On the Wellposedness of the Cauchy Problem for Weakly Hyperbolic Equations of Higher Order

Piero D'Ancona and

木下 保

(Tamotu Kinoshita)

筑波大学 数学系

Dipartimento di Matematica Università "La Sapienza" di Roma

> Piazzale Aldo Moro, 2 I-00185 Roma, Italy

e-mail: dancona@mat.uniroma1.it Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305-8571, Japan

kinosita@math.tsukuba.ac.jp

§1. Introduction

We consider here the Cauchy problem on $[0,T]\times \mathbf{R}_{x}^{n}$

(1)
$$\begin{cases} D_t^m u = \sum_{j+|\alpha|=m} c_{j,\alpha}(t) D_t^j D_x^{\alpha} u + \sum_{j+|\alpha| \le d} c_{j,\alpha}(t) D_t^j D_x^{\alpha} u + f(t,x) \\ D_t^j u(0,x) = u_j(x) \quad (j=0,\cdots,m-1), \end{cases}$$

where $D_t = -i\partial_t$, $D_x = -i(\partial_{x_1}, \dots, \partial_{x_n})$, and $0 \le d \le m-1$. We shall write in short

$$p(t,\tau,\xi) = \tau^m - \sum_{j+|\alpha|=m} c_{j,\alpha}(t)\tau^j \xi^{\alpha}$$

for the principal part and

$$p_d(t, au, \xi) = \sum_{j+|lpha| \leq d} c_{j,lpha}(t) au^j \xi^{lpha}$$

for the lower order terms. We shall assume that the principal part p is hyperbolic with respect to τ , that is, for any $t \in \mathbf{R}_t$, $\xi \in \mathbf{R}_{\xi}^n$ the roots in τ of the algebraic equation $p(t, \tau, \xi) = 0$ are all real. We name them $\lambda_j(t, \xi)$, according to the rule

$$\lambda_1(t,\xi) \geq \lambda_2(t,\xi) \geq \cdots \geq \lambda_m(t,\xi),$$

thus $p(t, \tau, \xi)$ can be written

$$p(t, \tau, \xi) = \prod_{k=1}^{m} (\tau - \lambda_k(t, \xi)).$$

We recall that the functions $\lambda_j(t,\xi)$ are homogeneous of degree 1 in ξ .

There are many results on this problem. As to the C^{∞} -wellposedness, we mention that T. Nishitani [N1] considered the case when the multiplicity of the characteristic roots is at most double. F. Colombini and N. Orrú [CO] assumed that the characteristic roots vanish of finite order at t=0 and satisfy

$$t^2 \sum_{k,j=1,k\neq j}^m \frac{|\lambda_k'(t,\xi)|^2 + |\lambda_j'(t,\xi)|^2}{|\lambda_k(t,\xi) - \lambda_j(t,\xi)|^2} < \infty \quad \text{near} \quad t = 0.$$

Moreover, K. Kajitani, S. Wakabayashi and K. Yagdjian [KWY] dealt with the case of characteristic roots vanishing of infinite order. Concerning the Gevrey-wellposedness, F. Colombini and T. Kinoshita [CK] considered the Cauchy problem in the case when the characteristic roots are Hölder continuous in t. F. Colombini, H. Ishida [CI] and H. Ishida, K. Yagdjian [IY] assumed that the characteristic roots vanish of infinite order at t=0 and satisfy for some $\bar{s}>1$

$$\frac{\Phi_1(t)^{2\bar{s}/(\bar{s}-1)}}{\phi_1(t)^2} \sum_{k,j=1,k\neq j}^m \frac{|\lambda_k'(t,\xi)|^2 + |\lambda_j'(t,\xi)|^2}{|\lambda_k(t,\xi) - \lambda_j(t,\xi)|^2} < \infty \quad \text{near} \quad t = 0,$$

where $\Phi_1(t) = \int_0^t \phi_1 dt$ and $\phi_1(t), \dots, \phi_m(t)$ are real-valued functions such that

(i)
$$\phi_k(0) = \phi'_k(0) = 0$$
, $\phi'_k(t) > 0$ if $t \in (0,T]$ for any $k = 1, \dots, m$.

