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Abstract

For some time, singular configurations have not been taken into account in
dealing with the center-of-mass system of many particles. This is because the
center-of-mass system can be made into a fiber bundle, provided the configura-
tions of particles are restricted to non-singular ones. This article is an attempt
to analyzing the center-of-mass system with configurations including the singular
ones, and we present the condition for which a wave function must satisfy, should
the particle configuration become singular in finite time. This article should give
a similar result to [2], but from a completely different view point.
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1 Introduction

It is well known that reducing a dynamical system is closely related to a symmetry. One
famous example is the reduction of quantum system. One may consider an eigenvalue
problem for angular momentum, and would find that the eigenstate is a product of the
radial and spherical harmonic functions. Then the original Schrédinger’s equation is
reduced to the one for finding the unknown radial function. That way, the system’s
degrees of freedom is reduced to a lower value.

The above mentioned reduction is a fine example of the heart of this subject.
The two-body angular momentum problem happens to be a particular example of
the Fourier analysis on SO(3) for the three-body one.

1.1 Historical background

The idea of viewing many-particle center-of-mass system as a principal fiber bundle is
in fact fairly new. However, there had been many painful attempts to separate rotation
from vibrations. It was Guichardet, in 1984 who first defined rotational and vibara-
tional vectors, and showed that the rotation can not be separated from vibrations,
using the connection theory, provided that the particles do not collide nor align in a
straight line. As a consequence, it was shown that any rotation angle of the particles
were possible, purely by vibrations. In 1987, one of the authors (T.I) showed that if the
system is restricted to regular configurations, it can be described in the bundle picture,
in the sense that the behavior of the system can be discussed on associate vector bundle
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of the configuration space. Further, in 1990 and 1991, Montgomery defined the falling
cat problem, and showed the cat constructed from point particles, can land on her feet
when she is launched in air. This was done by viewing the system from a bundle picture
with non-holonomic constraints. However, one must realize that all above articles dealt
with center-of-mass systems with the free action of SO(3). The consequence of this
automatically excludes the cases when particles collide at the origin, or are aligned in
a line. These mentioned cases are called the singular configurations, and the questions
on how the mechanics is set up on such configurations are still unsolved. This article
deals with such a question.

1.2 Organization of the article

This article is organized as follows. After this chapter, in section 2 we give a brief review
of the center-of-mass system. The definition of regular and singular configurations
is given in this chapter, and gives a brief idea as to what can be done with regular
configurations. The most of the facts mentioned in the chapter are already investigated
and cooked by past researchers. For a beginner to this subject, we suggest it would be
of great help to start from reading [3]. One may wonder whether it would be possible
for a system to come to a singular configuration from a regular one in finite time.
Demonstration of this is 'given in section 3. It further gives us a motivation to see the
behavior of a quantum system instead of classical ones. Also a wavefunction can be
written in a tidy form by introducing Something called the projection and transition
operators. These operators have remarkable properties, and they are described in this
section, too. In section 4, we work through two examples. The main theme in this
section is to write wavefunction in terms of local coordinates, given that it is analytic
and that can be expanded into power series around a singular configuration. One of
the main results of the article is also describen in this section. Section 5 deals with the
expansion of the wavefunction when triple collision takes place, stating the other main

result.

2 Review of the center-of-mass system

As is widely discussed, the center-of-mass system has been very well studied by past

mathematicians and physicists. In this section we shall concentrate on some of the well

3
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known facts.

2.1 Set—up of the problem

Out of n particles, let ; € R3 be the position of jth particle, and m; be its respective
mass. Then we define the configuration space of the center—of-mass system to be

Xo={z=(a:1,...,wn)|a:j€R3,ija:j=0}. (1)
. o

The translational motion of particles are deliberately removed, and the consequence of
this appears in the constraint

j=n
z mja:j =0 (2)
i=1

in Xp, in order to fix the center of mass at the origin. This configuration space allows
a group action of SO(3), and this is given by

50(3) X XO — XO) (gaz) =g = (gzla LR 7gzn)' (3)

2.2 A variety of configurations

When n particles are placed in R3, we may consider how the particles are arranged in
that space. Therefore, we define the spread of particles to be

F, =span{z,,...,z,}, z € X,. (4)
Then
dim F; =0 : all particles at the origin (5)
dimF, =1 : particles aligned in a line (6)
dim F; =2 : particles on a plane (7)
dim F; =3 : particles scattered in space. (8)

From this, we see that there are different configurations for different dimensions of F,.



dimF, =0 dim F, =2

dimF; =1 , dim F; =3

Figure 1: The diagram shows the interpretations of the dimensions of F;. From left,
corresponds to 1) all particles at the origin, 2) particles aligned in a line, 3) particles
on a plane, 4) particles scattered in space. ‘

This suggests us to break the configuration space X up into subspaces Qo, @1, and Q;

Q = {z€Xo|dimF, =0} ={0} (9)
Q1 = {reXy|dimF, =1} (10)
Q = {zeX,| dimF, >2}. (11)

The members of Qg and Q; are the configurations for colliding particles and aligned
particles respectively, and such configurations are called the singular configurations.
2.3 Restriction to regular configurations

For a fixed z € Xp, an isotropy subgroup G, of SO(3) is the subgroup of SO(3) which
makes z invariant under the action of g € G,. For different members of Xo, we have

different isotropy subgroups;

{ S0O(3) (z € Qo)
G:.={ SO(2) (z€ Q) (12)
{8 (€.

