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Fuchsian PDE with applications to normal
forms of resonant vector fields *

KA - RIS SHIES ( Masafumi Yoshino)!t
Faculty of Economics, Chuo University, Higashinakano Hachioji,
Tokyo 192-0393, Japan

Motivations

Let t € Cor t € C. We consider Fuchsian ordinary differential equa-
tions P = p(t), where p(¢) us an polynomial of one variable. We call
p(¢) an incidencial polynomial of P. We consider the solvability of the
equation Pu = f(t), where f(t) is analytic at the origin ¢ = 0.

If the "non-log condition”

(1) p(C)¢O for <:071727"‘

is fulfilled Pu = f has an analytic solution. Indeed, the solution is
constructed by a method of indeterminate coefficients if we expand u
in Taylor series.

Now, let us consider the case where a ”non-log condition” is not
fulfilled. For the sake of simplicity, we consider under the condition

(2) o €2, ={0,1,2,...}, p(¢o) =0.

Remark. If there exists {; € Z such that p(¢;) = 0 Condition (2)
is a special case where the difference of characteristic exponents have
integral difference.

By Frobenius theorem, the fundamental solutions contain a function
of the form ¢*logt,where ) is a certain constant. It follows that the
solution u of Pu = f(t) is singular, or u has finite differentiability.

Question
What happens in the case of nonlinear partial differential equations of
Fuchs type ?

In order to answer to this question, we first introduce a class of so-called
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Fuchsian partial differential equations which appear from geomet
problems.

We also cite related works by Tahara, Mandai, Yamane and Y
mazawa.

Vector fields with an isolated singular poin

We consider
n ¥ . ‘
(3) X(x)=) aj(@)5z—, T= (Z1,---,Zn),
ot Oz; ~

where a;(z) is a smooth function of z. We assume
(4) - X(0)=0,

and the origin z = 0 is an isolated singular point of X.
We want to linearize X (z) by a coordinate change

(5) g=y+v(y), v=O0(y).
We write
0 0 0 o (0 0
(7) X(z) =zA + R(z),
where
(8) R(z) = (Ri(2), ..., Ra(x)), R(z)=O0(z[*),
and A is an n X n constant matrix.
Noting that
o dy 0 oz\™' 0
X(@ 2 = X+ v LL =xw+00) (5) 5

the linearizability condition implies
X(y + v)(1+8,v)" = yA.
It follows that

9) (y + v)A + R(y +v) = yA(l + 9,v) = yA + yAdyv.
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Therefore v solves the so-called homology equation
(*) Lv=yAd,v —vA = R(y+v(y)), v=(v,...,0).
Therefore we have

Eq. (*) has a solution v if and only if X is linearized by a coordinate
change z = y + v(y).
Expression of a homology equation

We calculate the form of £ in case A is a diagonal matrix. Namely we
assume

A 0
(10) A= :

Because we have

n o
AD, = AUk ——
YN0y kz=:1 kYk "
we have
2 Akyk% -\ 0 (]
(11) Lv= .. :
0 Z Akyk% - /\'n. Un

Remark. The homology equation (*) is a special case of totally char-
acteristic Fuchsian PDE. (cf. Tahara [4]). We also cite Shirai [3].

Non-log condition and a non resonant
condition

For simplicity, we consider the above example. The indicial polynomial
is defined by

(12) S Ml —2X;, (G=1,...,n).
k=1

Non resonant condition
L is said to be non-resonant if

(13) Y Xkar—Aj#0 forVa € (ay,...,an) € Z},|a] > 2.
k=1
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Non resonant condition impies the existence of a formal solution. In-
deed, we have

L(Z vay”) = Z(En: Ao — Nvay”.

a k=1

Hence £~ exist on a set of formal power series if a non-resonant con-
dition is fulfilled. It should be noted that a non-resonance condition is
a non log condition.

Two theorems concerning the solvability of homology

equations

As to the solvability of (¥), probably the first result was obtained by
Poincaré in 19th century. He introduced a so-called Poincaré condition.
Then the middle of 20th century, Siegel introduced a Siegel condition
and he essentially showed the solvability of (*) under a Siegel condition.
On the other hand, in the real domain, Sternberg showed the solvability
of (*) in a class of smooth functions without any diophantine condition.
He essentially assumed the nonresonance condition. As to the resonant

case, Hartman showed the solvability of (*) in a class of continuous

functions. Our result is closely related to Hartman’s theorem.

