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Analytic smoothing effects for a class of dispersive
equations

Hideki TAKUWA *

1 Introduction and the main results

There are many reserches about smoothing effects for dispersive equations. We can find many
results about smoothing effects for the Schidinger equation. However the study for general
class of dispersive operators is not enough when we compare the results for a general class
of dispersive operators with that of Schédinger operators. One of our aim is to know the
dependence of the order of operators. Our class of operators we define later include not only
Schidinger operators but also linearized KdV operators.

First let us describe our problem.
Let m be an integer greater than or equal to 2. Let P(y, D,) be a linear differential operator
of order m in R", o

(1. 1) P(y,D,) = Y ca(v)Dy-
lal<m

We assume that P(y, D,) has analytic coefficients in R™ and a real principal symbol. And
we assume that P(y, D,) is the real principal type (in strong sense). That is, for all (y,m) €
T*R™\0 there exists an integer j with 1 < j < n such that we have dp;p(y,n) # 0, where
p(ys1) = jajem Ca(y)7™ be the principal symbol of P(y, Dy).

Let us consider the initial value problem

(1. 2) D + P(y,Dy)u =0,
ule=0 = uo(y)-
We can study more geréral situations, however we consider the simpler case that the space
dimension n equals to 1 in this note.

(1. 3) P(y,D,yu= Y a()D},
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where ¢n(y) = 1 and ¢(y) are analytic in R, that is, the coefficient of the principal part i
constant.

Moreover we shall make the following assumption.
One can find positive Cy > 0, Ry > 0, Ky > 0, and 0o € (0,1) such that for y € R with |y| > R,
and k € NU {0},

Xk
a9 > 1Djal) < Corrtis,

0<i<m-1

Let p = (y,n) € T*R\0, and let (Y (s;y,7), ©(s; y,7)) be the solution to the equation,

(1 5) { 4Y(s) =2(¥(s),0(s), Y(0)=y,
' £6(s) =-2(¥(s),8(s)), ©6(0)=n.
In our case p(y, ) = p(n) = n™. Therefore
Y(s) =y+mspm,
&9 {e<s) =8(0) =1.

We remark that for n # 0.
Jlim |¥'(s,y,n)| = +oc.
The nontrapping condition is satisfied.

Let u(t,-) € C(R, L*(R)) be the solution of the initial value problem (1.2).
Let us introduce a space of the initial data,

17 I = {Y(3;%0,0) € R; s > 0}

(1. 8) X} = {v € L(R); 30 > 0,38 > 0,e%1™ T o(y) € 17(r)).

The next theorem is the main result of this paper. This is one of the expression for the
microlocal smoothing effect.

Theorem 1.1 Let P(y, D,) be defined in (1.3) satisfying (1.4) and py = (yo,70) € T*R\0. Let
up € L*(R) be in X}. Then for allt < 0 py does not belong to the analytic wave front set
W F4[u(t,-)] of the solution u(t,-) for (1.2).

We give a simple application of this theorem.
Let u(t,y) be the solution to the next initial value problem,

L. 9 { Dy + D™y = 0,

t)e=0 = uo(y).
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Corollary 1.1 Let the initial data ug € L*(R) satisfy that there erists a positive constant dp
such that

[o ]
(1. 10) fo e”°'”'#'1luo(y)l2dy < oo,
in the case m is odd, or
o0
(1. 11) / o™ [ug(y) Pdy < oo,
. -00

in the case m is odd. . R o
Then the solution to the initial value problem (1.9) becomes analytic with respect to the spase
variable y for t < 0. ‘ ‘ 3

Our approach is based on FBI transform which was used by Robbiano and Zuily in [15].
The reader can see the details about this problem and historical results in [15] and [17].

2 Analytic wave front set and FBI transform

In this section we define FBI transform and analytic wave front set. The reader had better
refer to [15] and [20]. : :

Let po = (¥0,70) € T*R\0. Let ¢(z,y) be a holomorphic function in a neighborhood Uy x V4,
of (0, yo) in C x C which satisfies : SR

1 - B - P
(2' 1) ‘ ; ay (0’ y) = —To,
Py
(2. 2) Im 5!72-(0,;1) > 0,
P |
(2. 3) m(oy y) #0.
For above ¢(z,y) we can define, ‘
(2.4 ®(z) = max(-Imp(z,y)),
y€Vyo
for z € Uy.

Let a(z,y,A) = Y40 a(Z,y)A~* be a analytic symbol of order zero, elliptic in a neigh-
borhood of (0,1). Let x € C® be a cutoff function with support in a neighberhood of yo,
0< x <1, and x =1 near yp. - ‘ '

The FBI transform of a distribution u € D’(R) is defined by

2. 5) Tu(z, \) = (x()u, €™a(z, N)), A> L.
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According to [20] we can characterize the analytic wave front set of u € D'(R) by using FBI
transform. Next (2.6) and (2.7) are equivalent,

(2. 6) Po € WFy[u].