For z € Q, G, = {e}, so action SO(3) is free. Therefore Q={z € X|dimF, >2}is
made in to an SO(3) bundle through the equivalence relation ~ :

y~z <= Jg€SOQB) st y=gzr (13)
for z,y € X, with the quotient map

T Q——> M :=Q/S0(3) = {[z] | =z € Xo}. | (14)

81
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Then we shall define open set U in M by the following statement. A subset U of M is
an open subset of M for the quotient topology if and only if its inverse image

7Y (U) ={z € Xo | [z] € U} (15)

is an open subset of X,,. For a given U C M, its inverse image has a local structure
7~} (U) 2 U x G. We define section o in 7~}(U) to be the continuous map

o:M>DU — X,. (16)
Then further, we have an associated bundles
E=QxiH :=QxH/~ (17)
defined through
(z,2) ~ (92,D'(9)2) € Q x H! (18)
where H' is the representation space of SO(3) with
dimH = 21 + 1. (19)
Like before, one can define section of the associated vector bundle
01: Q/SOB3) — Q x; H, | (20)

being interpreted as a reduced state, because the reduced state is in one to one corre-
spondence with o;.

3 Taking singular configurations into account

The previous argument of vector bundles in section 2 was all good provided that the
action of SO(3) was free. However this is not the case for the singular configurations.
Such configurations have G, 2 {e}. In this section we shall consider configurations
including the singular ones.

Before we start, one might be led to a natural question whether or not it would be
possible for a natural dynamical system to come to a singular configuration in finite
time. To answer the question, we shall manulally construct & colinear configuration for
the free particles.
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3.1 Construction of colliding free particles

For simplicity, we shall only consider three free particles in space, that is, for each
xz;, J =123, x; € R3, x; is linear in time ¢. Since the configuration space can be
identified with set of Jacobi vectors, from now on we shall work in terms of Jacobi
vectors. The Jacobi vectors are given by the following formulae

mims
— - 21
1 1+ e (mz x;) ( )
ry = myma(my + my) (wa _ mT + m2w2) (22)
my + mo + m3 : my + me ’ ’

for r; € R3. Jacobi vectors are just a linear combination of &;’s, so we see that they

are also linear with respect to ¢. This gives the form of Jacobi vectors;

™ = a1+b1t (23)
Ty = ag+ bt : : o (24)

for constant vectors a;,b; € R3 and t € R. Here assume that neither 7, nor r;
vanishes. Then when particles form a colinear shape, we have

Py X1y =0 for some t, € R ‘ -~ (25)
or equivalently
7=\,  for some t, A € R. (26)

Here we can consider two cases. Case one is when r1 X r2 = 0 and case two when
Ty X 'fg # 0. If it is the former case, then it is trivial to see that if the plane spanned
by ai, O, r1(t) and that by ay, O, r5(t) do not coincide, then we do have a colinear
configuration. Therefore we shall consider the latter case, that is, 7, x 72 # 0. Here
we note that if there is a colinear shape, then the loci of r; is in the plane spanned
by a1, O, r1(t;). We shall call this plane P;. Similarly, the loci of L should be in the
plane spanned by a,, O, 73 (t.). Again we shall call this plane P;.

We are now in position to construct a colinear configuratlon manually. In this
example, we let P, and P, coincide. 'Choose a; and a; so that they satisfy a; - b; = 0,
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Figure 2: The lines show the loci of two Jacobi vectors with respect to time. The
diagram on the left describes how two skewing loci can come to a configuration which
gives parallel Jacobi vectors. Similarly the diagram on the right shows it in the three
dimensional manner. Planes drawn are P, and P,. This shows that the intersection of
the planes must be in the direction of parallel Jacobi vectors.

and az - b, = 0. This means that we may assume that a; and b; are perpendicular,
without loss of generality. For given a, and a,, the plane defined by a,, a,, O is

r = o101 + az2a; ay,az € R. (27)

So for chosen a; and a3, we then choose b, and b, such that the loci r(t), and r2(t)
lie on the plane(s)

by (a1 xa;)=0 by-(a;xay)=0 (28)

