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Abstract
For some time, singular configurations have not been taken into account in

dealing with the center-0f-mass system of many particles. This is because the
center-0f-mass system can be made into afiber bundle, provided the configura-
tions of particles are restricted to non-singular ones. This article is an attempt
to analyzing the center-0f-mass system with configurations including the singular
ones, and we present the condition for which awave function must satisfy, should
the particle configuration become singular in finite time. This article should give
asimilar result to [2], but from acompletely different view point.
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1Introduction

It is well known that reducing adynamical system is closely related to asymmetry. One
famous example is the reduction of quantum system. One may consider an eigenvalue
problem for angular momentum, and would find that the eigenstate is aproduct of the
radial and spherical harmonic functions. Then the original Schrodinger’s equation is
reduced to the one for finding the unknown radial function. That way, the system’s
degrees of freedom is reduced to alower value.

The above mentioned reduction is afine example of the heart of this subject.
The tw0-body angular momentum problem happens to be aparticular example of
the Fourier analysis on SO(3) for the three-body one.

1.1 Historical background

The idea of viewing many-particle center-0f-mass system as aprincipal fiber bundle is
in fact fairly new. However, there had been many painful attempts to separate rotation
from vibrations. It was Guichardet, in 1984 who first defined rotational and vibara-
tional vectors, and showed that the rotation can not be separated from vibrations,
using the connection theory, provided that the particles do not collde nor align in a
straight line. As aconsequence, it was shown that any rotation angle of the particles
were possible, purely by vibrations. In 1987, one of the authors (T.I) showed that if the
system is restricted to regular configurations, it can be described in the bundle picture,
in the sense that the behavior of the system can be discussed on associate vector bundle
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of the configuration space. Further, in 1990 and 1991, Montgomery defined the falling

cat problem, and showed the cat constructed from point particles, can land on her feet

when she is launched in air. This was done by viewing the system from abundle picture

with non-holonomic constraints. However one must realize that all above articles dealt

with center-0f-mass systems with the free action of 50(3). The consequence of this

automatically excludes the cases when particles collide at the origin, or are aligned in

aline. These mentioned cases are called the singular configurations, and the questions

on how the mechanics is set up on such configurations are still unsolved. This article
deals with such aquestion.

1.2 Organization of the article

This article is organized as follows. After this chapter, in section 2we give abrief review

of the center-0f-mass system. The definition of regular and singular configurations

is given in this chapter, and gives abrief idea as to what can be done with regular

configurations. The most of the facts mentioned in the chapter are already investigated

and cooked by past researchers. For abeginner to this subject, we suggest it would be

of great help to start from reading [3]. One may wonder whether it would be possible

for asystem to come to asingular configuration from aregular one in finite time.

Demonstration of this is given in section 3. It further gives us amotivation to see the

behavior of aquantum system instead of classical ones. Also awavefunction can be

written in atidy form by introducing something called the projection and transition

operators. These operators have remarkable properties, and they are described in this

section, too. In section 4, we work through two examples. The main theme in this

section is to write wavefunction in terms of local coordinates, given that it is analytic

and that can be expanded into power series around asingular configuration. One of

the main results of the article is also describen in this section. Section 5deals with the

expansion of the wavefunction when triple collision takes place, stating the other main

result.

2Review of the center-0f-mass system

As is widely discussed, the center-0f-mass system has been very well studied by past

mathematicians and physicists. In this section we shall concentrate on some of the we 1
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known facts.

2.1 Set-up of the problem

Out of $n$ particles, let $x_{j}\in \mathbb{R}^{3}$ be the position of $j\mathrm{t}\mathrm{h}$ particle, and $m_{j}$ be its respective
mass. Then we define the configuration space of the $\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}-\mathrm{o}\mathrm{f}$-mass system to be

$X_{0}=\{x=(x_{1}, \ldots, ox_{n})|x_{j}\in \mathbb{R}^{3}$ , $\sum_{j=1}^{n}m_{j}x_{j}=0\}$ . (1)

The translational motion of particles are deliberately removed, and the consequence of
this appears in the constraint

$\sum_{j=1}^{j=n}m_{j}ox_{j}=0$ (2)

in Xo, in order to fix the center of mass at the origin. This configuration space alows
agroup action of SO{3), and this is given by

$SO(3)\cross X_{0}arrow X_{0}$ , (g, $x)\mapsto gx=(\mathrm{g}$, \ldots gxn). (3)

2.2 Avariety of configurations

When n particles are placed in $\mathbb{R}^{3}$ , we may consider how the particles are arranged in
that space. Therefore, we define the spread of particles to be

$F_{x}=\mathrm{s}\mathrm{p}\mathrm{m}\{x_{1},$
\ldots ,

$x_{n}\}$ , x $\in X_{0}$ . (4)

Then

$\dim F_{x}=0$ :all particles at the origin (5)
$\dim F_{x}=1$ :particles aligned in aline (6)

$\dim F_{x}=2$ :particles on aplane (7)

$\dim F_{x}=3$ :particles scattered in space. (8)

Prom this, we see that there are different configurations for different dimensions of $F_{x}$ .
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$\dim F_{x}\bullet=0$

$[$

dirn $F_{x}=1$ $\dim F_{x}=3$

Figure 1: The diagram shows the interpretations of the dimensions of $F_{x}$ . Prom left,

corresponds to 1) all particles at the origin, 2) particles aligned in aline, 3) particles
on aplane, 4) particles scattered in space.

This suggests us to break the configuration space $X_{0}$ up into subspaces $Q\mathrm{o}$ , $Q_{1}$ , and $\dot{Q}$ ;

$Q_{0}$ $=$ { $x\in X_{0}|$ dirn $F_{x}=0$} $=\{0\}$ (9)

$Q_{1}$ $=$ $\{x\in X_{0}|\dim F_{x}=1\}$ (10)

$\dot{Q}$ $=$ { $x\in X_{0}|$ dirn $F_{x}\geq 2$}. (11)

The members of $Q_{0}$ and $Q_{1}$ are the configurations for colliding particles and aligned

particles respectively, and such configurations are called the singular configurations.

2.3 Restriction to regular configurations

For afixed $x\in X_{0}$ , an isotropy subgroup $G_{x}$ of 50(3) is the subgroup of SO(3) which

makes $x$ invariant under the action of $g\in G_{x}$ . For different members of $X_{0}$ , we have

different isotropy subgroups;

$G_{x}\cong\{\begin{array}{l}SO(3)(x\in Q_{0})SO(2)\{e\}(x\in Q_{1})(x\in\dot{Q})\end{array}$ (12)

For $x\in\dot{Q}$ , $G_{x}\cong\{e\}$ , so action 50(3) is free. Therefore $\dot{Q}=\{x\in X|\dim F_{x}\geq 2\}$ is

made in to an $5\mathrm{O}(3)$ bundle through the equivalence relation $\sim$

$y\sim x\Leftrightarrow\exists g\in SO(3)$ $s.t$ . $y=gx$ (13)

for $x$ , $y\in\dot{X}$ , with the quotient map

$\pi$ : $\dot{Q}arrow M:=\dot{Q}/SO(3)--\{[x]|x\in X_{0}\}$ . (14)

5
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Then we shall define open set $U$ in $M$ by the following statement. Asubset $U$ of $M$ is
an open subset of $M$ for the quotient topology if and only if its inverse image

$\pi^{-1}(U)=\{x\in X_{0}|[x]\in U\}$ (15)

is an open subset of X$. For agiven $U\subset M$ , its inverse image has alocal structure
$\pi^{-1}(U)\cong U\cross G$ . We define section $\sigma$ in $\pi^{-1}(U)$ to be the continuous map

$\sigma$ : $M\supset Uarrow X_{0}$ . (16)

Then further, we have an associated bundles

$E_{l}=\dot{Q}\mathrm{x}_{l}H^{l}:=\dot{Q}\cross H^{l}/\sim$ (17)

defined through

$(x, z)\sim(gx, D^{l}(g)z)\in\dot{Q}\cross H^{l}$ (18)

where $\prime H^{l}$ is the representation space of SO(3) with

$\dim H^{l}=2l+1$ . (19)

Like before, one can define section of the associated vector bundle

$\sigma_{l}$ : $\dot{Q}/SO(3)arrow\dot{Q}\mathrm{x}_{l}\mathcal{H}^{l}$ , (20)

being interpreted as areduced state, because the reduced state is in one to one corre-
spondence with $\sigma_{l}$ .