(ii)
$$\phi_1(t) \ge \phi_2(t) \ge \cdots \ge \phi_m(t)$$
 for $t \in [0, T]$.

(iii)
$$|\lambda_k(t,\xi)| \leq C_k \phi_k(t) |\xi| \ ({}^{\exists}C_k > 0) \text{ for } k = 1, \dots, m \text{ and } (t,\xi) \in [0,T] \times \mathbf{R}^n_{\xi} \setminus 0.$$

(iv)
$$|\lambda_k(t,\xi) - \lambda_j(t,\xi)| \ge c\phi_k(t)|\xi|$$
 ($\exists c > 0$) for $k < j$ and $(t,\xi) \in [0,T] \times \mathbf{R}^n_{\xi} \setminus 0$.
Then they showed the wellposedness in the Gevrey classes of order $1 \le s < \bar{s}$.

We see that in most results concerning the higher order case m>2 the roots are assumed to coincide only at isolated points, and then a precise behaviour is assumed at those points. In this paper we try to give a global assumption valid in more general cases, even when this happens at an arbitrary set of points (also infinite or dense). To this end we introduce the sets Ω_{σ}^{k} , Ω_{σ} defined as follows: for any $0<\sigma<1$, $k=1,\ldots,m-1$,

$$\Omega_{\sigma}^{k}(\xi) = \left\{ t \in [0, T] : |\lambda_{k}(t, \xi) - \lambda_{k+1}(t, \xi)| \le \sigma \right\}$$

and

$$\Omega_{\sigma}(\xi) = \bigcup_{k=1}^{m-1} \Omega_{\sigma}^{k}(\xi).$$

These sets enclose, for each ξ , the points t where the roots coincide; thus we can regard the measure $\mu(\Omega_{\sigma})$, which is a function of σ , ξ , as a measure of the defect of strict hyperbolicity of p. Here $\mu(A)$ is the Lebesgue measure in \mathbf{R}_t of the set $A \subseteq [0,T]$. We denote by AC([0,T]) the space of absolutely continuous functions on [0,T] and by $G^s(\mathbf{R}^n)$ the space of Gevrey functions g(x) satisfying $\sup_{x\in K} |D_x^{\alpha}g(x)| \leq C_K \rho_K^{|\alpha|} |\alpha|!^s$ for any compact set $K \subset \mathbf{R}^n$, $\alpha \in \mathbf{N}^n$.

Our first result is the following:

THEOREM 1. (Gevrey-wellposedness). Assume that the coefficients $c_{j,\alpha}(t)$ of $p,\ p_d$ belong to $C^0([0,T])$ and the characteristic roots of the principal part $\lambda_1, \dots, \lambda_m$ belong to AC([0,T]) and that there exist constants $C>0,\ a\geq 0$ and b>0 such that for any $0<\sigma<1,\ |\xi|=1,\ k=1,\dots,m-1$

(2)
$$\mu(\Omega_{\sigma}(\xi)) \leq C\sigma^{a},$$

(3)
$$\int_{[0,T]\setminus\Omega_{\sigma}^{k}(\xi)} \frac{|\lambda'_{k}(t,\xi)| + |\lambda'_{k+1}(t,\xi)|}{|\lambda_{k}(t,\xi) - \lambda_{k+1}(t,\xi)|} dt \le C\sigma^{-b}.$$