Sternberg’s theorem
Suppose that a hyperbolic condition

(14) Re) #0, k=1,...,n

is fulfulled. Moreover, assume that a non resonant condition is satis-
fied. Then, Eq. (*) has a smooth solution.

Sternberg’s theorem shows the solvability of (*) under non- log condi-
tion.

Grobman- Hartman’s theorem
If the hyperbolicity condition is satisfied, Eq.(*) has a continuous solu-
tion.

Remark. A continuous solution of (¥) is defined by a weak solution.
Hartman’s theorem treats the case where a non-log condition is not
satisfied.

The Object of the Study
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We consider the case where a non-log condition is not satisfied. The
typical example is a volumn preserving vector field, A; +--- + A\, = 0.
We want to solve (*) in a real domain in a class of finetely differentiable
functions, which corresponds to Hartman’s theorem in a C? class. This
is closely related to the construction of a singular solution in a complex
domain.

Remark. Geometrically, the resonance does not vanish under a formal
change of variables. Because the solvability of (*) implies that the
change of variables z = y + v(y) linearizes the given vector field, the
resonance also vanish under the change of varibles. This implies that
Eq. (*) does not necessarily have a formal solution.

Heuristic Statement of Results - C¢ Hartman
theorem -

For the sake of simplicity, we will state the special case of our theorem.

Theorem Assume that A (k = 1,...,n) are nonzero real number, (a
hyperbolicity). Then Eq. (*) has a C* solution for a certain £ > 0
determined by an indicial polynomials.

Idea of the Proof.

Why Picard’s iteration does not work ?
Firstly, we note the loss of derivatives of £~. In fact, even if there
exists L', we have a loss of derivatives. In order to see this, let us

consider p

The solution is given by

u(t) = [ ' o> 1g(at)do.

Clearly, we do not gain the derivatives.

On the other hand, in order to define the right-hand side of (*),
R(y + v) one needs derivatives of v. Indeed, Sobolev’s embedding the-
orem implies:
f0<m<k-n/p<m+land0<a<k—-m—n/p<l, it follows
that W*?(Q) — C™=(Q).

Here W*»(Q) is the space of distributions whose derivatives up to order
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k is in the Lebesgue space LP(). C™=(%) is a Holder space, namely
the set of functions with derivatives up to m has Holder exponent a.
Therefore the iteration scheme v = L7 R(y + v) does not seem to con-
verge.

In view of this we need to employ a Nash- Moser scheme, a rapidly
convergent iteration scheme. *

Rapidly Convergent Iteration Scheme

1. We need a smoothing operator which has not a smoothing effect
transversal to the singular locus of the equation, y; = 0, (j=1,...,n).

2. The crucial step of the Nash-Moser iteration scheme is to solve a
linearized equation. The linearized equation of (*) at v = w is given by

Lv — VR(y + w)v.

We note that w is singular or does not have regularity. The solvability
of linear Fuchsian partial differential equations with singular coefficients
seems open. } ‘ , :

In order to handle these problems we use a Mellin transform, and a
Nash-Moser iteration scheme of tangential type.

Statement of the Theorem

Mellin Transform ‘

Let N > 1be an integer. Let f(z) = (fi(z),- .., fn(z)) be an integrable
function on R?, and let us define a Mellin transform f(¢) (¢ € T'+:R™)
by :

f0) = [ f@asda, e=(1,...,0)

The inverse Mellin transform is given by

@) = MO = iy

where n € T is chosen so that the integral converges.

/Rn f(n+i£)x"""'§d€, z;>0,j=1,...,n,

Definition of a function space
Let o > 0, and let I' C R™ be an open set. We define H, = H,r as the
set of holomorphic vector-valued functions

v(¢) = (n(¢),---,vn(C)), (=n+ie€ I' +::R"
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such that
ol :=sup [ (¢)7Io(¢)lde < oo,
nel’ JR™

where

n N 1/2
)=1+ Z_; Gl (O] = (Z Ivj(C)I2) :

=1

The space H,r is a Banach space with the norm || - ||,, T-

Let H,r be the inverse Mellin transform of H,r. The norm of H,r is
defined by
el e = llullor := |M(u)ll, ..