3Taking singular configurations into account
The previous argument of vector bundles in section 2was all good provided that the
action of SO(3) was free. However this is not the case for the singular configurations.
Such configurations have $G_{x}\not\cong\{e\}$ . In this section we shall consider configurations
including the singular ones.

Before we start, one might be led to anatural question whether or not it would be
possible for anatural dynamical system to come to asingular configuration in finite
time. To answer the question, we shall manulally construct acolinear configuration for
the free particles

6
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3.1 Construction of colliding free particles

For simplicity, we shall only consider three free particles in space, that is, for each
$x_{j}$ , $j=1,2,3$ , $x_{j}\in \mathbb{R}^{3}$ , $x_{j}$ is linear in time $t$ . Since the configuration space can be

identified with set of Jacobi vectors, from now on we shall work in terms of Jacobi

vectors. The Jacobi vectors are given by the following formulae

$r_{1}$ $=$ $\sqrt{\frac{m_{1}m_{2}}{m_{1}+m_{2}}}(x_{2}-x_{1})$ (21)

$r_{2}$ $=$ $\sqrt\frac{m_{1}m_{2}(m_{1}+m_{2})}{m_{1}+m_{2}+m_{3}}(x_{3}-\frac{m_{1}x_{1}+m_{2}x_{2}}{m_{1}+m_{2}})$ (22)

for $r_{j}\in \mathbb{R}^{3}$ . Jacobi vectors are just alinear combination of $x_{j}’ \mathrm{s}$ , so we see that they

are also linear with respect to $t$ . This gives the form of Jacobi vectors;

$r_{1}$ $=$ $a_{1}+b_{1}t$ (23)

$r_{2}$ $=$ $a_{2}+b_{2}t$ (24)

for constant vectors $a_{j}$ , $b_{j}\in \mathbb{R}^{3}$ , and $t\in \mathrm{R}$ . Here assume that neither $r_{1}$ nor $r_{2}$

vanishes. Then when particles form acolinear shape, we have

$r_{1}\cross r_{2}=0$ for some $t_{c}\in \mathbb{R}$ (25)

or equivalently

$r_{1}=\lambda r_{2}$ for some $t_{c}$ , A $\in \mathbb{R}$ . 26)

Here we can consider two cases. Case one is when $r_{1}\cross r_{2}=0$ and case two when
$r_{2}\cross r_{2}\neq 0$ . If it is the former case, then it is trivial to see that if the plane spanned
by $a_{1}$ , $O$ , $r_{1}(t)$ and that by a2) $O$ , $r_{2}(t)$ do not coincide, then we do have acolinear
configuration. Therefore we shall consider the latter case, that is, $r_{1}\cross r_{2}\neq 0$ . Here
we note that if there is acolinear shape, then the loci of $r_{1}$ is in the plane spanned

by $a_{1}$ , $O$ , $r_{1}(t_{c})$ . We shall call this plane $P_{1}$ . Similarly, the loci of $r_{1}$ should be in the
plane spanned by $a_{2}$ , $O$ , $r_{2}(t_{c})$ . Again we shall call this plane $P_{2}$ .

We are now in position to construct acolinear configuration manually. In this
example, we let $P_{1}$ and $P_{2}$ coincide. Choose $a_{1}$ and $a_{2}$ so that they satisfy $a_{1}\cdot$ $b_{1}=0$ ,
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Figure 2: The lines show the loci of two Jacobi vectors with respect to time. The
diagram on the left describes how two skewing loci can come to aconfiguration which
gives parallel Jacobi vectors. Similarly the diagram on the right shows it in the three
dimensional manner. Planes drawn are $P_{1}$ and $P_{2}$ . This shows that the intersection of
the planes must be in the direction of parallel Jacobi vectors.

and a2 $b_{2}=0$ . This means that we may assume that $a_{j}$ and $b_{j}$ are perpendicular,
without loss of generality. For given $a_{1}$ and $a_{2}$ , the plane defined by 01, $a_{2}$ , O is

$r$ $=\alpha_{1}a_{1}+\alpha_{2}a_{2}$ $\alpha_{1}$ , $\alpha_{2}\in \mathrm{R}$. (27)

So for chosen $a_{1}$ and $a_{2}$ , we then choose $b_{1}$ and $b_{2}$ such that the loci $r_{1}(t)$ , and $r_{2}(t)$

lie on the plane(s)

$\hat{b}_{1}$ . $(a_{1}\cross a_{2})$ $=0$ $\hat{b}_{2}$ . $(a_{1}\cross a_{2})=0$ (28)

If we set $\mathrm{A}=1$ , then at the linear configuration, we must have $r_{1}(t_{c})=r_{2}(t_{c})$ , where $t_{c}$

is the time at which colinear configuration takes place. Now note that we may change
the time scales of loci of Jacobi vecotors in the folowing way

$r_{1}=a_{1}+|b_{1}|\hat{b}_{1}t=a_{1}+\hat{b}_{1}t_{1}$ (29)
$r_{2}=a_{2}+|b_{2}|\hat{b}_{2}t=a_{2}+\hat{b}_{2}t_{2}$ (30)

Then, now we solve for the time at which these loci intersect. If $t^{*}$ is such time, then

$a_{1}+\hat{b}_{1}t_{1}^{*}=a_{2}+\hat{b}_{2}t_{2}^{*}$ . (31)
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Now if we set $t^{*}$ such that it satisfies

$\frac{|\hat{b}_{1}t_{1}|}{|\hat{b}_{2}t_{2}|}=\frac{\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{e}\mathrm{d}\mathrm{o}\mathrm{f}r_{1}}{\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{e}\mathrm{d}\mathrm{o}\mathrm{f}r_{2}}=\frac{t_{1}^{*}}{t_{2}}*=\frac{|b_{1}|}{|b_{2}|}$, (32)

then we have particles aligned in straight line. If we further set $b_{1}$ to be aunit vector,
then the Jacobi vectors in this case are

$r_{1}$ $=$ $a_{1}+\hat{b}_{1}t$ (33)

$r_{2}$ $=$ $a_{2}+ \frac{t_{2}^{*}}{t_{1}}*\hat{b}_{2}t$ . (34)

The configurations corresponding to Jacobi vectors (33-34) are regular except for when
$t$ $=t_{1}^{*}$ .

3.2 The total angular momentum of singular configuration

For free particles, the total angular momentum of the system is given by

$L$ $=$ $\sum_{j=1}^{2}r_{j}\cross\frac{dr_{j}}{dt}$ (35)

– $(a_{1}+b_{1}t)\cross b_{1}+(a_{2}+b_{2}t)\cross b_{2}$ (36)

$=$ $a_{1}\cross b_{1}+a_{2}\mathrm{x}$ $b_{2}$ (37)

$=$ constant. (38)

When singular configuraion undergoes, the directions of $r_{1}(t_{c})$ and $r_{2}(t_{c})$ coincide.
Then the angular momentum about the colinear axis is

$n\cdot L$ $=$ $n$ $\cdot(a_{1}\cross b_{1}+a_{2}\cross b_{2})$ (39)

$=$ $n\cdot(a_{1}\cross b_{1})+n\cdot(a_{2}\cross b_{2})$ (40)

$=$ $r_{1}(t_{c})\cdot(a_{1}\cross b_{1})+\lambda r_{2}(t_{c})\cdot(a_{2}+b_{2})$ (41)

$=$ $0$ , (42)

where

$n=r_{1}(t_{c})$ . (43)

9
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This indicates that any free particles, at its singular configuration would have azero
angular momentum about its axis. It then makes us wonder if this result would be the
same for the quantum center-0f-mass system.

