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1 Introduction.
We consider the following first order nonlinear partial differential equation of general
form in the complex domain:

(1.1) $\{$

$f(x, u(x)$ , $\partial_{x}u(x))=0$ ,
$u(0)=0$

where $x=$ $(x_{1}, \ldots, x_{n})\in \mathrm{C}^{n}$ , $\partial_{x}u=(\partial_{x_{1}}u, \ldots, \partial_{x_{n}}u)$ , and $f(x, u, \xi)(\xi=(\xi_{1}, \ldots, \xi_{n})$

$\in \mathrm{C}^{n})$ is a holomorphic function in a neighborhood of the origin.
We assume that $f(x, u, \xi)$ is an entire function in $\xi$ variables when $x$ and $u$ are fixed.

As afundamental assumption, we always assume the existence of aformal solution of
the equation (1.1), that is,

Assumption 1The equation (1.1) has aformal solution of the form

(1.2) $u(x)= \sum_{|\alpha|\geq 1}u_{\alpha}x^{\alpha}=\sum_{j=1}^{n}\xi_{j}^{0}x_{j}+\sum_{|\alpha|\geq 2}u_{\alpha}x^{\alpha}\in \mathrm{C}[[x]]$,

where $\alpha=$ $(\alpha_{1}, \ldots, \alpha_{n})\in \mathrm{N}^{n}(\mathrm{N}=\{0,1,2, \ldots\})$ denotes the multi-index and $|\alpha|=$

$\alpha_{1}+\cdots+\alpha_{n}$ .

Our interest in this note is to study the convergence or the divergence nature of such
formal solution in the case where the equation (1.1) is singular in the sense defined in
Miyake-Shirai [3] as follows:

(1.3) $f(0,0, \xi)\equiv 0$ , for all $\xi\in \mathrm{C}^{n}$ .

By (1.3), the coefficients $\xi^{0}=(\xi_{1}^{0}, \ldots, \xi_{n}^{0})$ of linear part of the formal solution (1.2)
satisfy

$\frac{\partial}{\partial x_{i}}f(x, u(x)$ , $\partial_{x}u(x))|_{x=0}=\frac{\partial f}{\partial x_{i}}(0,0, \xi^{0})+\frac{\partial f}{\partial u}(0,0, \xi^{0})\xi^{0}.\cdot=0$
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for $i=1,2$ , $\ldots$ , $n$ . We take and fix one $\xi^{0}$ of such roots.
Let $v(x)=u(x)- \sum_{j=1}^{n}\xi_{j}^{0}x_{j}$ be anew unknown function. By substituting this power

series into (1.1), we see that $v(x)$ satisfies the following equation:

(1.4) $P_{0}v(x)= \sum_{|\alpha|=2}c_{\alpha}x^{\alpha}+f_{3}(x, v(x),$

$\partial_{x}v(x))$ , $v(x)=O(|x|^{2})$ ,

where $f_{3}(x, v, \xi)$ is holomorphic in aneighborhood of the origin with Taylor expansion

$f_{3}(x, v, \xi)=\sum_{|\alpha|+2r+|\kappa|\geq 3}f_{\alpha r\kappa}x^{\alpha}v^{r}\xi^{\kappa}$

, $\kappa=\{\kappa_{j}\}\in \mathrm{N}^{n}$ , $| \kappa|=\sum_{j=1}^{n}\kappa_{j}$ ,

and $P_{0}$ denotes the operator of the form

(1.5) $P_{0}--(x_{1}, \ldots, x_{n})A$ $(\begin{array}{l}\partial_{x_{1}}\vdots\partial_{x_{h}}\end{array})$ $+f_{u}(0,0, \xi^{0})$

by an $n\cross n$ matrix $A=(a_{ij})_{i,j=1,2,\ldots,n}=(f_{x:\epsilon_{j}}(0,0, \xi^{0})+f_{u\xi_{j}}(0,0, \xi^{0})\xi_{i}^{0})_{i,j=1,2,\ldots n}’$.
Let the Jordan canonical form of $A$ be given by

$A\sim(\begin{array}{lllll}A_{m} B_{1} \ddots B_{p} O_{q}\end{array})$

where

$A_{m}=(\begin{array}{llll}\lambda_{1} \delta_{1} \lambda_{2} \ddots \ddots \delta_{m-1} \lambda_{m}\end{array})$ , $B_{j}=$ $(\begin{array}{llll}0 1 0 \ddots \ddots 1 0\end{array})$ and $O_{q}$

are the block of nonzero eigenvalues of size $m$ , nilpotent block of size $nj$ and zero matrix
block of size $q$ , respectively. It is obvious that $m+n_{1}+\cdots+n_{p}+q=n$ .

