(\phi_{\cap \mathrm{J}})\leq 0$,

where $\psi_{\mathrm{K}}$ denotes the restriction of $\psi$ to $A(\mathrm{K})$ . $\hat{S}$ in the in-
equality above can be replaced by $S$ , namely, the following strong
subadditivity of $S$ holds for any state $\psi$ of $A$ :

$S(\phi_{\cup \mathrm{J}})-S(\phi)-S(\psi_{\mathrm{J}})+S(\phi_{\cap \mathrm{J}})\leq 0$ .

Remark As for the proof of SSA for the tensor product systems
(quantum spin lattice systems), see the original proof [7] [8]
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4.2 Mean Entropy

We then show the existence of mean entropy (von Neumann en-
tropy density) for translation invariant states of $A$ . We have the
following result due to the SSA proved in $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}4.1$ by com-
pletely the same method as for quantum spin lattice systems,
see e.g. [4]. For $\mathrm{I}\subset \mathbb{Z}^{\nu}$ and astate $\omega$ , we denote the restricrtion
of $\omega$ to $A(1)\omega|_{A(\mathrm{I})}$ .

Theorem 4.2 (Mean Entropy). Let $\omega$ be a translation in-
variant state. The van Hove limit

$s( \omega)\equiv\lim S(\omega_{\mathrm{I}})\underline{1}$

$1arrow\infty|\mathrm{I}|$

and

$s( \omega)=\inf_{s\in \mathrm{N}^{\nu}}\frac{1}{|R_{s}|}S(\omega_{R_{s}})$ .

The mean entropy functional
$\omega\mapsto s(\omega)\in[0, \log 2]$

defined on the set of translation invariant states $A_{+,1}^{*\tau}$ , is affine
and upper semi-continuous with respect to the weak’ topology.

4.3 Entropy Inequalities for Translation Invariant States

The following two results are about the monotone properties of
entropy as afunctional of the set of finite regions of the lattice.

Theorem 4.3 (Monotonicity 1). Let $\omega$ be a translation in-
variant state on $A$ and let $R_{s}$ and $R_{s’}$ be finite boxes of $\mathbb{Z}^{\nu}$ such
that $R_{s}\subset R_{s’}$ . then

$\frac{1}{|R_{s}|}S(\omega_{Rs})\geq\frac{1}{|R_{s’}|}S(\omega_{R_{s’}})$ .
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Theorem 4.4 (Monotonicity 2). Let $\omega$ , $R_{s}$ and $R_{s’}$ be as above.
Then

$S(\omega_{R_{\delta}})\leq S(\omega_{R_{s’}})$ .

The following basic properties:
$\bullet$ Positivity and finiteness of the entropy of every local system,
$\bullet \mathrm{S}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}$ subadditivity,
$\bullet \mathrm{l}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}$ property for states

axiomatically imply the above two theorems, see [5] for the de-
tail.

As for the first theorem (Theorem4.3), [3] considers more
general regions than merely boxes, giving ageneral criterion
of partial ordering sets which satisfy the monotone property of
mean entropy. For example, convex octogonal sets in $\mathbb{Z}^{2}$ produce
the monotone decreasing of mean entropy.

4.4 Failure of Triangle Inequality

Let Iand $\mathrm{J}$ be two disjoint finite regions. For quantum spin
systems, the s0-called “triangle inequality of entropy” holds for
any state $\omega$ $[1]$

$|S(\omega_{\mathrm{I}})-S(\omega_{\mathrm{J}})|\leq S(\omega_{\mathrm{I}\cup \mathrm{J}})$.

$\ln[9]$ , it is shown that the above inequality does not hold for
Fermion systems.

Now let Iand $\mathrm{J}$ be distinct points {1} and {2} and denote
the corresponding Fermion systems by $A_{1}^{ca\mathrm{r}}$ and $A_{2}^{car}$ (disjoint
bipartite Fermion systems). The total system $A_{1,2}^{ca\mathrm{r}}$ is given by
$A_{1}^{car}\vee A_{2}^{car}$ , the algebra algebraically generated by $A_{1}^{ca\mathrm{r}}$ and $A_{2}^{car}$ .
We have

Theorem 4.5 (Failure of Traiangle Inequality). For any pos-
itive number $x\in$ [ $0$ , l0g2], there exist a pure state $\varphi$ of $A_{1,2}^{ca\mathrm{r}}$
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such that
$|S(\varphi|_{A_{1}^{car}})-S(\varphi|_{A_{2}^{\mathrm{c}ar}})|=x$
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