Then, when the degree d of the lower order terms satisfies

$$0 \le d \le \frac{m(a+b)}{a+b+1},$$

the Cauchy problem (1) is wellposed in the Gevrey classes of order

$$(4) 1 \le s < 1 + \frac{a+1}{b},$$

i.e., for any data $u_j \in G^s(\mathbf{R}^n)$ and $f \in C^0([0,T];G^s(\mathbf{R}^n))$ the Cauchy problem (1) has a unique solution $u \in C^m([0,T];G^s(\mathbf{R}^n))$. Moreover, when the degree d of the lower order terms satisfies

$$d>\frac{m(a+b)}{a+b+1},$$

then the problem is wellposed for

$$1 \le s < \frac{m}{d + a(d - m)}.$$

Remark 1. In the cases mentioned above, when $\lambda_1(t,\xi), \dots, \lambda_m(t,\xi)$ vanish of infinite order, assumption (2) can be dropped (one is forced to choose

a=0). Thus by Theorem 1 we see that the Cauchy Problem (1) is wellposed in the Gevrey classes of order

$$1 \le s < \min \ \left\{ 1 + \frac{1}{b}, \ \frac{m}{d} \right\}.$$

Remark 2. M. D. Bronshtein [B], S. Wakabayashi [W] proved the Lipschitz (or Hölder) continuity in t of the characteristic roots of hyperbolic polynomials with smooth coefficients (see also [M]). Thus if we assume that $c_{j,\alpha}$ are smooth for $j + |\alpha| = m$, we can drop the assumption that λ_j belong to AC([0,T]).

Remark 3. It is well-known that the lower order terms do not influence the C^{∞} -well-posedness for strictly hyperbolic equations (the multiplicy of the characteristic roots is equal to 1) and the lower order terms of order d=m-1 give the Gevrey- well-posedness of order $1 \leq s < m/(m-1)$ for weakly hyperbolic equations (the multiplicy of the characteristic roots is equal to m) (see [B], [C], [CDS], [CJS], [OT], etc.). As the parameter a in (2) becomes greater, the type of p approaches to strictly hyperbolic type. Especially, when d=m-1, the second exponent in (4) is equal to m/(m-1-a). Taking $0 \leq a < m-1$, we can obtain an interpolation between C^{∞} and the Gevrey classes of order m/(m-1).

Example A. When the characteristic roots are

$$\lambda_k(t,\xi) = kt^h \left\{ 1 + \sin^2 \left(\frac{1}{t^{h/\alpha - 1}} \right) \right\} \cdot \xi$$

for some $0 < \alpha \le 1$, $\alpha < h < \alpha/(1-\alpha)$ and $k = 1, \dots, m$, we find that $\lambda_1, \dots, \lambda_m$ belong to AC([0,T]) and also $C^{\alpha}([0,T])$ and vanish of finite order at t = 0 and satisfy (2) with a = 1/h and (3) with $b = 1/\alpha - 1/h$, since

$$\mu(\Omega_{\sigma}(\xi)) \leq C \int_{0}^{C\sigma^{1/h}} dt \leq C\sigma^{1/h},$$

$$\int_{[0,T]\setminus\Omega_{\sigma}^{h}(\xi)} \frac{|\lambda'_{k}(t,\xi)| + |\lambda'_{k+1}(t,\xi)|}{|\lambda_{k}(t,\xi) - \lambda_{k+1}(t,\xi)|} dt \leq C \int_{C\sigma^{1/h}}^{T} \left(\frac{1}{t^{h/\alpha - 1}}\right)' dt \leq C\sigma^{1/h - 1/\alpha}.$$

Applying Theorem 1, we get the wellposedness in the Gevrey classes of order

$$(6) 1 \le s < \frac{h}{h-\alpha}(1+\alpha).$$

According to [CK] or [OT], if the characteristic roots belong to $C^{\alpha}([0,T])$, the Cauchy problem (1) is in the wellposed in the Gevrey classes of order

$$1 < s < 1 + \alpha$$
.

For the second order polynomial $P(t,\tau,\xi) \equiv \tau^2 - A(t)\xi^2$ where $A(t) \geq 0$, if A(t) belongs to $C^{2\alpha}([0,T])$, we also know the Gevrey order (7) (see [CJS], [D1] and [N2]). We remark that (6) approaches to (7) as h tends to infinity and s can be taken arbitrarily large as h tends to α (the characteristic roots oscillate more slowly). This example implies that the oscillation and the degeneracy of the characteristic roots influence on the wellposedness independently of their regulality.