These particles under no external force may travel in straight lines in Xo. The
corresponding motions in $X_{0}/SO(3)$ can be represented in local coordinates $(\eta_{1}, \eta_{2}, \eta_{3})$ ,
where

$\eta_{1}$ $=r_{1}^{2}-r_{2}^{2}=(a_{1}^{2}-a_{2}^{2})+(b_{1}^{2}-b_{2}^{2})t^{2}$ (44)

y72 $=2r_{1}\cdot$ $r_{2}=2(a_{1}\cdot a_{2}+b_{1}\cdot b_{2}t^{2})$ (45)

$\eta_{3}$ $=$ $2|r_{1}\mathrm{x}r_{2}|=2[a_{1}\cross a_{2}+b_{1}t\cross a_{2}+a_{1}\cross b_{2}t+b_{1}\cross b_{2}t^{2}]$ . (46)

The singular configuration, as one can see, corresponds to the plane $\eta_{3}=0$ .

3.3 Fourier Analysis

From what we know we have the group action

$SO(3)\cross X_{0}arrow X_{0}$ (47)

We shall consider aquantum system with wave functions in $L^{2}(X_{0})$ , and unitary rep-
resentation $U$ : $SO(3)\cross L^{2}(X_{0})arrow L^{2}(X_{0})$ , defined by

$(g, f)\mapsto U(g)f$ ; $(U(g)f)(x)=f(g^{-1}x)$ . (48)

As what the unitary representation show, $f$ is defined on the configuration space Xq.
However, suppose that $x\in X_{0}$ is fixed, and let us define

$f_{x}(g):=f(gx)$ , (49)

then we can see that $f_{x}$ is afunction on 50(3). Later if we require it to be that of $X_{0}$ ,
then we can simply put $g=e$, and we revert to the function $f$ evaluated at the point
$x\in X_{0}$ .

Now, since f can be seen as afunction on (3), we can apply the Peter-Weyl
theorem, which allows us to expand functions on compact Lie groups. Then the Fourier
expansion of $f$ is expressed as

$f(gx)= \sum_{l=0}^{\infty}(2l+1)\sum_{|m|,|n|\leq \mathrm{t}}\prime D_{mn}^{l}(g)\langle D_{mn}^{l}, f_{x}\rangle_{SO(3)}$, (50)
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where (, $\rangle_{SO(3)}$ denotes the inner product for functions on 50(3)

$\langle D_{mn}^{l}, f_{x}\rangle_{SO(3)}=\int_{SO(3)}\overline{D}_{mn}^{l}(k)f(kx)d\mu(k)$ . (51)

Above expansion holds for all $g\in SO(3)$ , so for $g=e$ in particular, we have

$f(x)= \sum_{l=0}^{\infty}(2l+1)\sum_{|m|\leq l}\int_{SO(3)}\overline{D}_{mm}^{l}(h)f(hx)d\mu(h)$ . (52)

The $d\mu(h)$ is the invariant measure for $5\mathrm{O}(3)$ . When it is expressed in terns of the

local coordinates, we have

$d\mu(h)=\sin\theta d\theta d\phi d\psi/2\pi^{2}$ with $\int_{SO(3)}d\mu(h)=1$ , (53)

where $(\theta, \phi, \psi)$ are the Euler angles.

3.4 Projection and Transition Operators

Here, in order to write equation (52) in aneater manner, we introduce operators $P^{l}$

$(P_{n}^{l}f)(x)$ $=$ $(2l+1) \int_{SO(3)}D_{nn}^{l}(h)f(h^{-1}x)d\mu(h)$ (54)

$(P_{mn}^{l}f)(x)$ $=$ $(2l+1) \int_{SO(3)}D_{mn}^{l}(h)f(h^{-1}x)d\mu(h)$ . (55)

Equations (54-55) have the following properties;

$(P_{n}^{l})^{\uparrow}=P_{n}^{l}$ , $P_{n}^{l}P_{m}^{l}=\delta_{nm}P_{n}^{l}$ (56)

$P_{nm}^{l}(P_{nm}^{l})^{\mathrm{t}}=P_{n}^{l}$ , $P_{nm}^{l}P_{m}^{l}=P_{n}^{l}P_{nm}^{l}$ , $P_{nm}^{l}$ : ${\rm Im} P_{m}^{l}arrow{\rm Im} P_{n}^{l}$ (57)

The most striking properties are the last equations from (56) and (57). Equation (56)

says that applying $P_{n}^{l}$ twice has the same effect as applying it only once, whereas

equation (57) says the map $P_{nm}^{l}$ shifts apoint in ${\rm Im} P_{m}^{l}$ to that of $n$ . For the above
reasons, we shall from here call the operators in (54) and (55) projection and transition

operators respectively. Further, these operators can be written in aslightly different

manner since

$\int_{SO(3)}D_{mn}^{l}(h)f(h^{-1}x)d\mu(h)=\int_{SO(3)}\overline{D}_{nm}^{l}(k)f(kx)d\mu(k)$ . (58)

11
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by change of variables $h=k^{-1}$ . Then we have

$(P_{mn}^{l}f)(x)=(2l+1) \int_{SO(3)}\overline{D}_{nm}(k)f(kx)d\mu(k)$ (59)

So Fourier series expansions (52) in $x$ is;

$f(x)= \sum_{l=0}^{\infty}\sum_{|m|\leq l}(P_{m}^{l}f)(x)$ . (60)

Now define map $E_{m}^{l}$ : $L^{2}(X_{0})arrow H^{l}\otimes L^{2}(X_{0})$ ;

$E_{m}^{l}f= \frac{1}{\sqrt{2l+1}}$ $(\begin{array}{l}P_{l-1m}^{l}fP_{lm}^{l}f\vdots P_{-lm}^{l}f\end{array})$ (61)

Satisfies the condition

$(E_{m}^{l}f)(hx)=D^{l}(h)(E_{m}^{l}f)(x)$ , $h\in SO(3)$ . (62)

This means that the $H^{l}$-valued functions $E_{m}^{l}f$ are $\rho^{l}$-equivariant functions. Here we
did not specify nor say anything about form of $f$ or the point $x$ , and therefore this
condition is true for any configuration including the singular ones.

4Wavefunctions around singular configurations
In this section of the article, we shall try to write (60) and hence (52) in terms of local
sections of Xo. However, for the simplicity, we shall consider 3-body system.

We have already seen that the space of center-0f-mass system is identified with the
space of coulpled Jacobi vectors (21-22) in terms of vector spaces

$X_{0}\cong\{(r_{1}, r_{2})|r_{j}\in \mathbb{R}^{3},j=1,2\}$ . (63)

At singular configuration, $r_{1}$ and $r_{2}$ become parallel to each other, and they are linearly
dependent. Further, we define

$M:=X_{0}/SO(3)\cong\{ox \in \mathbb{R}^{3}|x_{3}\geq 0\}$ . (64)
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the internal space of the whole of $X_{0}$ . The whole of $X_{0}$ includes the singular configu-

rations. As already stated, $M$ fails to be amanifold. However, we see that

$\pi(\partial\dot{X})=\partial\pi(\dot{X})$ , (65)

and so the boundary gets mapped to the boundary. We say that $M$ is amanifold with
boundary.