If we set A = 1, then at the linear configuration, we must have r,(t.) = r4(t.), where ¢,
is the time at which colinear configuration takes place. Now note that we may change
the time scales of loci of Jacobi vecotors in the following way

rr=a;+ Iblli,lt =a;+ Eltl (29)
To = ay + |ba|bot = ay + bot, (30)

Then, now we solve for the time at which these loci intersect. If t* is such time, then

a; + i)lti =az+ th;. (31)
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Now, if we set ¢t* such that it satisfies

b1t _speedofry _ #f _ |ba] (32)
|bsto| speedofry t3  |by’

then we have particles aligned in straight line. If we further set b; to be a unit vector,
then the Jacobi vectors in this case are

T = a1+f)1t (33)

t3 -
To = Q2 + Z%bzt. (34)
1

The configurations corresponding to Jacobi vectors (33-34) are regular except for when
t=1t;.

3.2 The total angular momentum of singular configuration

For free particles, the total angular momentum of the system is given by

2
L = ;r,. x &3 (35)
= (@ + bit) X by + (az + bat) x by - (36)
= a; X b +ay x by (37)
= constant. | (38)

When singular configuraion undergoes, the directions of 7,(t.) and r(t.) coincide.
Then the angular momentum about the colinear axis is

n-L = n-(qlxb1+a2xb2) (39)
= n-(a; x b)) +n-(az xby) (40)
= Tl(tc) . (0,1 X bl) + A’f‘g(tc) . (0,2 + b2) (41)
= 0, (42)
where
n = 7r(t.). (43)
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This indicates that any free particles, at its singular configuration would have a zero
angular momentum about its axis. It then makes us wonder if this result would be the
same for the quantum center-of-mass system.

These particles under no external force may travel in straight lines in Xy. The
corresponding motions in X/SO(3) can be represented in local coordinates (7, 72, 53),

where
m = ri-ri=(al-a)+ (-8 “
e = 2r-7T2=2(a;-az+ by - byt?) (45)

N = 2!1‘1 X 1‘2| = 2[(11 X as + blt X ag+ ay X b2t+ b1 X b2t2] (46)

The singular configuration, as one can see, corresponds to the plane 73 = 0.

3.3 Fourier Analysis
From what we know, we have the group action
SO(3) x Xo — Xp (47)

We shall consider a quantum system with wave functions in L?(X,), and unitary rep-
resentation U : SO(3) x L?(Xy) — L?(X),), defined by

(9.)~Ul9)f;  (U@)f)(z)= flg~"2). (48)

As what the unitary representation show, f is defined on the configuration space Xj.
However, suppose that z € X is fixed, and let us define

f=(9) := f(g2), - (49)

then we can see that f, is a function on SO(3). Later if we require it to be that of X,
then we can simply put g = e, and we revert to the function f evaluated at the point
z € Xo- '

Now, since f can be seen as a function on SO(3), we can apply the Peter—Weyl
theorem, which allows us to expand functions on compact Lie groups. Then the Fourier

expansion of f is expressed as

flogz) =) (2+1) Y . Dpu(9)(Dhnns fz)s0), (50)

=0 Iml,|n{<l

10



where (, )so(s) denotes the inner product for functions on SO(3)
=1
O S50 = [ Dl 1 (k). (51)

Above expansion holds for all g € SO(3), so for g = e in particular, we have .

f(z) = Z @+1)) m(R) f (hz)dp(R). (52)

<t 30(3)

The du(h) is the invariant measure for SO(3). When it is expressed in tems of the
local coordinates, we have ‘ ’ ‘

du(h) = sin 8d0dedyp/2n*  with / du(h) =1, (53)
SO(3)

where (6, ¢,v) are the Euler angles.

3.4 Projection and Transition Operators

Here, in order to write equation (52) in a neater manner, we introduce operators P!

(Paf)(@) = (2+1) D;,,.(h) f(h~'z)dpu(h) (54)
50(3)
(Baf@) = @+1) [ Do (Wi a)du(h). (55)
-~ Jso@) :
Equations (54—55) have the following propertles
(B! =P,  PLPL=bmP) - (56)
PL(PL) =P, PLPL=PP, Pl ImPl, —InP (57)

The most striking properties are the last equations from (56) and (57). Equation (56)
says that applying P! twice has the same effect as applying it only once, whereas
equation (57) says the map P! shifts a point in ImP?, to that of n. For the above
reasons, we shall from here call the operators in (54) and (55) projection and transition

operators respectively. Further, these operators can be written in a slightly different
manner since '

/50(3) bW F (D) dp(R) = | Dipm(k) f (k) dps(k). (58)

50(3)

11
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by change of variables h = k~1. Then we have
Ponf)@) = @1+1) [ D (6) i)t (59)

So Fourier series expansions (52) in z is;

@)=Y (L) (60)

=0 |m|<i

Now define map E}, : L%(X,) — H' ® L*(Xo);

Pim
ELf= \/211? P“;'"f (61)
P f
Satisfies the condition
(Emf)(hz) = D'(R)(ELf)(z), ke SO@3). (62)

This means that the H'-valued functions E} f are p'-equivariant functions. Here we
did not specify nor say anything about form of f or the point z, and therefore this
condition is true for any configuration including the singular ones.