Example B. [CI] and [IY] gave an example of the following kind:

$$\lambda_k(t,\xi) = \begin{cases} k \exp\Bigl(-\frac{1}{t^h}\Bigr)\Bigl\{1 + \sin^2\Bigl(\exp\frac{\gamma}{t^h}\Bigr)\Bigr\} \cdot \xi \\ 0 \end{cases}$$

for some $\gamma > 0$, h > 0 and k = 1, ..., m. They proved the wellposedness in the Gevrey classes of order $1 \le s < 1 + 1/\gamma$. Notice that $\lambda_1(t, \xi), \dots, \lambda_m(t, \xi)$ belong to AC([0, T]) and vanish of infinite order at t = 0 (see Remark 1) and satisfy (3) with $b = \gamma$;

$$\int_{[0,T]\backslash\Omega_{\sigma}^k(\xi)}\frac{|\lambda_k'(t,\xi)|+|\lambda_{k+1}'(t,\xi)|}{|\lambda_k(t,\xi)-\lambda_{k+1}(t,\xi)|}dt\leq C\int_{1/(\log\sigma^{-1}+C)^{1/h}}^T\Big(\exp\frac{\gamma}{t^h}\Big)'dt\leq C\sigma^{-\gamma}.$$

Thus we can apply Theorem 1 and we get the same Gevrey order $1 \le s < 1+1/\gamma$.

Our theorems can be applied also when the vanishing order of characteristic roots is different from the order of contact between the roots. For instance, if the characteristic polynomial is

$$p(t, \tau, \xi) = \tau^2 - 2t^{\alpha}\tau\xi + (t^{2\alpha} - t^{2\beta})\xi^2$$
 where $0 < \alpha < \beta$,

we easily obtain $\lambda_1(t,\xi) = (t^{\alpha} + t^{\beta})\xi$ and $\lambda_2(t,\xi) = (t^{\alpha} - t^{\beta})\xi$ which implies that $|\lambda_k(t,\xi)| \leq 2t^{\alpha}|\xi| \ (k=1,2), \ |\lambda_1(t,\xi) - \lambda_2(t,\xi)| \geq 2t^{\beta}|\xi| \ \text{for} \ (t,\xi) \in [0,T] \times \mathbf{R}_{\xi}.$ Since $\lambda_1(t,\xi)$ and $\lambda_2(t,\xi)$ satisfy (2) with $a=1/\beta$ and (3) $b=1-\alpha/\beta$, applying Theorem 1 we have wellposedness in the Gevrey classes of order

$$1 \le s < 1 + \frac{\beta + 1}{\beta - \alpha}.$$

In the favourable case of analytic characteristic roots, more generally from Theorem 1 we also obtain the following results: COROLLARY 2. (Gevrey-wellposedness). Assume that the coefficients $c_{j,\alpha}(t)$ of p, p_d belong to $C^0([0,T])$ and the characteristic roots of the principal part $\lambda_1(t,\xi), \dots, \lambda_m(t,\xi)$ are analytic in t and vanish at t=0 and that there exist constants C>0, c>0 and $0<\alpha<\beta$ such that for any $(t,\xi)\in[0,T]\times\mathbf{R}^n_{\xi}$

$$|\lambda_k(t,\xi)| \le Ct^{lpha} |\xi| \quad ext{for} \quad k=1,\cdots,m,$$
 $|\lambda_{k+1}(t,\xi) - \lambda_k(t,\xi)| \ge ct^{eta} |\xi| \quad ext{for} \quad k=1,\cdots,m-1.$

Then, when the degree d of the lower order terms satisfies

$$0 \le d \le \frac{m(\beta - \alpha + 1)}{2\beta - \alpha + 1},$$

the Cauchy problem (1) is wellposed in the Gevrey classes of order

$$1 \le s < 1 + \frac{\beta + 1}{\beta - \alpha}.$$

Moreover, when the degree d of the lower order terms satisfies

$$d>\frac{m(\beta-\alpha+1)}{2\beta-\alpha+1},$$

then the wellposedness holds for

$$1 \le s < \frac{\beta m}{\beta d + d - m}.$$

In Corollary 2 and Examples A and B, the characteristic roots coincide only at t=0 or at a finite number of points. We give a final example to emphasize that our results allow the characteristic roots to coincide at an infinite number of points.

