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Maillet type theorem for first order
singular nonlinear partial differential
equaitons of nilpotent type

BEBRFRERS THERR LR
Graduate School of Mathematics, Nagoya University

H# BA (Akira Shirai)

1 Introduction.

We consider the following first order nonlinear partial differential equation of general
form in the complex domain:

(1.1) { ig) u(@),su(z) =

where z = (zy,...,2,) € C*, G;u = (8, 4,...,0:,u), and f(z,u,€) (€ = (&,...,&)
eC"isa holomorphlc functlon in a nelghborhood of the origin.

We assume that f(z,u, &) is an entire function in ¢ variables when z and u are fixed.
As a fundamental assumption, we always assume the existence of a formal solution of
the equation (1.1), that is,

Assumption 1 The equation (1.1) has a formal solution of the form

(1.2) u(z) = Z U™ = ZEJ:B, + Z uaz® € Cllz]],

lal21 o] >2
where o = (ay,...,an) € N (N = {0,1,2,...}) denotes the multi-index and |a| =
ay + -+ Q.

Our interest in this note is to study the convergence or the divergence nature of such
formal solution in the case where the equation (1.1) is singular in the sense defined in
Miyake-Shirai [3] as follows:

(1.3) £(0,0,6)=0, forall ¢£eC™

By (1.3), the coefficients £€° = (£9,...,£9) of linear part of the formal solution (1.2)
satisfy
_ of of

0\¢0 __
’ :cu(x)) 20 a U(O, 0)6 )gt =0

€% +
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fori=1,2,...,n. We take and fix one £° of such roots.
Let v(z) = u(z) -7, £Jz; be a new unknown function. By substituting this power
series into (1.1), we see that v(z) satisfies the following equation:

(1.4) Po(z) = Y caz® + fa(z,0(x),80(z)), (@) =O(lz*),

lal=2

where f3(z,v,£) is holomorphic in a neighborhood of the origin with Taylor expansion

fS(xavaé) = Z fars@®V7E", K= {KJ'} e N", IK’l = ZK'J'?
j=1 ‘

la|+2r+1s| 23
and P, denotes the operator of the form

O,
(1.5) Po=(x1,...,zn)A| + £.(0,0,£9)

n

by an n X n matrix A = (ai;)ij=12,..n = (fzig;(0,0,€%) + fug; (0, 0,£%€)ij=1,2,...n-
Let the Jordan canonical form of A be given by

Am
B,
A~
BP
Oq
where
A1 0
01 A2 1 0 ,
Am = .. .. ? Bj: .. . ‘ and Oq
St Am 10 '

are the block of nonzero eigenvalues of size m, nilpotent block of size n; and zero matrix
block of size g, respectively. It is obvious that m +n; + -+ +np, +g¢=n.
Under the above situation, Miyake-Shirai [3] proved the following results:

Theorem 1 (Miyake-Shirai) (i) Let m = n and {\;}} satisfy the following condi-
tion which is called the Poincaré condition:

(1.6) Ch(\y, ..., An) 20,
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where Ch(Ay, ..., \,) denotes the conver hull of {A1,-- ., A} Then the formal solution
u(x) converges in a neighborhood of the origin.

(%) If ¢ = n and £,(0,0,£°) # 0, then the formal solution u(z) belongs to the Gevrey
class of order at most 2, that is, power series EIGIZI uaz®/|c|!, which is a formal 2-Borel
transform of u(x), converges in a neighborhood of the origin.

Our purpose in this note is to determine the Gevrey order in the case where the
matrix A is nilpotent, that is, the case where m = 0 and p 2 1, which is not studied in
Miyake-Shirai [3].

Theorem 2 Ifm =0, p > 1 and f,(0,0,£° # 0, then the formal solution u(z) of (1.1)
belongs to the Gevrey class of order at most 2N with N = max{ny,...,n,}, that is,
the power series 31>, uaa®/|a|®™=1, which is a formal 2N-Borel transform of u(z),
converges in a neighborhood of the origin.

In the case of first order linear singular equations, Hibino (2] and Yamazawa [6], (7]
studied the same problem and they determined the Gevrey order of the formal solutions
which deeply depends on the Jordan canonical form of A. Theorem 2 is a nonlinear
version of their results in the case where the matrix A is nilpotent.