Away from the boundary, there are three coordinate variables, and we define them
to be $(r_{1}, r_{2}, \varphi)\in M$ such that

$r_{1}=|r_{1}|$ , $r_{2}=|r_{2}|$ , $r_{1}\cdot r_{2}=r_{1}r_{2}\cos\varphi$ . (66)

The boundary of $M$ is identified with $\varphi=0$ . Further, choose local section $\sigma$ : $U\subset$

$Marrow X_{0}$ :

$(r_{1}, r_{2}, \varphi)\mapsto\zeta=(r_{1}e_{3}, r_{2}e^{\varphi R(e_{2})}e_{3})$, $R:\mathbb{R}^{3}arrow so(3)$ , (67)

then any point in $\pi^{-1}(U)$ is expressed as $x=g\zeta$ , and expansion of $f$ takes the form:

$f(g \zeta)=\sum_{l=0}^{\infty}(2l+1)\sum_{|m|,|n|\leq l}D_{mn}^{l}(g)\langle D_{mn}^{l}, f_{\zeta}\rangle_{SO(3)}$ (68)

where $f_{\zeta}(k)=f(k\zeta)$ for $k\in SO(3)$ . Further, this in terms of $P_{nm}^{l}$ is

$f(g()= \sum_{l=0}^{\infty}\sum_{|m|,|n|\leq l}D_{mn}^{l}(g)(P_{nm}^{l}f)(\zeta)$ (69)

The equivariance condition (62) which is equivalent for the $\zeta$ expansion is

$(E_{m}^{l}f)(g\zeta)=D^{l}(g)(E_{m}^{l}f)(\zeta)$ . (70)

4.1 Two worked examples

It comes very natural for us to investigate the behavior of wavefunctions at the singular

and near-singular configurations. Here we shall choose sections to represent these
configurations. Of the two examples, first, we shall look into the case when we have a
colinear singular configuration.
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Figure 3: Section for the cohnear singular configuration (left) and that for the near-
singular configuration (right). Notice the decrease in dimension in the singular config-
uration.

The boundary of M can be represented by local coordinates $(r_{1}, r_{2})$ , and we shall
consider the following section

$\partial M\ni(r_{1}, r_{2})\mapsto\zeta_{0}=(r_{1}e_{3}, r_{2}e_{3})\in X_{0}$ (71)

and here we note that the isotropy subgroup of SO(3) at $\zeta_{0}$ and it’s representation are

g $=e^{tR(e_{3})}$ , $D_{nm}^{l}(g)=e^{-\dot{\iota}tn}\delta_{nm}$ , t $\in \mathrm{R}$ (72)

respectively. Now, as already mentioned, the equivariance condition (70) holds for any
g $\in SO(3)$ . So in particular, for g $\in G_{\zeta_{0}}$ , the action of $P_{nm}^{l}$ on f is

$(P_{nm}^{l}f)(\zeta_{0})$ $=$ $(P_{nm}^{l}f)(g\zeta_{0})$ (73)
$=$

$\sum_{|n|\leq \mathrm{t}},D_{nn’}^{l}(g)(P_{nm}^{l},f)(\zeta_{0})$
(74)

$=$
$\sum_{|n|\leq \mathrm{t}},e^{-\dot{|}nt}\delta_{nn’}(P_{n’m}f)(\zeta_{0})$

(75)

$=$ $e^{-\dot{|}nt}(P_{nm}^{l}f)(\zeta_{0})$ . (76)

We used two facts here. One is that Co is invariant under $g\in G_{\zeta_{0}}$ . The other is the
equivariance. Furthermore the bove equations (73-76) is just the calculation of (70)
component wise, since the matrix $D^{l}$ is diagonal in this case. The consequence of the
condition is that

$(P_{nm}^{l}f)(\zeta_{0})=0$ if n $\neq 0$ . (77)
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We have the physical interpretation on the result (77) as follows: For acolinear con-

figuration with agiven angular momentum $n$ around the axis of alignment, the wave

function must vanish for this configuration, unless the angular momentum is zero. In

other words, we have no probablity of finding colinear configuration if there is anon

zero angular momentum round that axis.
Using this result, we may further calculate (52) by letting $\zeta$ tend to $\zeta_{0}$ . Then we

obtain

$f(g\zeta_{0})$ $=$ $\sum_{l=0}^{\infty}\sum_{|m|,|n|\leq l}D_{mn}^{l}(g)(P_{nm}^{l}f)(\zeta_{0})$
(78)

$=$ $\sum_{l=0}^{\infty}\sum_{|m|\leq l}D_{m0}^{l}(g)(P_{0m}^{l}f)(\zeta_{0})$
(79)

$=$ $\sum_{l=0}^{\infty}\sum_{|m|\leq l}\sqrt{\frac{4\pi}{2l+1}}\overline{\mathrm{Y}}_{lm}(ge_{3})(P_{0m}^{l}f)(\zeta_{0})$ . (80)

This implies that the wave functions for linear triatomic molecues can be described

in terms of local coordinates, $(\theta, \phi, r_{1}, r_{2})$ , in the subspace of $X_{0}$ determined by rank

(81) $r_{2})=1$ . As aside note, recall that tw0-body system can be characterized by

considering the section

$r\mapsto\zeta_{0}=re_{3}$ (81)

Then Fourier expansion is

$f(g \zeta_{0})=\sum_{l=0}^{\infty}\sum_{|m|\leq l}\sqrt{\frac{4\pi}{2l+1}}\overline{\mathrm{Y}}_{lm}(ge_{3})(P_{0m}^{l}f)(\zeta_{0})$ . (82)

Actually $(P_{0m}^{l}f)(\zeta_{0})$ is dependent only on $r$ . The system is then reduced to wavefunc-

tion for the radial component.

4.2 Three particles in the nbd of alinear configuration

As before, we shall choose asection for configurations very close to the singular one.
For point $p$ which lies in the interior of $M$ , we may write $p$ in coordinates $(r_{1}, r_{2}, \varphi)$ .

Then we may choose the section to be

$(r_{1}, r_{2}, \varphi)\mapsto\zeta=(r_{1}e_{3}, r_{2}e^{\varphi R(e_{2})}e_{3})\in X_{0}$ . (83)
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Because we are trying to express in terms of the local coordinates, we shall write out
explicitly $k\in SO(3)$ in Euler angles

$k=e^{\phi’R(e_{3})}e^{\theta’R(e_{2})}e^{\psi’R(e_{3})}:=k_{0}e^{\psi’R(e\mathrm{a})}$. (85)

Here we split $k\in SO(3)$ into two parts–namely $k_{0}$ and $e^{\psi’R(e\mathrm{a})}$ , because we are
considering an expansion about the $e_{3}$ axis. Then as before, we may write $x\in\pi^{-1}(U)$

as

$x=k\zeta=k_{0}(r_{1}e_{3}, r_{2}e^{\psi’R(e_{3})}e^{\varphi R(e_{2})}e_{3})$ , (85)

and recall that

$D_{mn}^{l}(k)=e^{-\dot{|}m\phi’}d_{mn}^{l}( \oint)e^{-\cdot n\psi’}$

.
(86)

and we shall attempt to write (60) using those introduced variables. First we shall look
into the calculation of $P_{nm}^{l}f$ that appears in (60).

$(P_{nm}^{l}f)(\zeta)$ $=$ $(2l+1) \int_{SO(3)}\overline{D}_{mn}^{l}(k)f(k\zeta)d\mu(k)$

$=(2l+1) \frac{1}{\pi}\int_{S^{2}}e^{\dot{|}m\phi’}d_{mn}^{l}(\theta)\sin\Psi d\Psi d\phi’$

$\cross\frac{1}{2\pi}\int_{0}^{2\pi}e^{\dot{|}n\psi}f(r_{1}k_{0}e_{3}, r_{2}k_{0}e^{\mathrm{V}^{lR(e_{3})}}e^{\varphi R(e_{2})}e_{3})d\psi’$ (87)

Observe that the last integral in (87) is aFourier coefficient of $U(k_{0}^{-1})f$ ;

$c_{-n}(k_{0;}r_{1}e_{3}, r_{2}e^{\varphi R(e_{2})}e_{3})$

$= \frac{1}{2\pi}\int_{0}^{2\pi}e^{\dot{|}n\psi’}(U(k_{0}^{-1})f)(r_{1}e_{3}, r_{2}e^{\psi’R(e_{3})}e^{\varphi R(e_{2})}e_{3})d\psi’$ . (85)

Then (87) comes down to

$(P_{nm}^{l}f)(\zeta)$ $=$ $(2l+1) \int_{\mathrm{S}O(3)}\overline{D}_{mn}^{\mathrm{t}}(k)f(k\zeta)d\mu(k)$ (89)

$=$ $\frac{1}{\pi}\int_{S^{2}}e^{\dot{|}m\phi’}d_{mn}^{l}(\theta)c_{-n}(k_{0};r_{1}e_{3}, r_{2}e^{\varphi R(e_{2})}e_{3})\sin\theta’d\theta’d\phi’$ (60)

We would like to take acloser look at these Fourier coefficients. To do so, we take
adifferent set of Local coordinates $(r_{1}, r_{2}, \psi’, \varphi)\mapsto(r_{1},\xi_{1},\xi_{2},\xi_{3})$ , by setting
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Figure 4: Changing the local coordinates. $r_{2}$ , $\phi$ , $\psi’$ are changed into cartesian coordi-
nates in the standard way. Further change of variable gives $z$ as viewing $\xi_{1}-\xi_{2}$ as the
complex plane, and $\rho$ as the modulus of $r_{2}$ on the plane.