Example C (see also Example A). When the characteristic roots are

$$\lambda_k(t,\xi) = kt^h \sin^h \left(\frac{1}{t^{h-1}}\right) \cdot \xi$$

for some even number h and $k=1,\dots,m$, we find that $\lambda_1(t,\xi),\dots,\lambda_m(t,\xi)$ are absolutely continuous in t, more precisely Lipschitz continuous in t and vanish at $t=(\pi j)^{1/(1-h)}$ $(j=1,2,\dots)$, they satisfy (2) with a<1/h and (3) with b>1-1/h. Applying Theorem 1, we get the wellposedness in the Gevrey classes of order $1 \le s < 2h/(h-1)$ (see (7)).

§2. Sketch of the proof

When s=1, the Cauchy problem (1) is wellposed in the class of real analytic functions. Therefore we can suppose that s>1 for the proof. By Fourier transform with respect to x, the Cauchy problem (1) turns into

(8)
$$\begin{cases} p(t, D_t, \xi)\hat{u} = \hat{f}(t, \xi) + p_d(t, D_t, \xi)\hat{u} \\ D_t^j \hat{u}(0, \xi) = \hat{u}_j(\xi) \quad (j = 0, \dots, m - 1). \end{cases}$$

Let $0 < \sigma < 1$ and $\varphi(r)$ be a non-negative function such that $\varphi \in C_0^{\infty}(\mathbf{R})$, $\varphi(r) \equiv 0$ for $|r| \geq 2$ and $\varphi(r) \equiv 1$ for $|r| \leq 1$. We define

$$\omega(t,\xi) = \sigma|\xi| \sum_{l=1}^{m-1} \varphi\left(\sigma^{-1}\left\{\lambda_l\left(t,\frac{\xi}{|\xi|}\right) - \lambda_{l+1}\left(t,\frac{\xi}{|\xi|}\right)\right\}\right),$$

$$\mu_k(t,\xi) = \lambda_k(t,\xi) + ik\omega(t,\xi) \text{ for } k = 1,\dots, m.$$

Moreover we denote by $q(t, \tau, \xi)$ the polynomial of degree m in τ

$$q(t,\tau,\xi)=\prod_{k=1}^m \big(\tau-\mu_k(t,\xi)\big).$$

Now we set the energy density

$$E(t,\xi) = \frac{1}{2} \sum_{l=1}^{m} |q_l(t,D_t,\xi)\hat{u}|^2,$$

where $q_l(t, \tau, \xi)$ is the polynomial of degree m-1 in τ defined by

$$q_l(t, \tau, \xi) = \frac{q(t, \tau, \xi)}{\tau - \mu_l(t, \xi)} \Big(= \prod_{k=1, k \neq l}^m \Big(\tau - \mu_k(t, \xi)\Big)\Big).$$

We denote by ' the derivative in t. Differentiating $E(t,\xi)$ in t and dividing by $2\sqrt{E(t,\xi)}$, by (8) we have

$$\sqrt{E} \ ' \leq C \left(\max_{1 \leq k \leq m-1} \frac{|\lambda_k'| + |\lambda_{k+1}'| + |\omega'|}{|\lambda_k - \lambda_{k+1}| + \omega} + \omega + \frac{|\xi|^d}{\prod_{k=1}^{m-1} |\lambda_k - \lambda_{k+1}| + \omega^{m-1}} \right) \sqrt{E} + |\hat{f}|.$$