At the end of this introduction we give a mention about the study by Gérard-Tahara
on singular partial differential equations which can be seen in their book [1] and the
references therein. Their research goes to many kinds of problems for singular (nonlinear)
partial differential equations such as the convergence of formal solutions, the Maillet type
theorem for divergent formal solutions, the existence of singular solutions, etc. However,
their study is somewhat restricted to the equation of reduced form such as

n n
Z aij-"’iazj“ +cu= Z a;z; + fa(x, u, {xiax,-u}i,j=l,2,...,n))

ij=1 j=1

u(0) =0,

(1.7)

where fo(z,u, &) = 2 lal4r+ixs2 fars@*u"E". Our equation (1.4) which is a reduced form
from (1.1) is similar with (1.4) for linear part but is a more weaker form for nonlin-
ear terms in the sense of vanishing order. Our theory can be said to be a trial of a
classification of singular equations from the general point view.

2 Refinement of Theorem.

After a linear transformation of variables which reduces the matrix A to its Jordan
canonical form, we can obtain more precise estimates of the Gevrey order in each variable.
In order to state the result, we prepare some notation and definitions.
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Definition 1 (s-Borel transformation) Let s = (s1,...,8n) € (R>1)" where R>; =
{zx € R; & > 1}. For formal power series f(z) = > .50 fa @ the s-Borel transforma-
tion Bs(f)(x) of f(x) is defined by

(2.1) =2 o a),

|a|>0

Definition 2 (Gevrey class G3) We say that f(z) = 3,450 faz® € G, if the s-Borel
transformation Bs(f)(z) converges in a neighborhood of the origin, and s is called the
Gevrey order.

Remark 1 (i) If two Gevrey orders s = {s;} and s’ = {s}} satisfy s; < s; for all
j=1,2,...,n, then G5 Cc G5'.
(i) If 8’ = (¢, 8, ...,5) € (R>1)", then f(ac) e G3' if and only if

Z |a|'3’ a \

converges in a neighborhood of the:origin. Moreover, for all linear transformations
£ =zM (£ € C" and M is an n x n invertible matrix), g(§) := f({M™ e g(s)

(iii) For a formal power series u(z) € C[lz]], if Bs(u)(z) € g_,f, then we have u(z) €
G3+8-1n with 1, = (1,1,...,1) € N™.

Let us give a refined form of Theorem 2. Let assume the vanishing order of v(z) be
K > 2. Then by a linear change of 1ndependent variables which brings the matrix A in
(1.5) to the Jordan canonical form, the equation (1.4) is reduced to the following form:

(22) P’U(y, Z) = Z cﬁ;’}’y’@z’y + fK+1(y) 2,V, ayv, azv)a A
1Bl +lvI=K
with v(y, 2) = O((|y| + |2])*), where

n;—1

(2.3) P= ZZéyz,ﬁlay,,w ¢ = fu(0,0,€°),

i=1 j=1

5, ce C\ {0}, y = (y', 9% ...,9°) € Cm++m% where ¥* = (Yi1,..-,¥in) € C™,
z=(z1,...,%) € CY,

fK+1(y’ Z,U, 1, C) = Z fﬁ‘/ruvyﬁz’yvrnu(;y,
IBl+ v+ Kr+(K-1)(|ul+v)=>K+1

where |8, |v|, |u| and |v| denote the length of multi-indices B = {B;;} € Nmttns,
v ={m} € N9, u={u,;} € Nt *m and v = {1} € N respectively.
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Remark 2 We may assume that the constant § is as small as we want. Indeed, we
introduce new independent variables n = {n;;} by n;; = gm¥ini-itiy, .. Then § is
changed by €d. Therefore, by choosing ¢ > 0 small enough, we may assume that the
coefficient 4 is arbitrary small.

For p = (p1,p2,...,p4) (d > 1) and a constant a, we define p(a) by

(2.4) p(e)=(p+a,p2+a,...,ps+a).
Then Theorem 2 is obtained immediately from the following:

Proposition 1 The equation (2.2) has a unique formal solution which belongs to the
Gevrey class of order s with

(2.5) 8 = (8'(0),8%0),...,8%(0), 14(0)),
where 8* = (1,2,...,n;) € N™, 1,=(1,1,...,1) € N? and

e ey o TR | e 70}

max{j ; pi; #0} if |u|>1,
A(p,v) = 1 if |ul=0, |v]>1,
0 - if |ul=v|=0.