Under the above situation, Miyake-Shirai [3] proved the following results:

Theorem 1(Miyake-Shirai) (i) Let $m=n$ and $\{\lambda_{j}\}_{j=1}^{n}$ satisfy the following condi-
tion which is called the Poincare’ condition:

(1.6) $\mathrm{C}\mathrm{h}(\lambda_{1}, \ldots, \lambda_{n})\geq 0$ ,
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where $\mathrm{C}\mathrm{h}(\lambda_{1}, \ldots, \lambda_{n})$ denotes the convex hull of $\{\lambda_{1}, \ldots, \lambda_{n}\}$ . Then the for$mal$ solution
$u(x)$ converges in a neighborhood of the origin.

(ii) If $q=n$ and $f_{u}(0,0, \xi^{0})\neq 0$ , then the fomal solution $u(x)$ belongs to the Gevrey
class of order at most 2, that is, power series $\sum_{|\alpha|>1}u_{\alpha}x^{\alpha}/|\alpha|!_{f}$ which is a formal 2-B0rel
transfom of $u(x)_{f}$ converges in a neighborhood $of^{-}the$ origin.

Our purpose in this note is to determine the Gevrey order in the case where the
matrix $A$ is nilpotent, that is, the case where $m=0$ and $p\geq 1$ , which is not studied in
Miyake-Shirai [3].

Theorem 2 If $m=0$, $p\geq 1$ and $f_{u}(0,0,\xi^{0})\neq 0$ , then the fomal solution $u(x)$ of (1.1)
belongs to the Gevrey class of order at most $2N$ with $N= \max\{n_{1}, \ldots, n_{p}\}$ , that is,
the power series $\sum_{|\alpha|\geq 1}u_{\alpha}x^{\alpha}/|\alpha|!^{2N-1}$ , which is a formal $2N$-Borel transform of $u(x)$ ,
converges in a neighborhood of the origin.

In the case of first order linear singular equations, Hibino [2] and Yamazawa [6], [7]
studied the same problem and they determined the Gevrey order of the formal solutions
which deeply depends on the Jordan canonical form of $A$ . Theorem 2is anonlinear
version of their results in the case where the matrix $A$ is nilpotent.

At the end of this introduction we give amention about the study by G\’erard-Tahara
on singular partial differential equations which can be seen in their book [1] and the
references therein. Their research goes to many kinds of problems for singular (nonlinear)
partial differential equations such as the convergence of formal solutions, the Maillet type
theorem for divergent formal solutions, the existence of singular solutions, etc. However,
their study is somewhat restricted to the equation of reduced form such as

(1.7) $\{\begin{array}{l}\dot{.}\sum_{\dot{v}=1}^{n}a_{j}\dot{.}x_{\dot{l}}\partial_{x_{\mathrm{j}}}u+cu=\sum_{j=1}^{n}a_{j}x_{j}+f_{2}(x,u,\{x..\partial_{x_{j}}u\}..,j=1,2,\ldots,n)u(0)=0\end{array}$

where $f_{2}(x, u, \xi)=\sum_{|\alpha|+r+|\kappa|\geq 2}f_{\alpha r\kappa}x^{\alpha}u^{r}\xi^{\kappa}$. Our equation (1.4) which is areduced form
from (1.1) is similar with (1.4) for linear part but is amore weaker form for nonlin-
ear terms in the sense of vanishing order. Our theory can be said to be atrial of a
classification of singular equations from the general point view.