Thus, Gronwall's inequality yields the estimate

$$\begin{split} \sqrt{E(t,\xi)} & \leq \exp \Big\{ C \int_0^T \Big(\max_{1 \leq k \leq m-1} \frac{|\lambda_k'| + |\lambda_{k+1}'| + |\omega'|}{|\lambda_k - \lambda_{k+1}| + \omega} + \omega + \frac{|\xi|^d}{\prod_{k=1}^{m-1} |\lambda_k - \lambda_{k+1}| + \omega^{m-1}} \Big) dt \Big\} \\ & \times \Big\{ \sqrt{E(0,\xi)} + \int_0^T |\hat{f}(t,\xi)| dt \Big\}. \end{split}$$

We remark that there exists C > 0 such that for any $(t, \xi) \in [0, T] \times \mathbf{R}_{\xi}^{n} \setminus 0$

$$C^{-1}(\sigma|\xi|)^{m-1}|\xi|^{-j}|D_t^j\hat{u}| \le \sqrt{E(t,\xi)} \le C\sum_{j=0}^{m-1}|\xi|^{m-1-j}|D_t^j\hat{u}|.$$

LEMMA 1. Let $b \geq 0$. Assume that $\lambda_1(t,\xi), \dots, \lambda_m(t,\xi)$ belong to AC([0,T]) and satisfy (3). Then there exists C > 0 such that for any $0 < \sigma < 1$, $|\xi| = 1$ and $k = 1, \dots, m$

$$\int_{\Omega^k_\sigma(\xi)\cup\Omega^{k-1}_\sigma(\xi)}|\lambda_k'(t,\xi)|dt\leq \left\{ \begin{matrix} C & \text{if } b\geq 1\\ C\sigma^{1-b} & \text{if } 0\leq b<1 \end{matrix} \right. \leq C\sigma^{1-b},$$

where $\Omega_{\sigma}^{0}(\xi) = \Omega_{\sigma}^{m}(\xi) = \phi$ and $\Omega_{\sigma}^{k}(\xi)$ for $k = 1, \dots, m-1$ are defined in §.1.

LEMMA 2. Let $0 \le a < m-1$. Assume that $\lambda_1, \dots, \lambda_m$ satisfy (2). Then there exists C > 0 such that for any $0 < \sigma < 1$, $|\xi| = 1$

(21)
$$\int_{[0,T]\setminus\Omega_{\sigma}(\xi)} \frac{dt}{\prod_{k=1}^{m-1} |\lambda_k(t,\xi) - \lambda_{k+1}(t,\xi)|} \le C\sigma^{a+1-m},$$

where $\Omega_{\sigma}(\xi)$ is defined in §.1.

Consequently, it follows that

$$\sum_{j=0}^{m-1} |\xi|^{-j} |D_t^j \hat{u}(t,\xi)| \le C\sigma^{1-m} \exp\left\{C\left(\sigma^{-b} + \sigma^{a+1} |\xi| + \sigma^{a+1-m} |\xi|^{d+1-m}\right)\right\} \times \left\{\sum_{j=0}^{m-1} |\xi|^{-j} |\hat{u}_j| + \int_0^T |\xi|^{1-m} |\hat{f}(t,\xi)| dt\right\}.$$

When

$$d \le \frac{m(a+b)}{a+b+1},$$

the third term is smaller and this choice gives immediately

$$|\xi|^{\gamma b} + |\xi|^{1-\gamma(a+1)} + |\xi|^{\gamma(m-a-1)+d+1-m} \le 3|\xi|^{\frac{b}{a+b+1}}.$$

Hence, there exists $\rho > 0$ such that for any $(t, \xi) \in [0, T] \times \mathbf{R}_{\xi}^{n} \setminus 0$

$$\sum_{j=0}^{m-1} |\xi|^{-j} |D_t^j \hat{u}(t,\xi)| \leq C \exp \left\{ \rho |\xi|^{\frac{b}{a+b+1}} \right\} \left\{ \sum_{j=0}^{m-1} |\xi|^{\frac{m-1}{a+b+1}-j} |\hat{u}_j(\xi)| + \int_0^T |\xi|^{\frac{(1-m)(a+1)}{a+b+1}} |\hat{f}(t,\xi)| dt \right\}.$$