4 Wavefunctions around singular configurations

In this section of the article, we shall try to write (60) and hence (52) in terms of local
sections of Xo. However, for the simplicity, we shall consider 3-body system.

We have already seen that the space of center-of-mass system is identified with the
space of coulpled Jacobi vectors (21-22) in terms of vector spaces

XO = {(1’1,1‘2) l L € R3,j = 1: 2} . (63)

At singular configuration, 7, and ; become parallel to each other, and they are linearly
dependent. Further, we define

M := Xo/SO(3) = {x € R® | z3 > 0}. (64)

12
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the internal space of the whole of X,. The whole of X, includes the singular configu-

rations. As already stated, M fails to be a manifold. However, we see that
m(8X) = or(X), (65)

and so the boundary gets mapped to the boundary. We say that M is a manifold with
boundary.

Away from the boundary, there are three coordinate variables, and we define them
to be (r1,72,¢) € M such that

ri=|ril, re=|r2|, 71-r2=r1r20080. (66)

The boundary of M is identified with ¢ = 0. Further, choose local section o : U C
M — X,

(ri,ro, ) = (= (Tles,Tze‘pR(eZ)es), R:R*— s0(3), (67)

then any point in 77(U) is expressed as £ = g{, and expansion of f takes the form:
£(g0) =D _@+1) Y Dru(9)(Druns fe)s03) (68)
=0 Iml,in|<l
where f:(k) = f(k() for k € SO(3). Further, this in terms of P.,, is
f(g¢) = Z Y Dhn(@)(PrmH(Q) (69)
=0 |m|,in|<I

The equivariance condition (62) which is equivalent for the ¢ expansion is
(Enf)(9¢) = D'(9)(Enf)(©)- (70)

4.1 Two worked examples

It comes very natural for us to investigate the behavior of wavefunctions at the singular
and near-singular configurations. Here we shall choose sections to represent these
configurations. Of the two examples, first, we shall look into the case when we have a

colinear singular configuration.

13
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Figure 3: Section for the colinear singular configuration (left) and that for the near—
singular configuration (right). Notice the decrease in dimension in the singular config-
uration.

The boundary of M can be represented by local coordinates (1'1, T2), and we shall
consider the following section

oM S (7'1,7‘2) — C() = (7'183,7'263) € Xo (71)

and here we note that the isotropy subgroup of SO(3) at {, and it’s representation are

—itn é

tR(es) wm, tER (72)

g=e D..(9)=e

respectively. Now, as already mentioned, the equivariance condition (70) holds for any
g € SO(3). So in particular, for g € G¢,, the action of P._ on f is

(Plaf)() = (Piaf)(9) (3)
= ) Dh(@)(Plnf) (o) (74)
In’|<l
= Y € ™o (Pumf)(Co) (75)
In'|<I
= e""™(Panf)(o)- (76)

We used two facts here. One is that Co is invariant under g € G¢,. The other is the
equivariance. Furthermore the bove equations (73-76) is just the calculation of (70)
component wise, since the matrix D' is diagonal in this case. The consequence of the’
condition is that

(Paf)(G) =0 if n#0. (77)

14



We have the physical interpretation on the result (77) as follows: For a colinear con-
figuration with a given angular momentum n around the axis of alignment, the wave
function must vanish for this configuration, unless the angular momentum is zero. In
other words, we have no probablity of finding colinear configuration if there is a non
zero angular momentum round that axis.

Using this result, we may further calculate (52) by letting ¢ tend to (o. Then we
obtain

£(96%) = X D Drn(@)(Pamf)(S0) (78)

=0 |m|,|n|<I

= 33 Do) (Ponf)(&) (79)
=0 |m|<I

= Z > /57 Vim(gen) (P ). (80)
=0 |m|<i _

This implies that the wave functions for linear triatomic molecues can be described
in terms of local coordinates, (6, $,71,72), in the subspace of X, determined by rank
(ry,72) = 1. As a side note, recall that two-body system can be characterized by
considering the section

T Co =Te3 (81)

Then Fourier expansion is

flot) =30 3 ?,m<ge3><Pémf>(<o> (82)

1=0 |m|<l

Actually (PL_f)(¢o) is dependent only on r. The system is then reduced to wavefunc-
tion for the radial component.
4.2 Three particles in the nbd of a linear configuration

As before, we shall choose a section for configurations very close to the singular one.
For point p which lies in the interior of M, we may write p in coordinates (r1, 72, ®).