Proof of Theorem 2. As mentioned above, the equation (2.2) is the one which is obtained
from (1.4) by a linear change of independent variables. The Gevrey order of the formal
solution v(z) of (1.4) is estimated by the maximal value of components of s. Since
A(p,v) £ N = max{ny,...,n,}, and the determination of s, we see that the Gevrey
order of v is estimated by 2N. "

3 Sketch of the Proof of Proposition 1.

In this section, we shall prove Proposition 1 by assuming the lemmas below, since we are
not permitted enough space to write down the complete proofs of lemmas. The complete
proofs will be found in a forthcomming paper [5].

The uniqueness of formal solutions is easily proved by using the following lemma:

Lemma 1 (i) Let Cly, 2];, be the set of homogeneous polynomials of degree L in y and
z variables. Then for all L > 2, the operator P : Cly, 2], —> Cly, z]L is invertible.

(i) Let 8 :=(s',...,87,1,) = 8—0, with o, = 1,(0) — 1, = (0, 0, ... ,0) € (Ry1)™,
and ur(y, 2), fr(y, 2) € Cly, z].. We consider the following equation:

P’LLL(y, Z) = fL(ya Z).
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If a majorant relation Bg(f1)(y, z) < Fp x (ly|+12|)* does hold with lyl = 20 D Vi
and |z| = Y_1_, 2, then there exists a positive constant C > 0 independent of L such
that

(3.1) By (ur)(y, 2) = Bg(P~'f2)(1, 2) < CFy x (ly| + 12"

In fact, the uniqueness of formal solutions is implied from this lemma as follows.
We put v(y, 2) = 3ok (¥, 2), (vo(y,2) € Cly, 2], K 2 2). By substituting this into
(2.2), and by Lemma 1 (i), we can see that {vL(y, 2)}L>Kk are determined uniquely. Thus
the uniqueness is proved. m

eIdea of the proof of Lemma 1. Lemma 1 (i) is obvious, since ¢ = £.(0,0,£% # 0.
In order to prove Lemma 1 (ii), we introduce a norm for a homogeneous polynomial
UL(y, Z) € C[y7 Z]L by

lluzlls := inf{C > 0; Bs(uz)(y,2) < C(lyl + 12"}, s € Rx)"

We may assume that the constant § in P is as small as we want by a linear change of
independent variables. Then by this assumption, we can prove that the operator norm
of P! is estimated by ||P~!||g < C by a positive constant C' > 0 which is independent
of L. In fact, it is easily proved that ||yi;+10y,uLllz < ||lurllg. This implies Lemma 1

Next. we shall give a estimate of the Gevrey order. We put U(y,z) = Pu(y,2) as a
new unknown function. Then U(y, z) satisfies the following equation: .

(32) Uwe)= 3 co’? + fniy,z P'U,8,P7U,0.P70),
iBl+iv=K

with U(y, z) = O((|y| + |2])¥). By applying the 5-Borel transformation to the equation
(3.2), we have

(18] + 7))
(3.3) Bs(U)(y,2) = oy, UBIE DY
) |ﬂl+|X7|:=K ? {3- (8,7}

+Bg{fx(y, 2, P7'U,8,P7'U,8,P~'U)}.

In order to construct a majorant equation of this equation, we prepare the following
lemma.

Lemma 2 (i) For two arbitrary formal power series u(y,z) = Zlﬁl +h]20 ug,y?2" and
(Y, 2) = 21814120 vs,yP27, we have

Bg(uwv)(y, 2) < CoBg(lul)(v, 2)Ba(|v])(y, 2),  Co= mak{%ﬁ > 1,
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where [ul(y, z) := E|ﬁ|+|—7|>0 |up,|yPz7.
(%) If Bg(u)(y, z2) < W(T) = > o150 WLTE (T = |y|+|z|), then there erists a positive
constant M - 0 independent of i, and k such that

d

d s .
Ba(6u, P (0, 2) < Mg (T} WD), for (o) e

B3(0,, P 'u)(y, 2) < M a W(T) for k=1,2,.

where J = {(3,7) ; i =1,2,...,p, 5=1,2,...,n;}.