$\xi_{1}=r_{2}\sin\varphi\cos\psi’$ , $\xi_{2}=r_{2}\sin\varphi\sin\psi’$ , $\xi_{3}=r_{2}\cos\varphi$ , (91)

and we further put

$z=\rho e^{i\psi’}$ , $\rho=r_{2}\sin\varphi$ . (92)

The geographical interpretation for the lately introduced variables in (92) is that $\rho$ is

the length of $r_{2}$ when projected onto $\xi_{1}-\xi_{2}$ plane, and $z$ is the complex variable when
the plane spanned by $(\xi_{1}, \xi_{2})$ is identified as C.

Now, assume the wave function is analytic in $\xi_{1}$ and $\xi_{2}$ at colinear singular con-
figuration $\xi_{1}=\xi_{2}=0$ . We may expand $U(k_{0}^{-1})f$ into power series in the following

way

$(U(k_{0}^{-1})f)(r_{1}e_{3}, r_{2}e^{\psi’R(e_{3})}e^{\varphi R(e_{2})}e_{3})$

$= \sum_{p,q\geq 0}^{\infty}c_{\mathrm{p}q}(k_{0;}r_{1}, \xi_{3})z^{p}\overline{z}^{q}$ (93)

$= \sum_{p,q\geq 0}^{\infty}c_{pq}(k_{0;}r_{1}, \xi_{3})\rho^{\mathrm{p}+q}e^{i(p-q)\psi’}$ (94)

$= \sum_{n’=-\infty}^{\infty}e^{in’\psi’}\sum_{j=|n’|}^{\infty}\dot{\oint}c_{L_{\frac{+n’}{2}}L_{\frac{-n’}{2}}},(k_{0;}r_{1}, \xi_{3})$ , (95)

where $c_{pq}$ are the coefficients of the power series. This implies that

$c_{n’}(k_{0;}r_{1}e_{3}, r_{2}e^{\varphi R(e_{2})}e_{3})= \sum_{j=|n’|}^{\infty}j_{\mathrm{C}_{L}}+_{\frac{n’}{2}2arrow-n’},\cdot(k_{0;}r_{1}, \xi_{3})$ (96)
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with $n’=-n$. So $(P_{nm}^{l}f)(\zeta)$ turns out to be apower series of $\rho$ having terms of the
lowest order $|n|$ ;

$(P_{nm}^{l}f)(\zeta)$ $=$ $\frac{2l+1}{\pi}\int_{S^{2}}e^{\dot{|}m\phi’}d_{mn}^{l}(\theta’)$ (97)

$\cross c_{-n}(k_{0;}r_{1}e_{3}, r_{2}e^{\varphi R(e_{2})}e_{3})\sin\theta d\emptyset d\phi’$ (98)

$=$ $\frac{2l+1}{\pi}\int_{S^{2}}e^{\dot{|}m\phi’}d_{mn}^{l}(\Psi)$

$\cross\sum_{j=|n|}^{\infty}d\mathrm{C}.\llcorner^{\underline{n}i_{\frac{-n}{2}(k_{0;}r_{1},\xi_{3})\sin\nu d\Psi d\phi’}}+2$

’
(99)

$=$ $\frac{2l+1}{\pi}\sum_{j=|n|}^{\infty}j_{\tilde{\mathrm{C}}_{mn_{22}^{arrow-np\pm\underline{n}}}},\cdot,(r_{1}, \xi_{3})$ (100)

The $\tilde{c}_{mn}$ are the outcome of the integration of $c_{i_{\frac{+n}{2}}i_{\frac{-n}{2}}}$,over $\theta’$ and $\phi’$ . Hence the
expansion of $f$ is;

$f(g\zeta)$ $=$ $\sum_{l=0}^{\infty}\sum_{|m|,|n|\leq l}D_{mn}^{l}(g)(P_{nm}^{l}f)(\zeta)$ (101)

$=$ $\frac{2l+1}{\pi}\sum_{l=0}^{\infty}\sum_{|m|,|n|\leq l}D_{mn}^{l}(g)$

$\cross\sum_{j=|n|}^{\infty}j\tilde{c}_{mn^{i_{\frac{-n}{2}}i_{\frac{+n}{2}}}},,(r_{1},\xi_{3})$ (102)

This gives aboundary condition on wave function in the sense that when expanded
into power series, the function starts with the power $\rho^{|n|}$ . As aside note, it must be
stressed that an increase of $|n|$ by one corresponds to adoulbe increase in $j$ , which is
in consistent with the result given in the reference [2].

The associated vector bundle

$E_{l}=\dot{X}_{0}\mathrm{x}_{l}H^{l}$ (103)

defined through (18) has alocal structure $U\cross H^{l}$ . We recall that the equivariant
functions defined in (62) is in one to one correspondence with local sections in the
associated vector bundle. Prom (62), we know that at the colinear configuration, the
all but one components of $E_{m}^{l}f$ vanishes. This means the sections for the corresponding
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Figure 5: Sketch graphs show components of alocal section in the associated fiber
bundle. In the open set containing the boundary of $\dot{X}$ , all but one components of the
section tend to zero as they approach the boundary. For different components, the
decay speed is dependent on its corresponding angular momentum value.

equivariant functions must approach zero, because they are continuous. In other words,

towards the singular configuration, all (apart from the one which corresponds to $n=0$)

components of the section must somehow decay to zero. How they decay can be seen
from the power series expansion in (100). The bigger the $|n|$ , the faster the decay.

4.3 Remark

If we let $\zetaarrow\zeta_{0}$ (corresponds to $\varphiarrow 0$ or $\pi$), then $\xi_{3}arrow r_{2}$ and $\rhoarrow 0$ , so that the

terms of the right-hand side of $U(k_{0}^{-1})f$ vanish if $n’\neq 0$ :

$(U(k_{0}^{-1})f)(r_{1}e_{3}, r_{2}e^{\psi R(e_{3})}e^{\varphi R(\mathrm{e}_{2})}e_{3})$

$= \sum_{n’=-\infty}^{\infty}e^{in’\psi’}\sum_{j=|n’|}^{\infty}j_{\mathrm{C}_{arrow+n’arrow-n’}},(k_{0};r_{1}, \xi_{3})22$ (104)

$arrow \mathrm{c}_{0,0}(k_{0;}r_{1}, \xi_{3})$ . (105)

This implies further that;

$(P_{nm}^{l}f)(\zeta_{0})=0$ if $n\neq 0$ , (106)

which gives the result that is consistent with the one derived in (77).

5Collision Singularity

In section 4, we discussed one type of singularity, that is when the particles are aligned

in astraight line. Here we consider the case when all three particles collide at the origin.