Then we may choose the section to be

(7’1,7‘2,90) = (= (r1e3,r2e“’R(32)e3) € Xo. L .(83)

15
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Because we are trying to express in terms of the local coordinates, we shall write out
explicitly k¥ € SO(3) in Euler angles

k= e¢/R(e3) eo’R(eg) e.p'R(es) — koe¢'R(e3)- (84)
Here we split £ € SO(3) into two parts—namely ko, and e¥'R(€s) because we are

considering an expansion about the e3 axis. Then as before, we may write z € 7~1(U)
as .

z = k¢ = ko(r1€3, 726V (e ePRlegy), (85)
and recall that
Dy (k) = €7 d}, ()™ (86)

and we shall attempt to write (60) using those introduced variables. First we shall look
into the calculation of P!, f that appears in (60).

(BLfQ) = @+1) /S o DB O)u(E)
1

3)
/ ™' d(¢)sin@d0’'dg’
S?

1 2

s
X o ™' f(rikoes, rokoe? Fe3) PR o5 dyf (87)
0

Observe that the last integral in (87) is a Fourier coefficient of U(ky?) f;

C—n(ko; T1€3, T2e?F(*D €3)

2 ,
= 51; / eV (U (kg 1) f)(r1e3, roe?¥ F(e3) ePR(e2) ) dyy' . (88)
0
Then (87) comes down to
(PO = @+D) [ Bk 7(k¢)du(h) (89)
50(3)
1

T

o7 / e dl () c_n(ko; T1€3, T2e? D e3) sin@'dO/dy’  (90)
32

We would like to take a closer look at these Fourier coefficients. To do so, we take
a different set of Local coordinates (ry, 72, ¢/, @) — (1,1, &2, £3), by setting

16
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Figure 4: Changing the local coordinates. 73, ¢, are changed into cartesian coordi-
nates in the standard way. Further change of variable gives z as viewing &£, as the
complex plane, and p as the modulus of r; on the plane.

&1 = rosinpcos), §; = rpsinpsing’, & =rzco8¢, (91)
and we further put
z = pe¥', p = rysine. (92)

The geographical interpretation for the lately introduced variables in (92) is that p is
the length of r, when projected onto & —¢; plane, and z is the complex variable when
the plane spanned by (&3, &) is identified as C.

Now, assume the wave function is analytic in & and & at colinear singular con-
figuration & = & = 0. We may expand U(ky')f into power series in the following
way

(U(kal)f)(rle.g, 7-261/1'}2(33) eSPR(ez)es)

o0
— Z Cpq(ko; 71, &3) 2P 27 (93)
P,9=0
o0
= 3" cpglko; 1, &) P POV (99)
p,9>0
= Z ey’ Z p’c,-_gi,-%m(ko;’f‘l,fa), (95)
Weco  j=ln

where ¢, are the coefficients of the power series. This implies that

(o o]

Cn’(ko; ri€3, r2etpR(ez)ea) = Z p’cu_zlr’.,___.in_l (ko; T, 63) (96)

j=In’|

17
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with n' = —n. So (PL,,f)(¢) turns out to be a power series of p having terms of the
lowest order |n|;

(Prnh©) = 2= [ emd, @) (97)
T S2
X C_n(ko; T1€3, T26°F®D €3) 5in 0/ dO d ¢’ (98)
_ 21+1/ e‘"‘¢'d£,,,,(9’)
™ S2
X Z piCj-;_n,j;_n(ko;Tl,ga) sin @'d¢’d¢’ (99)
J=In|
20 + 1 — r
= TN Pl i iaa(r,6) (100)

The én, are the outcome of the integration of Citn i=n OVer ¢ and ¢'. Hence the
expansion of f is;

flg¢) = Z Y. Dh@(Eh©) (101)
1=0 |m|,|n|<I
2l + 1 &
= Dirm(g)
4 =0 |m%$l
X D Pl 1on 1n (11, &) (102)
J=In|

This gives a boundary condition on wave function in the sense that when expanded
into power series, the function starts with the power pi"l. As a side note, it must be
stressed that an increase of |n| by one corresponds to a doulbe increase in j, which is
in consistent with the result given in the reference [2].

The associated vector bundle

E =Xox M | (103)

defined through (18) has a local structure U x H!. We recall that the equivariant
functions defined in (62) is in one to one correspondence with local sections in the
associated vector bundle. From (62), we know that at the colinear configuration, the
all but one components of E}, f vanishes. This means the sections for the corresponding

18
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H i
boeundary
" o(n(2))
: \
S

Figure 5: Sketch graphs show components of a local section in the associated fiber
bundle. In the open set containing the boundary of X, all but one components of the
section tend to zero as they approach the boundary. For different components, the
decay speed is dependent on its corresponding angular momentum value.

equivariant functions must approach zero, because they are continuous. In other words,
towards the singular configuration, all (apart from the one which corresponds to n = 0)
components of the section must somehow decay to zero. How they decay can be seen

from the power series expansion in (100). The bigger the |n|, the faster the decay.