2 Refinement of Theorem.
After alinear transformation of variables which reduces the matrix $A$ to its Jordan
canonical form, we can obtain more precise estimates of the Gevrey order in each variable.
In order to state the result, we prepare some notation and definitions
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Definition 1($s$-Borel transformation) Let $s=(s_{1}, \ldots, s_{n})\in(\mathrm{R}\geq 1)^{n}$ where $\mathrm{R}_{\geq 1}=$

$\{x\in \mathrm{R};x\geq 1\}$ . For formal power series $f(x)= \sum_{|\alpha|\geq 0}f_{\alpha}x^{\alpha}$ , the $s$-Borel transforma-
tion $B_{S}(f)(x)$ of $f(x)$ is defined by

(2.1) $B_{S}(f)(x)= \sum_{|\alpha|\geq 0}f_{\alpha}\frac{|\alpha|!}{(s\cdot\alpha)!}x^{\alpha}$ .

Definition 2(Gevrey class $\mathcal{G}_{x}^{S}$ ) We say that $f(x)= \sum_{|\alpha|\geq 0}f_{\alpha}x^{\alpha}\in \mathcal{G}_{x}^{S}$ , if the s-Borel
transformation $B_{S}(f)(x)$ converges in aneighborhood of the origin, and $s$ is called the
Gevrey order.

Remark 1(i) If two Gevrey orders $s=\{sj\}$ and $s’=\{s’\}j$ SatiSw $Sj\leq S’j$ for all

$j=1,2$ , $\ldots$ , $n$ , then $\mathcal{G}_{x}^{S}\subset \mathcal{G}_{x}^{S’}$ .
(ii) If $s’=(s’, s’, \ldots, s’)\in(\mathrm{R}_{\geq 1})^{n}$ , then $\mathrm{f}(\mathrm{x})\in \mathcal{G}_{x}^{S’}$ if and only if

$\sum\frac{f_{\alpha}}{|\alpha|!^{s’-1}}x^{\alpha}$

converges in aneighborhood of the origin, Moreover, for all linear transformations
$\xi=xM$ ( $\xi\in \mathrm{C}^{n}$ and $M$ is an $n\mathrm{x}$ $n$ invertible matrix), $g(\xi):=f(\xi M^{-1})\in \mathcal{G}_{\xi}^{(S’)}$ .

(iii) For aformal power series $u(x)\in \mathrm{C}[[x]]$ , if $B_{S}(u)(x)\in \mathcal{G}_{x}^{\hat{S}}$ , then we have $u(x)\in$

$\mathcal{G}_{x}^{S+\hat{\mathit{8}}-1_{n}}$ with $1_{n}=(1,1, \ldots, 1)\in \mathrm{N}^{n}$ .

Let us give arefined form of Theorem 2. Let assume the vanishing order of $v(x)$ be
$K\geq 2$ . Then by alinear change of independent variables which brings the matrix $A$ in
(1.5) to the Jordan canonical form, the equation (1.4) is reduced to the following form:

(2.2) $Pv(y, z)= \sum_{|\beta|+|\gamma|=K}c_{\beta,\gamma}y^{\beta}z^{\gamma}+f_{K+1}(y, z, v, \partial_{y}v, \partial_{z}v)$
,

with $v(y, z)=O((|y|+|z|)^{K})$ , where

(2.3) $P= \sum_{i=1}^{p}\sum_{j=1}^{n_{i}-1}\delta y_{i,j+1}\partial_{yi,j}+c$, $c=f_{u}(0,0, \xi^{0})$ ,

$\delta$ , $c\in \mathrm{C}\backslash \{0\}$ , $y=\{\mathrm{u}\mathrm{k}\}y^{2}$ , $\ldots$ , $y^{p}$ ) $\in \mathrm{C}^{n_{1}+\cdots+n_{p}}$ where $y^{i}=(y_{i,1}, \ldots, y_{i,n:})\in \mathrm{C}^{n_{j}}$ ,
$z=(z_{1}, \ldots, z_{q})\in \mathrm{C}^{q}$ ,