3C > 0,3 > 0,3)¢ > 1 such that

2. 7
(2. 7) e™*®)|Tu(z,))| < Ce™™, for Vz € Up, VA > A,

Assume that u(2, -) is a element of a family of distribution on R depending of a real parameter
t. Let to € R. We shall say that a point po € T*R\0 does not belong to the locally uniform

analytic wave front set WFj4[u(ty,-)] if there exist an FBI transform T, positive constants
C, , X0, €, and a neighberhood U, of 0 such that

e-A’(Z) ITu(tr z, ’\)l S Ce—'dy

2. 8
(2-8) for VzeU, VA>), Vt € (to — &,ty +¢).

3 Idea‘ of proof

We make use of FBI transform in order to make a change our operator P(y, D) into more
simpler one. This idea has already been known by Egorov’s theorem in the theory of Fourier
integral operators. Thanks to this theorem we can transform any first order real principal type
operator into D, by Fourier integral operators.

Since our operator is of order m > 2, so we make use of FBI transform instead of Fourier
integral operators in order to transform the operator of order m into the first order operator
D;. The parameter ) in the FBI transform means |€ in some sense. To balance the order of
two operators we introduce the parameter A. In fact we can realize the next relationship by
introducing a suitable FBI transform F,

3. 1) FXI"—'P(y, D,) = %D,F, (mod analytic).
This is the main idea of this approach.

Let us give a sketch of proof related to the assumption for the initial data.
We introduce a FBI type transformation.
Let u(t, 2) is the solution of the initial value problem,

(3. 2) { [D‘ + P(zr D,)IU(t, z) = 0’

ﬂ|g=o = uo(z)

Let x € C°(R) with 0 < x < 1 and

— 11 lTI S %50,
X(r) - { 0, IT' 2 €o.
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We introduce

z—Y(Rexz)

= iAp(z,2)
(3 3) SU(t, z, A) Ae f(x, 2, ’\)X( 1+ lxl

Ju(t, z)dz.

where Y'(s) is given in (1.5).
By operating the operator S to (3.2) we have

a m~1 3 —a)m _:_l_ - __]_'_
(3. 4) (35 + " 57)5u(t,2,X) = iA™(5DuSu — 5 SPu).
We define

I(t,,)) = D,,Su Al SPu
(3. 5)

= / (3D, - —‘P(z D,)) (e fx)u(t, z)dz,

where *P(z, D,)w = 3} ;2 (= D,) (a(2)w(2)) = (=D,)™w+Yivs bi(z)D:. The coefficients also
satisfy the condition (1.4).
We define

(3. 6) J(z,2,)) = (=D, — —-—‘P(z, D,))(e?f).

_(/\

If J(z,z,A) is small enough in some sense, then we have only to consider the equation

a m—1 O

a:':)Su(t, z,A) =0.

This equation is easily solved
Su(t,z,A) = Su(0,z — A™ ¢, A).

Since z is near 0, we have |z| > }|no|™ " |to|]A™! on the support of x.
Then we have

1Su(0,z — A™1¢, ))|
= |/ei)‘¢(z—,\”'“t,z)f(z _ )‘m—lt z, /\)
R

Y(R;ez /\ t) _f_lzlgln' 'Bl"—Lr
(3. 8) x( TF o = g Je

< CeM¥@)~fylmlltol ™Té0 / |X(-.-)<'a"“"'“5'uo(z)ldz
R

up(z)dz|

< Ce»\'l'(z)-z‘almlttol"_‘1““0"||e‘°"'#-ruo||m(r.o)-

This implies
e @) |Su(t,z,))| < Ce™,

3.9 .
(3-9) for VzelU, VA>X, Ve (to—e¢,to+e).
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Since we can get same properties for FBI transform with a usual cutoff function as the
operator S introduced in (3.3), we can prove Theorem 1.1.

The smallness of J(z, z,\) is important for the above approach. In fact we can globally
constract a parametrix along the bicharacteristics.

Lemma 3.1 There erist €, > 0, and a holomorphic function o(z, z) in the set
(3. 10) E = {(z,z) e Cx C;Rez > —¢1,|Imz| < &y, |z — Y (z;90,m0)| < &1(1 + |z))},

such that

(3. 11) g—f(z, 2) = pm(z, —g—‘:(x, 2)) inE,
(3. 12) 3—5(0, %) = —1p,

3. 13) Im %;‘g’-(o, %) > 0,

(3. 14) a‘:: gz (0,%0) # 0.

Lemma 3.2 There ezists an analytic symbol f of order zero defined in E such that
(3. 15) |J(2, 2, \)| < CE¥roA(1 4 |g])Pe,
where pp > 0 and N, is a integer.

In order to prove Lemma 3.1 and Lemma 3.2 we have to solve the eikonal equation and the
transport equation. Since we make ) large, we introduce the set E which is global along the
bicharacteristic. The way to constract phase and amplitude functions is discussed in 17].
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