4.3 Remark

If we let ¢ — (o (corresponds to ¢ — 0 or =), then & — r; and p — 0, so that the
terms of the right-hand side of U(ky!)f vanish if n’ # 0:

(U(k31)f)(r1e3, roe?ies) ePRen) gg)

=) & 2& pfcjg_,.,, =t (ko3 71, &5) o (104)
n'=—o00 =|n’
— co0(ko; 1 ,753)- - (105)
This implies further that; ‘
(Pinf) () =0 if n#0, ‘ (106)

which gives the result that is consistent with the one derived in (77).

5 Collision Singularity

In section 4, we discussed one type of singularity, that is when the particles are aligned
in a straight line. Here we consider the case when all three particles collide at the origin.
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Let (r1,72) = (0,0). Then the corresponding end of section is {; = (0,0). We recall
that (70) holds for any ¢ and any g € SO(3). Therefore we have for g € G¢, = SO(3)

(Ef)(0) = D'(9)(EL,£)(0). (107)
This in terms of the local coordinates gives
(Pamf)(0) = €7 Y~ dl, (8™ (PL,.)(0), (108)
i -

and this holds for all ¢',v/, ¢'. _(107) says that the linear subspace spanned by E! f is
invariant. Noting that D!, is a irreducible representation, we conclude that

(Enf)0) =0, 1#0. (109)

For .l = 0 we simply have the identity equation since D' = 1. The implication of this
is that in general we can not say that the wavefunction is zero, and therefore as a
consequence of this, there is a possible collision after all. The whole purpose of this is
to try to express the wavefunction as a Fourier expansion. The wavefunction which is
expanded at the point 0 is '

00

fO) = 3 Y Dhnl)(Piaf)(0) (110)
=0 |ml,In|<l
= (Pof)O)-. (111)

5.1 Configuration in nbd of the collision

Since the center of mass of the system is fixed at the origin, we must have x; =
xz = &3 = 0 when the collision takes place. In terms of Jacobi vectors (21-22), this
corresponds to 1 = 7z = 0. The colliding configuration corresponds to 7, = 7, =
n3 = 0 in terms of the internal local coordinates. There is no reason why we can not
expand the wavefunction in terms of D' as before. The boundary of the shape space M
is two dimensional, as opposed to three for the interior. However it is not always wise
to think that there is a drop in the number of variables. Instead, here we simply see
the triple collision situation as the special case—the case that some variables become
insignificant. As already discussed, the configuration space for the triatomic system
is six dimensional, and we revert our discussion back on the wavefunction f(a, ) on
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R3 x R3, where o and 3 really are nothing other than the Jacobi vectors (21-22). Each
o and B have components a;, and 3;, j = 1,2, 3 respectively. Now, if this wavefunction
is ahalytic at the origin, and therefore analytic when triple collision takes place, f has
the expansion of the form

fle,B) =) e’ B, (112)
1,J
where we have used the notations
I=(i1,iz,0s), J=(jdada), o =afoay, B’ =pl6065. (113)

Here we emphasize once again that, for given f we would like to expand this series into
a Fourier series in terms of the D-functions. First we consider a section just as we did
for the colinear case. We have already discussed that

M = Xo/SO(3) = R? x R3/S0(3) (114)

is the shape space which is homeomorphic with {z € R? | z3 > 0}. For 7 defined in
(14) and for an open set U C M, we may express any (a,B) € 7 1(U) as

(o, B) = go = (901(9),02(9)), g€V (115)

where ¢ are the local coordinates in M, g € SO(3), and o; are the components of o
defined in (16).

Let P"(R? x R3) be the space of homogeneous polynomials of degree n in o, B;j.
Then we see that it is invariant under the SO(3) action, which means that SO(3) is
represented in P*(R3 x R3). This implies that the space P*(R® x R?) will be decom-
posed into irreducible subspaces with respect to the SO(3) action. In each irreducible

subspace, the basis polynomial transformation is subject to

pm(g7 @, g7'B8) = Y (e, B)Dpm(9)- (116)

In{<l

Hence if we substitute (115) into (112), we expect to be able to put f into a Fourier

series in terms of D-functions

f(901(2),9022) =D Y Dl )cHn(@)- (117)

1=0 |ml,|n|<!
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5.2 Decomposition of space of homogeneous polynomials

It is of our interest to investigate this Fourier series in detail. Let P"(R?) denote the
space of homogeneous polynomials in u;,j = 1,2,3. Then P*(R3?) is decomposed into

r"HO(R3)  if nis even

r"1HY(R3) if nis odd (118)

Pn(R3) — Hn(R3) @ T2Hn—2(]R3) DD {
where H™(R3) is the space of solid harmonics of degree n. Here we point out that it is
isomorphic with the (2n + 1)-dimensional space H" for unitary irreducible representa-
tions of SO(3). In addition to that 72 is invariant under g € SO(3), the decomposition
(118) is reduced to