$f_{K+1}(y, z, v, \eta, \zeta)=\sum_{|\beta|+|\gamma|+Kr+(K-1)(|\mu|+|\nu|)\geq K+1}f_{\beta\gamma r\mu\nu}y^{\beta}z^{\gamma}v^{r}\eta^{\mu}\zeta^{\nu}$
,

where $|\beta|$ , $|\gamma|$ , $|\mu|$ and $|\nu|$ denote the length of multi-indices $\beta=\{\beta_{i,j}\}\in \mathrm{N}^{n_{1}+\cdots+n_{\mathrm{p}}}$ ,
$\gamma=\{\gamma_{k}\}\in \mathrm{N}^{q}$ , $\mu=\{\mu_{i,j}\}\in \mathrm{N}^{n_{1}+\cdots+n_{p}}$ and $\nu=\{\nu_{k}\}\in \mathrm{N}^{q}$ , respectively
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Remark 2 We may assume that the constant $\delta$ is as small as we want. Indeed, we
introduce new independent variables $\eta=\{\eta_{i,j}\}$ by $\eta_{i,j}=\epsilon^{n_{1}+\cdots+n_{i-1}+j}y_{i,j}$ . Then $\delta$ is
changed by $\epsilon\delta$ . Therefore, by choosing $\epsilon>0$ small enough, we may assume that the
coefficient $\delta$ is arbitrary small.

For $p=(p_{1},p_{2}, \ldots,p_{d})(d\geq 1)$ and a constant $a$ , we define $p(a)$ by

(2.4) $p(a)=(p_{1}+a,p_{2}+a, \ldots,p_{d}+a)$ .

Then Theorem 2is obtained immediately from the following:
Proposition 1 The equation (2.2) has a unique fomal solution which belongs to the
Gevrey class of order $s$ with

(2.5) $s$ $=(s^{1}(\sigma), s^{2}(\sigma),$
$\ldots$ , $s^{p}(\sigma)$ , $1_{q}(\sigma))$ ,

where $s^{i}=$ $($ 1, 2, $\ldots$ , $n_{i})\in \mathrm{N}^{n}:$ , $1_{q}=(1,1, \ldots, 1)\in \mathrm{N}q$ and

(2.6) $\sigma=\max_{\gamma(\beta,,r,\mu,\nu)}\{\frac{A(\mu,\nu)}{|\beta|+|\gamma|+Kr+(K|-1)(|\mu|+|\nu|)-K}$ ; $f_{\beta\gamma r\mu\nu}\neq 0\}$ ,

$A(\mu, \nu)=\{\max\{j..01\mu_{i,j}\neq 0\}ififif|\mu|=|\nu|=0|\mu|=0,|\nu|\geq|\mu|\geq 1,.1$

Proof of Theooem 2. As mentioned above, the equation (2.2) is the one which is obtained
from (1.4) by alinear change of independent variables. The Gevrey order of the formal
solution $v(x)$ of (1.4) is estimated by the maximal value of components of $s$ . Since
$A( \mu, \nu)\leq N=\max\{n_{1}, \ldots, n\}p$ ’ and the determination of $s^{i}$ , we see that the Gevrey
order of $v$ is estimated by $2N$ .

$\blacksquare$

3 Sketch of the Proof of Proposition 1.
In this section, we shall prove Proposition 1by assuming the lemmas below, since we are
not permitted enough space to write down the complete proofs of lemmas. The complete
proofs will be found in aforthcomming paper [5].

The uniqueness of formal solutions is easily proved by using the following lemma:
Lemma 1 (i) Let $\mathrm{C}[y, z]_{L}$ be the set of homogeneous polynomials of degoee $L$ in $y$ and
$z$ variables. Then for all $L\geq 2_{f}$ the operator $P:\mathrm{C}[y, z]_{L}arrow \mathrm{C}[y, z]_{L}$ is invertible.