19

95



Let $(r_{1}, r_{2})=(0,$ 0). Then the corresponding end of section is $\zeta_{0}=(0,$ 0). We recall
that (70) holds for any $\zeta$ and any g $\in 50(3)$ . Therefore we have for g $\in G_{\zeta 0}\cong 50(3)$

$(E_{m}^{l}f)(0)=D^{l}(g)(E_{m}^{l}f)(0)$ . (107)

This in terms of the local coordinates gives

$(P_{nm}^{l}f)(0)=e^{-\dot{|}n\phi’} \sum_{|n|\leq l},d_{nn’}^{l}(\Psi)e^{-\dot{|}n’\psi}(P_{nm}^{l}f)(0)$
, (108)

and this holds for all $\Psi$ , $\psi’$ , $\phi’$ . (107) says that the linear subspace spanned by $E_{m}^{l}f$ is
invariant. Noting that $D_{m}^{l}$ is airreducible representation, we conclude that

$(E_{m}^{l}f)(0)=0$ , $l\neq 0$ . (109)

For $l=0$ we simply have the identity equation since $D^{l}=1$ . The implication of this
is that in general we can not say that the wavefunction is zero, and therefore as a
consequence of this, there is apossible collision after all. The whole purpose of this is
to try to express the wavefunction as aFourier expansion. The wavefunction which is
expanded at the point 0is

$f(0)$ $=$ $\sum_{l=0}^{\infty}\sum_{|m|,|n|\leq l}D_{mn}^{l}(g)(P_{nm}^{l}f)(0)$ (110)

– $(P_{0,0}^{0}f)(0)$ . (107)

5.1 Configuration in nbd of the collision
Since the center of mass of the system is fixed at the origin, we must have $ox_{1}=$

$x_{2}=x_{3}=0$ when the collision takes place. In terms of Jacobi vectors (21-22), this
corresponds to $r_{1}=r_{2}=0$ . The colliding configuration corresponds to $\eta_{1}=\eta_{2}=$

$\eta_{3}=0$ in terms of the internal local coordinates. There is no reason why we can not
expand the wavefunction in terms of $D^{l}$ as before. The boundary of the shape space $M$

is two dimensional, as opposed to three for the interior. However it is not always wise
to think that there is adrop in the number of variables. Instead, here we simply see
the triple colision situation as the special case–the case that some variables become
insignificant. As already discussed, the configuration space for the triatomic system
is six dimensional, and we revert our discussion back on the wavefunction $f(\alpha, \beta)$ on
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$\mathbb{R}^{3}\cross \mathbb{R}^{3}$ , where $\alpha$ and $\beta$ really are nothing other than the Jacobi vectors (21-22). Each
$\alpha$ and $\beta$ have components $\alpha_{j}$ , and $\beta_{j}$ , $j=1,2,3$ respectively. Now, if this wavefunction

is analytic at the origin, and therefore analytic when triple collision takes place, $f$ has

the expansion of the form

$f( \alpha, \beta)=\sum_{I,J}c_{IJ}\alpha^{I}\beta^{J}$
, (112)

where we have used the notations

$I=(i_{1}, i_{2}, i_{3})$ , $\mathcal{J}=(j_{1}, j_{2}, j_{3})$ , $\alpha^{I}=\alpha_{1}^{i_{1}}\alpha_{2}^{i_{2}}\alpha_{3}^{i_{3}}$ , $\beta^{J}=\beta_{1}^{j_{1}}\beta_{2}^{j_{2}}\beta_{3}^{j_{3}}$ . (113)

Here we emphasize once again that, for given $f$ we would like to expand this series into

aFourier series in terms of the $D$-functions. First we consider asection just as we did

for the colinear case. We have already discussed that

$M:=X_{0}/SO(3)\cong \mathbb{R}^{3}\cross \mathbb{R}^{3}/SO(3)$ (114)

is the shape space which is homeomorphic with $\{x\in \mathbb{R}^{3}|x_{3}\geq 0\}$ . For $\pi$ defined in

(14) and for an open set $U\subset M$ , we may express any $(\alpha, \beta)\in\pi^{-1}(U)$ as

$(\alpha, \beta)=g\sigma$ $=(g\sigma_{1}(q), \sigma_{2}(q))$ , $q\in U$ (115)

where $q$ are the local coordinates in $M$ , $g\in SO(3)$ , and $\sigma_{j}$ are the components of $\sigma$

defined in (16).
Let $P^{n}(\mathbb{R}^{3}\cross \mathbb{R}^{3})$ be the space of homogeneous polynomials of degree $n$ in $\alpha_{i}$ , $\beta_{j}$ .

Then we see that it is invariant under the SO(3) action, which means that $5\mathrm{O}(3)$ is

represented in $P^{n}(\mathbb{R}^{3}\cross \mathbb{R}^{3})$ . This implies that the space $P^{n}(\mathbb{R}^{3}\cross \mathbb{R}^{3})$ will be decom-

posed into irreducible subspaces with respect to the SO(3) action. In each irreducible

subspace, the basis polynomial transformation is subject to

$p_{m}(g^{-1} \alpha, g^{-1}\beta)=\sum_{|n|\leq l}p_{n}(\alpha, \beta)D_{nm}^{l}(g)$
. (116)

Hence if we substitute (115) into (112), we expect to be able to put $f$ into aFourier

series in terms of D-functions

$f(g \sigma_{1}(q), g\sigma_{2}(q))=\sum_{l=0}^{\infty}\sum_{|m|,|n|\leq l}D_{mn}^{l}(g^{-1})c_{mn}^{(l)}(q)$ . (117)
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5.2 Decomposition of space of homogeneous polynomials

It is of our interest to investigate this Fourier series in detail. Let $P^{n}(\mathbb{R}^{3})$ denote the
space of homogeneous polynomials in $Uj,j=1,2,3$. Then $P^{n}(\mathbb{R}^{3})$ is decomposed into

$P^{n}(\mathbb{R}^{3})=H^{n}(\mathbb{R}^{3})\oplus r^{2}H^{n-2}(\mathbb{R}^{3})\oplus\cdots\oplus\{$ $r^{n-1}H^{1}(\mathbb{R}^{3})r^{n}H^{0}(\mathbb{R}^{3})$

if $n$ is odd
if $n$ is even (118)

where $H^{n}(\mathbb{R}^{3})$ is the space of solid harmonics of degree $n$ . Here we point out that it is
isomorphic with the $(2n+1)$-dimensional space $H^{n}$ for unitary irreducible representa-
tions of 50(3). In addition to that $r^{2}$ is invariant under $g\in SO(3)$ , the decomposition
(118) is reduced to

$P^{n}(\mathbb{R}^{3})\cong H^{n}\oplus H^{n-1}\oplus\cdots\oplus\{$

$H^{0}$ if $n$ is even
$H^{1}$ if $n$ is odd (119)

Therefore this decomposition applied to $P^{l}(\mathbb{R}^{3}\cross \mathbb{R}^{3})$ gives

$P^{l}(\mathbb{R}^{3}\cross \mathbb{R}^{3})$ $=$
$\sum_{n+m=l}H^{n}(\mathbb{R}_{\alpha}^{3})\otimes H^{m}(\mathbb{R}_{\beta}^{3})$

$\oplus$

$\sum_{n+m=l}H^{n}(\mathbb{R}_{\alpha}^{3})\otimes|\beta|^{2}H^{m-2}(\mathbb{R}_{\beta}^{3})$

$\oplus$

$\sum_{n+m=l}|\alpha|^{2}H^{n-2}(\mathbb{R}_{a}^{3})\otimes H^{m}(\mathbb{R}_{\beta}^{3})\oplus\cdots$ (120)

where we have used the identity

$P^{l}( \mathbb{R}^{3}\cross \mathbb{R}^{3})=\sum_{n+m=l}P^{n}(\mathbb{R}^{3})\otimes P^{m}(\mathbb{R}^{3})$
, (120)

and the greek subscripts are placed so that one may not confuse the two $\mathbb{R}^{3}$ ’s. This
should further be put in terms of $H^{n}$ ’s;

$P^{l}(\mathbb{R}^{3}\cross \mathbb{R}^{3})$ $\cong$

$\sum_{n+m=l}H^{n}\otimes H^{m}$

$\oplus$

$\sum_{n+m=l}7\{^{n}\otimes H^{m-2}$

$\oplus$

$\sum_{n+m=l}H^{n-2}\otimes \mathcal{H}^{m}\oplus\cdots$ . (122)
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We can again decompose (122) further, if we apply the Clebsch-Gordan decomposition

formula for SO(3),

$H^{p}\otimes H^{q}\cong H^{|p-q|}\oplus H^{|p-q|+1}\oplus\cdots\oplus H^{p+q}$ (123)

and we finally obtain the decomposition

$P^{l}(\mathbb{R}^{3}\cross \mathbb{R}^{3})\cong H^{l}\oplus \mathcal{H}^{l-1}\oplus 2H^{l-2}\oplus\cdots$ . (124)

5.3 Implication of the decomposition

We may deduce the main result of the article from the decomposition (124). The

decomposition implies that $P^{l}(\mathbb{R}^{3}\cross \mathbb{R}^{3})$ includes representations spaces $H^{m}$ with $m\leq l$

only. Therefore the representation space $H^{n}$ arise from $P^{n}(\mathbb{R}^{3}\cross \mathbb{R}^{3})$ with $n\geq l$ . Basis

polynomials in $H^{n}$ are subject to the transformation (116).