H® if n is even :
n M3y o~ gy n—1 n~ ..
PR H @ H" 1o @{Hl £ i odd (119)
Therefore this decomposition applied to P'(R3 x R3) gives
PR xR®) = Y  H"(R®)®H™R})
n+m=l
® Y H"(RY)®|BPH™(R)
n+m=l _
® > |afH YRS QH™(RS) @ (120)
n+m=l )
where we have used the identity
- PR*xR%) = ) P"(R®)®P™(R%), (121)

n+m=l

and the greek subscripts are placed so that one may not confuse the two R3’s. This
should further be put in terms of H™’s;

PR*xR%) = Y H@H"
n+m=l
® Y H@H™?
n+m=l|

& Y H2QH"@---. (122)

n+m=l
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We can again decompose (122) further, if we apply the Clebsch-Gordan decomposition
formula for SO(3),

HP @ HI = HIP-9 @ HIP-d+ g ... @ HPH (123)
and we finally obtain the decomposition
PREXRY2H oH T o2H 2@ ---. - (124)

5.3 Implication of the decomposition

We may deduce the main result of the article from the decomposition (124). The
decomposition implies that P!(R3 x R3) includes representations spaces H™ with m < [
only. Therefore the representation space H" arise from P™(R? x R?) with n > [. Basis
polynomials in H™ are subject to the transformation (116).

Now suppose that the wavefunction f is analytic at the origin. Given that we have
a triatomic system, and if f is an eigenstate associated with the eigenvalue /(I + 1) of
the total angular momentum operator L?, f must be a linear combination of D! (9),
coefficients of which are expressed as power series in the local coordinates g. This
implies that the eigenstate f expressed as a power series in o;, §; must have the
lowest order terms of the form a!/B@’ with |I| + |J| = [, where |I| = 4; + iz + 43, and -
|J| = j1 + J2 + Ja- : ‘

5.4 Example

In order to justify the main result obtained in the previous subsection, we present an
example here. Here we pay particular attention to the fact that the representation
spaces of SO(3), P!(R?), and H! are isomorphic, and we consider the tensor product

P'(R%) x P'(R®) = {tr(C"afT) = ) Cyaif; | C € C%}. (125)

1,j

The Clebsch-Gordan formula applied on this gives

H' @ H! = H° o H' & H?, S (126)
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and here we aim to identify each component in the right hand side of (126). Just as
we considered the basis of tensor product like the one in (116), here we consider the
transformation of the basis a3”. This transformation is subject to

af” — g(apT)g™ (127)

then one has tr(CT)g(aB7)g™!) = tr(gCg~'aBT). So the transformation of C is
subject to

Cr A, :=gCg7. (128)

Here we note that the symmetric and anti-symmetric matrices are invariant under the
adjoint action of g, and since tr(g~'Cg) = tr(C), the representation of SO(3) in C3*3
is reducible down to three subspaces

C33 = {MI|XxeC} (129)
CP3 = {CeC¥™|Cc=-CT} (130)
C3® = {CeC¥™|C=C",t(C) =0} (131)

It is trivial to observe that dimC3*® = 1, dimC¥*? = 3, dimC3*® = 5, and C¥® =
@3:0 C33, so we may identify C¥? with 1.
For C), C, € C3%3, define the inner product

(Cl, Cg) = tl‘(C:C&), (132)

and under this inner product, it can be shown easily that the adjoint operator A, is
unitary. Recall that C3*? are invariant subspaces of C3*® under A,, we observe that
the adjoint operator restricted to C3** domain is a U(2j + 1) operator. Further, note
that @;‘:0 C?X3 is an orthogonal direct sum. In particular, if we choose C; and C,
such that C{ = —C), CT = C,, we have

(C1,C2) =0 (133)

and this implies that C3*3@C3*3 and C3*3 are orthogonal to each other. In addition, if
we particularly choose C; = A3 and C; with tr(C;) = 0, we again have (133), implying
C3*® and C3*3 are orthogonal to each other.
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The bases of H° and H! are a - B and the components of a x 3 respectively. The
bases of H? are a;0; + @;0;(i < j), 11 — aafs, azfB2 — a3fB3. However, these bases
should be transformed into suitable ones in order to get unitary matrices D'(g),l = 1,2
as transformation matrices such that (116) holds.