(ii) Let $\hat{s}$ $:=(s^{1}, \ldots, s^{p}, 1_{q})=s-\sigma_{n}$ with $\sigma_{n}=1_{n}(\sigma)-1_{n}=(\sigma, \sigma, \ldots, \sigma)\in(\mathrm{R}_{\geq 1})^{n}$,
and $u_{L}(y, z)$ , $f_{L}(y, z)\in \mathrm{C}[y, z]_{L}$ . We consider the following equation:

$Pu_{L}(y, z)=f_{L}(y, z)$ .
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If a majorant relation $B_{\hat{S}}(f_{L})(y, z)<<F_{L}\cross(|y|+|z|)^{L}$ does hold $with|y|= \sum_{i=1}^{p}\sum^{n_{i}}j=1y_{i,j}$

and $|z|= \sum_{k=1}^{q}z_{k}$ , then there exists a positive constant C $>0$ independent of L such
that
(3.1) $B_{\hat{S}}(u_{L})(y, z)=B_{\hat{S}}(P^{-1}f_{L})(y, z)<<CF_{L}\cross(|y|+|z|)^{L}$.

In fact, the uniqueness of formal solutions is implied from this lemma as follows.
We put $v(y, z)= \sum_{L>K}v_{L}(y, z)$ , $(v_{L}(y, z)\in \mathrm{C}[y, z]_{L},$ $K\geq 2)$ . By substituting this into
(2.2), and by Lemma $\overline{1}(\mathrm{i})$ , we can see that $\{v_{L}(y, z)\}_{L\geq K}$ are determined uniquely. Thus
the uniqueness is proved. $\blacksquare$

$\bullet Idea$ of the proof of Lemma 1. Lemma 1 (i) is obvious, since $c=f_{u}(0,0, \xi^{0})\neq 0$ .
In order to prove Lemma 1(ii), we introduce anorm for ahomogeneous polynomial

$u_{L}(y, z)\in \mathrm{C}[y, z]_{L}$ by

$||u_{L}||_{S}:= \inf\{C>0;B_{S}(u_{L})(y, z)\ll C(|y|+|z|)^{L}\}$ , $s\in(\mathrm{R}_{\geq 1})^{n}$ .

We may assume that the constant $\delta$ in $P$ is as small as we want by alinear change of
independent variables. Then by this assumption, we can prove that the operator norm
of $P^{-1}$ is estimated by $||P^{-1}||_{\hat{S}}\leq C$ by apositive constant $C>0$ which is independent
of $L$ . In fact, it is easily proved that $||y_{i,j+1}\partial_{yij}u_{L}||_{\hat{S}}\leq||u_{L}||_{\hat{S}}$ . $\mathrm{T}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}$ implies Lemma 1
(ii), II

Next, we shall give aestimate of the Gevrey order. We put $U(y, z)=Pv(y, z)$ as $\mathrm{a}$

new unknown function. Then $U(y, z)$ satisfies the following equation:

(3.2) $U(y, z)= \sum_{|\beta|+|\gamma|=K}c_{\beta\gamma}y^{\beta}z^{\gamma}+f_{K+1}(y, z, P^{-1}U, \partial_{y}P^{-1}U, \partial_{z}P^{-1}U)$
,

with $U(y, z)=O((|y|+|z|)^{K})$ . By applying the $\hat{s}$-Borel transformation to the equation
(3.2), we have

(3.3) $B_{\hat{S}}(U)(y, z)$ $=$ $\sum_{|\beta|+|\gamma|=K}c_{\beta\gamma}\frac{(|\beta|+|\gamma|)!}{\{\hat{s}\cdot(\beta,\gamma)\}!}y^{\beta}z^{\gamma}$

$+B_{\hat{S}}\{f_{K+1}(y, z, P^{-1}U, \partial_{y}P^{-1}U, \partial_{z}P^{-1}U)\}$ .

In order to construct amajorant equation of this equation, we prepare the following
lemma.