Now suppose that the wavefunction $f$ is analytic at the origin. Given that we have

atriatomic system, and if $f$ is an eigenstate associated with the eigenvalue $l(l+1)$ of

the total angular momentum operator $L^{2}$ , $f$ must be alinear combination of $D_{mn}^{l}(g)$ ,

coefficients of which are expressed as power series in the local coordinates $q$ . This

implies that the eigenstate $f$ expressed as apower series in $\alpha_{i}$ , $\beta_{j}$ must have the

lowest order terms of the form $\alpha^{I}\beta^{J}$ with $|I|+|J|=l$ , where $|I|=i_{i}+i_{2}+i_{3}$ , and
$|J|=j_{1}+j_{2}+j_{3}$ .

5.4 Example

In order to justify the main result obtained in the previous subsection, we present an
example here. Here we pay particular attention to the fact that the representation

spaces of 50(3), $P^{1}(\mathbb{R}^{3})$ , and $H^{1}$ are isomorphic, and we consider the tensor product

$P^{1}( \mathbb{R}^{3})\cross P^{1}(\mathbb{R}^{3})=\{\mathrm{t}\mathrm{r}(C^{T}\alpha\beta T)=\sum_{i,j}C_{ij}\alpha_{i}\beta_{j}|C\in \mathbb{C}^{3\mathrm{x}3}\}$
. (125)

The Clebsch-Gordan formula applied on this gives

$\mathcal{H}^{1}\otimes H^{1}\cong H^{0}\oplus \mathcal{H}^{1}\oplus H^{2}$ , (126)
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and here we aim to identify each component in the right hand side of (126). Just as
we considered the basis of tensor product like the one in (116), here we consider the
transformation of the basis $\alpha\beta^{T}$ . This transformation is subject to

$\alpha\beta^{T}\mapsto g(\alpha\beta^{T})g^{-1}$ (127)

then one has $\mathrm{t}\mathrm{r}(C^{T})g(\alpha\beta^{T})g^{-1})=\mathrm{t}\mathrm{r}(gCg^{-1}\alpha\beta^{T})$. So the transformation of C is
subject to

C $\mapsto A_{g}:=gCg^{-1}$ . (127)

Here we note that the symmetric and anti-symmetric matrices are invariant under the
adjoint action of $g$ , and since $\mathrm{t}\mathrm{r}(g^{-1}Cg)=\mathrm{t}\mathrm{r}(C)$ , the representation of SO(3) in $\mathbb{C}^{3\mathrm{x}3}$

is reducible down to three subspaces

$\mathbb{C}_{0}^{3\mathrm{x}3}$ $:=$ { $\lambda I_{3}|$ A $\in \mathbb{C}$ } (129)
$\mathbb{C}_{1}^{3\mathrm{x}3}$ $:=$ $\{C\in \mathbb{C}^{3\mathrm{x}3}|C=-C^{T}\}$ (130)
$\mathbb{C}_{2}^{3\mathrm{x}3}$ $:=$ $\{C\in \mathbb{C}^{3\mathrm{x}3}|C=C^{T},\mathrm{t}\mathrm{r}(C)=0\}$ . (130)

It is trivial to observe that $\dim \mathbb{C}_{0}^{3\mathrm{x}3}=1$ , $\dim \mathbb{C}_{1}^{3\mathrm{x}3}=3$ , $\dim \mathbb{C}_{2}^{3\mathrm{x}3}=5$ , and $\mathbb{C}^{3\mathrm{x}3}=$

$\oplus_{j=0}^{3}\mathbb{C}_{j}^{3\mathrm{x}3}$ , so we may identify $\mathbb{C}_{j}^{3\mathrm{x}3}$ with $H^{j}$ .
For $C_{1}$ , $C_{2}\in \mathbb{C}^{3\mathrm{x}3}$ , define the inner product

$\langle C_{1}, C_{2}\rangle=\mathrm{t}\mathrm{r}(C_{1}^{*}C_{2})$ , (132)

and under this inner product, it can be shown easily that the adjoint operator $A_{g}$ is
unitary. Recall that $\mathbb{C}_{j}^{3\mathrm{x}3}$ are invariant subspaces of $\mathbb{C}^{3\mathrm{x}3}$ under $A_{\mathit{9}}$ , we observe that
the adjoint operator restricted to $\mathbb{C}_{j}^{3\mathrm{x}3}$ domain is a $U(2j+1)$ operator. Further, note
that $\oplus_{j=0}^{3}\mathbb{C}_{j}^{3\mathrm{x}3}$ is an orthogonal direct sum. In particular, if we choose $C_{1}$ and $C_{2}$

such that $C_{1}^{T}=$ -Ci, $C_{2}^{T}=C_{2}$ , we have

$\langle C_{1}, C_{2}\rangle=0$ (133)

and this implies that $\mathbb{C}_{0}^{3\mathrm{x}3}\oplus \mathbb{C}_{2}^{3\mathrm{x}3}$ and $\mathbb{C}_{1}^{3\mathrm{x}3}$ are orthogonal to each other. In addition, if
we particularly choose $C_{1}=\lambda I_{3}$ and $C_{2}$ with $\mathrm{t}\mathrm{r}(C_{2})=0$ , we again have (133), implying
$\mathbb{C}_{0}^{3\mathrm{x}3}$ and $\mathbb{C}_{2}^{3\mathrm{x}3}$ are orthogonal to each other.
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The bases of $7\{^{0}$ and $\mathcal{H}^{1}$ are $\alpha\cdot\beta$ and the components of $\alpha\cross\beta$ respectively. The

bases of $H^{2}$ are $\alpha_{i}\beta_{j}+\alpha_{j}\beta_{i}(i<j)$ , $\alpha_{1}\beta_{1}-\alpha_{2}\beta_{2}$ , $\alpha_{2}\beta_{2}-\alpha_{3}\beta_{3}$ . However, these bases

should be transformed into suitable ones in order to get unitary matrices $D^{l}(g)$ , $l=1,2$

as transformation matrices such that (116) holds.
For the case $l=1$ , let $7=\alpha\cross\beta$ . If $\alpha$ and $\beta$ are transformed to $g\alpha$ and $g\beta$

respectively, then 7transforms subject to $7\mapsto\# 7$ , and we have

$p_{n}^{(1)}(g^{-1} \gamma)=\sum_{m}p_{m}^{(1)}(\gamma)D_{mn}^{1}(g)$
(134)

for the polynomials defined by

$(p_{1}^{(1)},p_{0}^{(1)},p_{-1}^{(1)})=(- \frac{\gamma_{1}+i\gamma_{2}}{\sqrt{2}}$ , $\gamma_{3}$ , $\frac{\gamma_{1}-i\gamma_{2}}{\sqrt{2}})$ . (135)

In fact the polynomials $p_{m}^{(1)}$ are related to the spherical harmonics by

$p_{m}^{(1)}(u)=\sqrt{\frac{4\pi}{3}}r\mathrm{Y}_{1m}(\theta, \phi)$ , $m=-1,0,1$ . (136)