For the case | = 1, let v = a x B. If a and 3 are transformed to go and g8
respectively, then ~ transforms subject to v — g+, and we have

(g 7y) = Zpﬁ,?('v) (@) (134)

for the polynomials defined by

@ 1) e e e m) 135
(p yPo s P-1 ( \/§ Y3, \/ﬁ ( )

In fact the polynomials ps,ll) are related to the spherical harmonics by
P (w) =/ 4?WrYlm(é) $), m=-101 (136)

Next is the case when [ = 2. First note that
H? = HE(R3) = {tr(CTuu”) = ZC’ijuiuj |C e C¥3,C=CT,tr(C) =0}, (137)
%,J

and we present the following as the bases of H?(R3);

g2 = (w—i)/2 (138)
g2 = w(u—iv), (139)
G0 = (20— (u’+v%), (140)
q = —w(u+iv) (141)
@ = (u+iv)?/2. (142)

Similarly these polynomials are related to the spherical harmonics by

gm(u) = \/ ?—gﬂYzm(G, é), m=2,1,0,—-1,—-2 (143)

that transform subject to

(97 = D_ an(w)Din(9). (144)
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For the bases

1 -2 0 0 0 1 -1 0 0
o2=31| —-i -1 0 |, 6.1=210 0 —i |, gp=- 0 -1 0|},
0 0 0 1 -2 0 0 0 2
0 0 -1 1 4 0
or=3| 0 0 —i ], op=1|di -1 0|,
-1 —i 0 0 0 O
(145)
for C3*3, the solid harmonics g,,(u) is put in the form
gm(u) = tr(omuu’), m=-2,-1,0,1,2 (146)
and the g, (u) have the generating function
2 .
Q2(u,t) = ZCmqm(u)tz_m (147)
-2
with (c_z,c_1,¢0,c1,¢2) = (2,4,2V6,4,2). If we observe that Q- is expressed as
Qa(u,t) = (V2pH (w)e? + 20" (w)t + v2pP (w))?, (148)
we find that
= ()2
g-2(u) = pii(u)? (149)
g-1(w) = v2p{(uw)p%(u), (150)
2
wo(w) = =06 (W + i (w)pl(w)), (151)
a(w) = Vol (upl’(u), (152)
o(w) = p(u)’. (153)

Further, define the function

Pz(a, ﬂ, t) = ((a1 —_ iaz)tz + 2&3t —_ (al + az))((ﬂl - iﬁg)tz + 2,33t - (,31 + 2,32)),
(154)

which expands into

2
Py, B,8) = ) cmpm(ax, B)* ™, (155)
—2
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pa(e,B) = 5lon—iar)(By~ifh), (156)
pa(eB) = glas(By—if) + (oa — iaz)fh), (157)
Po(@,B) = 5=(baals = (e —iog) By +ify) (1 + ioa) (61 = i), (158)
p(e,B) = —5((01+ian)Bs+ a8 + i) )
pa(e,B) = o(on+iag)(Bi +iBy). (160

The relations with pﬁ,l,) are given by

p_a(a,B) = p(a)pti(B), | (161)
pa@B) = LePeplE +sher’®, a6
o, B) = f(2p(1)(a)p(1)(ﬁ)+p(”(a)p(”(ﬂ)+p(”(a)p(”( ) (169
p(a,B) = f<p<”<a>p<”(ﬂ>+p“>( )7 (8)), | (164)

pa(a,B) = “’(a)p V(8) | (165)

The functions pm(a, 8) form a basis of the space of polynomials associated with C33,
{tr(CTafB) = Zc,,a,mc CT,tr(C) = 0} (166)

and are expressed as

pm(a, B) = tr(oaB). (167)

Here we note that g (u) transforms according to gm(g7'u) =3, gn(u)D2,.(g). Since

am(g~u = tr(gomg'uuT), and since Y, ¢n(u)D2,(9) = tr(3, onD2, (9)uuT), we
see that o,, are subject to the transformation

Agom = 0:Dir(9). (168)
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If we apply this transformation rule to p,,(a, ), we find that
Pm(9778,978) = > _ pulx, B)D2,,(9)- (169)

Therefore we found a realization of the component space H2 in the decomposition
(126).

References

[1] R. G. Littlejohn and M. reinsch, Rev. Mod. Phys. 69, 213 (1997).

[2] R. G. Littlejohn and M. reinsch, Boundary conditions on internal three-body wave
functions, Physical Rev. A Vol. 61, 042502, (2000).

[3] T.Iwai, A geometric setting for internal motions of the quantum three-body system,
J. Math. Phys. 28, 1315 (1987).

[4] S. Tanimura, T. Iwai, Reduction of quantum systems on Riemannian manifolds
with symmetry and application to molecular mechanics, J. Math. Phys., Vol. 41,
No. 4, (2000).

[5] R. G. Littlejohn, K. A. Mitchell, V. Aquilanti, S. Cavalli, Body frames and frame
singularities for three-atom systems, Physical Rev. A Vol. 58, 3705, (1998).

[6] R. G. Littlejohn, K. A. Mitchell, V. Aquilanti, S. Cavalli, Internal spaces, kine-

matic rotations, and body frames for four-atom systems, Physical Rev. A, Vol. 58,
3718, (1998).

28