Lemma 2(i) For trno arbitrary formal power series $u(y, z)= \sum_{|\beta|+|\gamma|\geq 0^{u}\beta\gamma}y^{\beta_{Z}\gamma}$ and
$v(y, z)= \sum_{|\beta|+|\gamma|\geq 0}v_{\beta\gamma}y^{\beta}z^{\gamma}$, we have

$B_{\hat{S}}(uv)(y, z)\ll C_{0}B_{\hat{S}}(|u|)(y, z)B_{\hat{S}}(|v|)(y, z)$ , $C_{0}= \max\{s_{ij}\}\geq 1$ ,
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where $|u|(y, z):= \sum_{|\beta|+|\gamma|\geq 0}|u_{\beta\gamma}|y^{\beta}z^{\gamma}$ .
(ii) If $B_{\hat{S}}(u)(y, z) \ll W(T)=\sum_{L\geq 0}W_{L}T^{L}(T=|y|+|z|)$ , then there exists a positive

constant M $>0$ independent of i,j and k such that

$B_{\hat{S}}( \partial_{y.,j}.P^{-1}u)(y, z)\ll M\frac{d}{dT}(T\frac{d}{dT})^{j-1}W(T)$ , for $(i,j)\in J$,

$B_{\hat{S}}( \partial_{z_{k}}P^{-1}u)(y, z)\ll M\frac{d}{dT}W(T)$ , for $k=1,2$ , $\ldots$ , $q$ ,

where $J=\{(i,j) ; i=1,2, \ldots,p, j=1,2, \ldots, n_{i}\}$ .
$\bullet$ Idea of the proof of Lemma 2. In order to prove Lemma 2, it is sufficient to estimate
the product of the Gamma functions by using the Stirling formula. $\blacksquare$

Next we consider the following ordinary differential equation which is called the
majorant equation of (3.3):

(3.4) $W(T)=( \sum_{|\beta|+|\gamma|=K}|c_{\beta\gamma}|\frac{(|\beta|+|\gamma|)!}{\{\hat{s}\cdot(\beta,\gamma)\}!})T^{K}$

$+|f_{K+1}|$ ($T$, $\ldots$ , $T$, $C_{1}W$, $\{C_{2}\frac{d}{dT}(T\frac{d}{dT})^{j-1}W\}_{(:,j)}$ , $\{C_{2}\frac{d}{dT}W\}_{k}$),
where $C_{1}=CC_{0}$ , $C_{2}=MC_{0}$ .

Let us explain how the equation (3.4) is derived ffom (3.3). By Lemmas 1and 2,
we can show that amajorant relation $B_{\hat{S}}(U)(y, z)<<G(T)$ implies $B_{\hat{S}}(P^{-1}U)(y, z)\ll$

$CG(T)$ and

$B_{\hat{\mathit{8}}}\{f_{K+1}(y, z, P^{-1}U,\partial_{y}P^{-1}U,\partial_{z}P^{-1}U)\}$

$\ll$ $|f_{K+1}|$ ($T$, $\ldots$ , $T$, $C_{1}G$ , $\{C_{2}\frac{d}{dT}(T\frac{d}{dT})^{j-1}G\}_{(:,j)}$ , $\{C_{2}\frac{d}{dT}G\}_{k}$).
Indeed, it is sufficient to notice that $B_{\hat{S}}(U^{2})\ll\{C_{0}B_{\hat{S}}(|U|)\}^{2}$ by $C_{0}\geq 1$ , etc., and that

$B_{\hat{S}}(y^{\beta}z^{\gamma}(P^{-1}U)^{r}. \cdot,\prod_{j,k}(\partial_{y\dot{.},\mathrm{j}}P^{-1}U)^{h.\mathrm{j}}(\partial_{z_{k}}P^{-1}U)^{\nu_{k}})$

$\ll y^{\beta}z^{\gamma}\{C_{0}B_{\hat{S}}(|P^{-1}U|)\}^{r}.\cdot,\prod_{j,k}\{C_{0}B_{\hat{S}}(|\partial_{y.,\mathrm{j}}P^{-1}U|)\}^{\mu_{\mathrm{j}}}\cdot\{C_{0}B_{\hat{S}}(|\partial_{z_{k}}P^{-1}U|)\}^{\nu_{k}}$

$\ll T^{|\beta|+|\gamma|}(CC_{0}G)^{r}\prod_{i,j,k}\{MC_{\sigma}\frac{d}{dT}(T\frac{d}{dT})^{j-1}G\}^{\mu:,\mathrm{j}}\{MC_{0}\frac{d}{dT}G\}^{\nu_{k}}$

100



Therefore by the above construction of the equation (3.4), the formal solution $W(T)$ of
(3.4) is amajorant series of $B_{\hat{S}}(U)(y, z)$ , that is,

(3.5) $W(|y|+|z|)>>B_{\hat{S}}(U)(y, z)$ .