Next is the case when $l=2$ . First note that

$H^{2} \cong H^{2}(\mathbb{R}^{3})=\{\mathrm{t}\mathrm{r}(C^{T}uu^{T})=\sum_{i,j}C_{ij}u_{i}u_{j}|C\in \mathbb{C}^{3\mathrm{x}3}, C=C^{T}, \mathrm{t}\mathrm{r}(C)=0\}$
, (137)

and we present the following as the bases of $H^{2}(\mathbb{R}^{3})$ ;

$q_{-2}$ $=$ $(u-iv)^{2}/2$ , (138)

$q_{-2}$ $=$ $w(u-iv)$ , (139)

$q_{0}$ $=$ $(2w^{2}-(u^{2}+v^{2}))$ , (140)

$q_{1}$ $=$ $-w(u+iv)$ (141)

$q_{2}$ $=$ $(u+iv)^{2}/2$ . (142)

Similarly these polynomials are related to the spherical harmonics by

$q_{m}(u)=\sqrt{\frac{8\pi}{15}}r^{2}\mathrm{Y}_{2m}(\theta, \phi)$ , $m=2,1,0,$ $-1,$ -2 (143)

that transform subject to

$q_{m}(g^{-1})= \sum_{m}q_{n}(u)D_{nm}^{2}(g)$ . (144)
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For the bases

$\sigma_{1}=\frac{1}{2}$ (
$\sigma_{-2}=\frac{1}{2}(\begin{array}{ll}1-i 0-i-1 000 0\end{array})0$

$-i00$ $-1-i0$ )’, $\sigma_{-1}=\frac{1}{2}\sigma_{2}=\frac{1}{2}\{i01100-1-i000i$ $-i)00)0^{0}1$

,

’
$\sigma_{0}=\frac{1}{\sqrt{6}}$ $(\begin{array}{lll}-1 0 00 -\mathrm{l} 00 0 2\end{array})$ ,

(145)

for $\mathbb{C}_{2}^{3\cross 3}$ , the sohd harmonics $qm(u)$ is put in the form

$q_{m}(u)=\mathrm{t}\mathrm{r}(\sigma_{m}uu^{T})$ , $m=-2,$ -1, 0, 1, 2, (146)

and the $q_{m}(u)$ have the generating function

$Q_{2}(u, t)= \sum_{-2}^{2}c_{m}q_{m}(u)t^{2-m}$ (147)

with $(c_{-2}, c_{-1}, c_{0}, c_{1}, c_{2})=(2,4,2\sqrt{6},4,2)$ . If we observe that $Q_{2}$ is expressed as

$Q_{2}(u, t)=(\sqrt{2}p_{-1}^{(1)}(u)t^{2}+2p_{0}^{(1)}(u)t+\sqrt{2}p_{1}^{(1)}(u))^{2}$ , (148)

we find that

$q_{-2}(u)$ $=p_{-1}^{(1)}(u)^{2}$ , (149)
$q_{-1}(u)$ $=$ $\sqrt{2}p_{0}^{(1)}(u)p_{-1}^{(1)}(u)$ , (150)

$q_{0}(u)$ $=$ $\frac{2}{\sqrt{6}}(p_{0}^{(1)}(u^{2}+p_{1}^{(1)}(u)p_{-1}^{(1)}(u)),$ $(151)$
$q_{1}(u)$ $=$ $\sqrt{2}p_{0}^{(1)}(u)p_{1}^{(1)}(u)$ , (152)
$q_{2}(u)$ $=p_{1}^{(1)}(u)^{2}$ . (153)

Further, define the function

$P_{2}(\alpha, \beta, t)=((\alpha_{1}-i\alpha_{2})t^{2}+2\alpha_{3}t-(\alpha_{1}+\alpha_{2}))((\beta_{1}-i\beta_{2})t^{2}+2\beta_{3}t-(\beta_{1}+i\beta_{2}))$,
(154)

which expands into

$P_{2}( \alpha,\beta, t)=\sum_{-2}^{2}c_{m}p_{m}(\alpha,\beta)t^{2-m}$ , (155)
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$p_{-2}(\alpha, \beta)$ $=$ $\frac{[perp]}{2}(\alpha_{1}-i\alpha_{2})(\beta_{1}-i\beta_{2})$ , (156)

$p_{-1}(\alpha, \beta)$ $=$ $\frac{1}{2}(\alpha_{3}(\beta_{1}-i\beta_{2})+(\alpha_{1}-i\alpha_{2})\beta_{3})$ , (157)

$p_{0}(\alpha, \beta)$ $=$ $\frac{1}{2\sqrt{6}}(4\alpha_{3}\beta_{3}-(\alpha_{1}-i\alpha_{2})(\beta_{1}+i\beta_{2})-(\alpha_{1}+i\alpha_{2})(\beta_{1}-i\beta_{2}))$ , (158)

$p_{1}(\alpha, \beta)$ $=$ $- \frac{1}{2}((\alpha_{1}+i\alpha_{2})\beta_{3}+\alpha_{3}(\beta_{1}+i\beta_{2}))$, (159)

$p_{2}(\alpha, \beta)$ $=$ $\frac{1}{2}(\alpha_{1}+i\alpha_{2})(\beta_{1}+i\beta_{2})$ . (160)

The relations with $p_{m}^{(1)}$ are given by

$p_{-2}(\alpha, \beta)$ $=p_{-1}^{(1)}(\alpha)p_{-1}^{(1)}(\beta)$ , (161)

$p_{-1}(\alpha, \beta)$ $=$
$\frac{\sqrt{2}}{2}(p_{0}^{(1)}(\alpha)p_{-1}^{(1)}(\beta)+p_{-1}^{(1)}(\alpha)p_{0}^{(1)}(\beta),$ $(162)$

$p_{0}(\alpha, \beta)$ $=$ $\frac{1}{\sqrt{6}}(2p_{0}^{(1)}(\alpha)p_{0}^{(1)}(\beta)+p_{-1}^{(1)}(\alpha)p_{1}^{(1)}(\beta)+p_{1}^{(1)}(\alpha)p_{-1}^{(1)}(\beta)$ (163)

$p_{1}(\alpha, \beta)$ $=$
$\frac{\sqrt{2}}{2}(p_{1}^{(1)}(\alpha)p_{0}^{(1)}(\beta)+p_{0}^{(1)}(\alpha)p_{1}^{(1)}(\beta))$, (164)

$p_{2}(\alpha, \beta)$ $=p_{1}^{(1)}(\alpha)p_{1}^{(1)}(\beta)$ (165)

The functions $p_{m}(\alpha, \beta)$ form abasis of the space of polynomials associated with $\mathbb{C}_{2}^{3\mathrm{x}3}$ ;

$\{\mathrm{t}\mathrm{r}(C^{T}\alpha\beta)=\sum_{i,j}C_{\dot{\iota}j}\alpha_{i}\beta_{j}|C=C^{T}, \mathrm{t}\mathrm{r}(C)=0\}$

(156)

and are expressed as

$p_{m}(\alpha, \beta)=\mathrm{t}\mathrm{r}(\sigma_{m}\alpha\beta)$ . (167)

Here we note that $q_{m}(u)$ transforms according to $q_{m}(g^{-1}u)= \sum_{n}q_{n}(u)D_{nm}^{2}(g)$ . Since
$q_{m}(g^{-1}u=\mathrm{t}\mathrm{r}(g\sigma_{m}g^{-1}uu^{T})$ , and since $\sum_{n}q_{n}(u)D_{nm}^{2}(g)=\mathrm{t}\mathrm{r}(\sum_{n}\sigma_{n}D_{nm}^{2}(g)uu^{T})$ , we

see that $\sigma_{m}$ are subject to the transformation

$A_{g} \sigma_{m}=\sum_{n}\sigma_{n}D_{nm}^{2}(g)$
. (168)
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If we apply this transformation rule to $p_{m}(\alpha,\beta)$ , we find that

$p_{m}(g^{-1} \beta,g^{-1}\beta)=\sum_{n}p_{n}(\alpha,\beta)D_{nm}^{2}(g)$ . (169)

Therefore we found arealization of the component space $H^{2}$ in the decomposition
(126).
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