In virtue of Paley-Wiener theorem, $\{D_t^j u(\cdot,t) ; t \in [0,T], j=0,\cdots,m-1\}$ is bounded in the Gevrey classes of order (5). Thus, taking into account that u is a solution of (1), we find $u \in C^m([0,T];G^s(\mathbf{R}^n))$. This concludes the proof of Theorem 1 in the case when $d \leq m(a+b)/(a+b+1)$.

On the other hand, when

$$d>\frac{m(a+b)}{a+b+1},$$

the dominant terms in

$$|\xi|^{\gamma b} + |\xi|^{1-\gamma(a+1)} + |\xi|^{\gamma(m-a-1)+d+1-m}$$

are the last two (the first one is smaller). In this case we choose

$$\gamma = \frac{m-r}{m}$$

and proceeding as above we conclude the proof of this case and we get (4).

REFERENCES

- [B] M.D. Bronštein, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, *Trudy Moskov. Mat. Ob*šč. **41** (1980), 87-103 (Trans. *Moscow Math. Soc.*, **1** (1982), 87-103).
- [C] M. Cicognani, On the strictly hyperbolic equations which are Hölder continuous with respect to time, *Ital. J. Pure Appl. Math.*, 4 (1998), 73-82.
- [CDS] F. Colombini, E. De Giorgi and S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm Sup. Pisa, 6 (1979), 511-559.
- [CI] F. Colombini and H. Ishida, Well-posedness of the Cauchy problem in Gevrey classes for some weakly hyperbolic equations of higher order, preprint.
- [CJS] F. Colombini, E. Jannelli and S. Spagnolo, Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, *Ann. Scuola Norm Sup. Pisa*, **10** (1983), 291-312.

- [CK] F. Colombini and T. Kinoshita, On the Gevrey wellposedness of the Cauchy problem for weakly hyperbolic equations of higher order, preprint.
- [CO] F. Colombini and N. Orrú, Well posedness in C^{∞} for some weakly hyperbolic equations, J. Math. Kyoto. Univ., **39** (1999), 399-420.
- [D1] P. D'Ancona, Gevrey well posedness of an abstract Cauchy problem of weakly hyperbolic type, *Publ. RIMS Kyoto Univ.*, **24** (1988), 433-449.
- [D2] P. D'Ancona, Well posedness in C^{∞} for a weakly hyperbolic second order equation, Rend. Sem. Mat. Univ. Padova, 91 (1994), 65-83.
- [KWY] K. Kajitani, S. Wakabayashi and K. Yagdjian, The C^{∞} -well posed Cauchy problem for hyperbolic operators with multiple characteristics vanishing with the different speeds, to appear in $Osaka\ J.\ Math.$
 - [I] V. Ya. Ivrii, Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, *Siberian. Math.*, **17** (1976), 921-931.
- [IY] H. Ishida and K. Yagdjian, preprint.
- [M] T. Mandai, Smoothness of roots of hyperbolic polynomials with respect to onedimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ., 21 (1985), 115-118.
- [N1] T. Nishitani, The Cauchy problem for weakly hyperbolic equations of second order, Comm. P.D.E., 5 (1980), 1273-1296.
- [N2] T. Nishitani, Sur les équations hyperboliques à coefficients hölderiens en t et de classes de Gevrey en x, Bull. Sci. Math., 107 (1983), 113-138.
- [OT] Y. Ohya and S. Tarama, Le problème de Cauchy à caractéristiques multiples -coefficients hölderiens en t-, (*Proc. Taniguchi Intern. Sympos. on Hyperbolic Equations and Related Topics* 1984), Kinokuniya, 1986, 273-306.
- [W] S. Wakabayashi, Remarks on hyperbolic polynomials, *Tsukuba Journal of Mathematics*, **10** (1986), 17-28.