For the equation (3.4), we have $W(|y|+|z|)\in \mathcal{G}_{y,z}^{1_{n}(\sigma)}$ , because we can prove the
following result:

Lemma 3Let $s_{k}\geq 0$ $(k=1,2, \ldots, n)$ be non negative real numbers and $D_{T}=d/dT$

$(T\in \mathrm{C})$ . We define the formal differentiation $(TD_{T})^{s_{k}}$ by

(3.6) $(TD_{T})^{s_{k}}(T^{L}):=L^{s_{k}}T^{L}$ .

We consider the following nonlinear equation:

(3.7) $U(T)=aT^{K}+f_{K+1}(T, U, \{D_{T}(TD_{T})^{s_{k}}U\}_{k=1,2,\ldots,n})$ , $U(T)=O(T^{K})$ ,

where $K\geq 2$ and
$f_{K+1}(T, U, \xi)=\sum_{V(i,j,\alpha)\geq K+1}f_{ij\alpha}T^{i}U^{j}\xi^{\alpha}$

.

Here $V(i,j, \alpha)=i+Kj+(K-1)(\alpha_{1}+\cdots+\alpha_{n})$ which denotes the vanishing order of
$f_{ij\alpha}T^{i}U^{j} \prod_{k=1}^{n}\{D_{T}(TD_{T})^{s_{k}}U\}^{\alpha_{k}}$ . Then the equation (3.7) has a unique formal solution
$w$ hich belongs to $\mathcal{G}_{T}^{1+\sigma}$ with

$\sigma=\max\{\frac{A(i,j,\alpha)}{V(i,j,\alpha)-K}$ ; $f_{ij\alpha}\neq 0\}$

where
$A(i,j, \alpha)=\{$

$\max\{s_{k}\}+1$ $(\alpha_{k}\neq 0)$ ,
0 $(|\alpha|=0)$ .

We remark that $A(i, j, \alpha)$ denotes the maximal order of differentiation in each term
$f_{ij\alpha}T^{i}U^{j} \prod_{k=1}^{n}\{D_{T}(TD_{T})^{s_{k}}U\}^{\alpha_{k}}$ .

$\bullet Idea$ of proof of Lemma 3. Lemma 3is proved by the same manner as the proof
of main theorem in [4, Theorem 1]. The most important point to prove Lemma 3is to
give aprecise estimate for the product of factorials of integers. In order to obtain such
apresice estimate, the following elementary inequality plays acrucial role:

For $n_{1}$ , $\ldots$ , $n_{k}\geq M(M\in \mathrm{N})$ , we have

$n_{1}$ ! $\cdots n_{k}!\leq M!^{k-1}(n_{1}+\cdots+n_{k}-(k-1)M)!$ .

After some careful estimations based on this inequality, we can prove Lemma 3. The

detail of the proof can be found in [4], [5]. $\blacksquare$
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Finally we return to the proof of Proposition 1. In our majorant equation (3.4), the
maximal order of differentiation in each term is given by $A(\mu, \nu)$ which appeared in the
statement of Proposition 1, and the difference of vanishing order of each term and that
of $W(T)$ is given by

$|\beta|+|\gamma|+Kr+(K-1)(|\mu|+|\nu|)-K$.

Therefore, by Lemma 3, we have $W(T)\in \mathcal{G}_{T}^{1+\sigma}$ .
By Lemma 1 (ii), the following majorant relation holds:

$B_{\hat{S}}(v)(y, z)=B_{\hat{S}}(P^{-1}U)(y, z)\ll CW(|y|+|z|)\in \mathcal{G}_{y,z}^{1_{n}(\sigma)}$ .

By Remark 1(iii), we have $u(y, z)\in \mathcal{G}_{y,z}^{\hat{S}+1_{n}(\sigma)-1_{n}}=\mathcal{G}_{y,z}^{S}$ .
Thus Proposition 1 is proved.

$\blacksquare$
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