We define an incidencial polynomial by
Q) ==Y GMI—A,
j=1

where I is an identity matrix.
We say that R € H,r at the originif 3y € C°(R™) being identically
equal to 1 in some neighborhood of the origin such that

M(4R) € H, .

Then we have

Theorem Suppose that there exist C > 0 and an open bounded set T,
0 € I' C R" such that

lp(n +i€)| > C >0, VnpeTl,V¢éeR™
Let o > 1 be an integer. Then there exists v 2> 0 such that, if
ReH,r and VR;eH,r, j=1,...,n
at the origin, Eq. (*) has a solution v € H, v for every I CC T.

Remark The set I" determine the vanishing order of v € H, . Hence

I expresses the smoothness up to theset y; =0 (j =1,.. ., n), because
we have the interior regularity, z; >0j=1,... n.

In order to construct a solution in some neighborhood of the origin,
we construct solutions in the domain +y; > 0 (j = 1,...,n). Then we

patch up these solutions.



Further extensions

We will briefly mention how the above theorem is extended to more
general systems. We consider N (N > 1) system of equations for the
unknown vector v = (vy, ..., UN)

pi(O)u; +aj(z, 0% |a| <s)=0, j=1,... , N,
where 1 < s < m are integers and §; = 8/0z;,
60 = 5?1 .o .5:",

and p;(¢) is a polynomial of . The nonlinear term a; (z,2), z = (2)
is supposed to be real-valued and smooth in R™ x Q, where Q is a
neighborhood of the origin 2 = 0.

Then we have the same assertion as to the above theorem.

Example. We consider Monge-Ampere operator
M (1) = Ugpltyy — U2, + kTYUzy + CU

in some neighborhood of the origin (z,y) € R?. Here k is a real constant
and c is a complex constant.
Let ug = x2y? and fo = M(up). We want to solve

M(U'O + 'U) = f0($7 y) + g((l), y)7 n R2)

where g(z,y) is a given function. This equation is related to find a
surface with a prescribed Gaussian curvature. The general theory does
not apply this equation because of the degeneracy of uo.

The incidencial polynomial is given by

p(¢) = —261(G +1) = 26(&L +1) — (k- 8)¢Gi¢z — ¢

Our theorem shows that If4 < k < 12 and ¢ = 1K, K > 1 there exists
a solution v of the above equation.

Proof of the Theorem

Definition of a smoothing Operator in H,r ;
Let ¢ € CP(R™), 0 < ¢ <1, ¢ = 1 near the origin z =0. Let N > 1
and let £ > 1 be positive integers. We set

1

n () = ( Tncff),
N( €xp Nz;
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and define

6= fo {90 (- 5 (-5) 5) + @ - wmioneo

!
Uzl V.

where 7 is an odd integer such that 27 > ¢. We can easily see that
x(¢) is an entire function of ¢ and real,

x5 (€) = x4 (0).
We define a smoothing operator Sy by
SNU = M_I(Xf\l+l(C)6(C))7 vE HS,I"

where 9(¢) denotes the Mellin transform of v, and M~! denotes the
inverse Mellin transform.

Proof of the Theorem

Let 1 < 7 < 2 and d > 1 be the constants chosen later. Let Sk
(k=0,1,2,...) be a smoothing operator defined above with N + 1 =
i :=d™ . We define

G(v) = Lv — R(y +v).
Let L,, be the linearized operator of G at v = w. We define go = G(0).

Iterative scheme
We construct an approximate sequence {w:} by

W = 07 Wi+1 = Wi + Skpk, kapk =Gk, Gk = _G(wk), k= 0) 1: 27 ..

Estimates
There exist Jv, 3k and Ic > 0, ¥ > k > 1 such that

gk “0,1‘ < cpy "d‘”90”u+1,1‘-

If we can show this estimate we see that g, — 0 as k — oo and
that {wx} is a Cauchy sequence. It follows that w := lim; w; satisfies
G(w) =0.

Step 1 A priori estimate of wy.
There exists C > 0 independent of k such that, for j =1, ... k+1

lwiller < Cd®l|gollv+1,r, if €< K+s,



|willer < Cuﬁ“ *“*d*|lgollv+1,0, €2 K+s.

Step 2 A priori estimate of g
There exists C > 0 independent of k such that
lgkllur < Ca¥llgollvsa(L + p ™27,

Using these estimates we can show the desired estimate. The constants
7 and d are determined by the equation.
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