® Idea of the proof of Lemma 2. In order to prove Lemma 2, it is sufficient to estimate
the product of the Gamma functions by using the Stirling formula. =

Next we consider the following ordinary differential equation which is called the
majorant equation of (3.3):

(34)  W(T)= ( Y e _{(lgél(;’lz;)}!!) TX

1Bl+1vI=K

d\’! d
el (T,...,T,OIW, {Cz 2 ( dT) W} | {Cz dTW} )
(i.9)
where Cl CC(), C2 MCO

Let us explain how the equation (3.4) is derived from (3.3). By Lemmas 1 and 2,
we can show that a majorant relation Bgz(U)(y, z2) < G(T) implies Bs(PU)(y,2) <
CG(T) and

Bs{fx+1(y, 2, P~'U,8,P~'U,0,P7'U)}

T T,C\G C'i Ti j_lG CdG
< IfK+l| y+ -y 4,010, 2dT dT () 2dT

Indeed, it is sufficient to notice that Bz(U?) < {CoBz(|U|)}? by Cs > 1, etc., and that

Bs (yf’z*(P*lU)' 1., Puyss <az,,P-‘U)"~)
1,5,k .
< " 2{CoB3(1PU} [[{CoB5(13,,, P~U1)}*+{CoB5 (10, P~'U])}

i,k

d Jj-1 Bij d Vi

1,5,k
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Therefore by the above construction of the equation (3.4), the formal solution W(T) of
(3.4) is a majorant series of Bg(U)(y, 2), that is,

(3.5) W (lyl + [2]) > Bg(U)(y, 2)-

For the equation (3.4), we have W(|y| + |2|) € Ginl?) because we can prove the
following result:

Lemma 3 Let sy > 0 (k = 1,2,...,n) be non negative real numbers and Dy = d/dT
(T € C). We define the formal differentiation (T Dr)% by

(3.6) (TDr)*(TY) := L**T*.
We consider the following nonlinear equation:
3.7)  U(T) = aT* + fxar(T, U, {Dr(TDr)*Ulp=r2,.m),  U(T) = O(TF),

where K > 2 and

fen(TUE) = > fuT'UE

_ V(ij,e)2K+1
Here V(i,j,0) =i+ Kj + (K — 1)(ca + - - - + o) which denotes the vanishing order of
FiiaTU TTh_ {Dr(TDy)**U}*. Then the equation (3.7) has a unique formal solution
which belongs to G3+7 with

_ AGj0) o

where Al o) = max{sx} +1 (ax #0),
(6.3, 0) = { 0 (la| = 0).

We r‘emark that A(4, j, o) denotes the maximal order of differentiation in each term
fi5aT*U [15ei{ D (T D) U >*. |

eldea of proof of Lemma 3. Lemma 3 is proved by the same manner as the proof
of main theorem in [4, Theorem 1]. The most important point to prove Lemma 3 is to
give a precise estimate for the product of factorials of integers. In order to obtain such
a presice estimate, the following elementary inequality plays a crucial role:

For ny,...,nx > M (M € N), we have

nl'nk' SM‘k‘l(n1++nk—-(k—1)M)'

After some careful estimations based on this inequality, we can prove Lemma 3. The
detail of the proof can be found in [4], [5]. =
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Finally we return to the proof of Proposition 1. In our majorant equation (3.4), the
maximal order of differentiation in each term is given by A(u, v) which appeared in the
statement of Proposition 1, and the difference of vanishing order of each term and that
of W(T) is given by

1B + 17|+ Kr + (K = 1)(Ju| + |v]) - K.

Therefore, by Lemma 3, we have W (T) € G+,
By Lemma 1 (ii), the following majorant relation holds:

Bg(v)(y, 2) = Bg(P~'U)(y, 2) < CW(Jy| + |2]) € Gin'®).

By Remark 1 (iii), we have u(y, z) € Gog @) ~1» _ Gs..
Thus Proposition 1 is proved. "
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