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SPIN REPRESENTATIONS AND CENTRALIZER
ALGEBRAS FOR Spin(2n)

KAZUHIKO KOIKE
DEPT. OF MATH. AOYAMAGAKUIN UNIVERSITY

BUEBRASEISE Neas

1. INTRODUCTION

In this exposition, we deal with the even spin case.

Let G be Spin(2n,C) or Pin(2n,C), namely the double covering
group of SO(2n) or O(2n). '

Then every irreducible representation of G, not coming from the rep-

k
resentations of SO or O can be realized in the tensor space A® @ ® V -
for some k, where A®) is the fundamental spin representation of G and
V = C" is the natural representation of O(n). S

In this case we mainly deal with the Pin(2n) centralizer algebra

k ko
CPx = Hompin20) (AQ Q@ V,AQ ® V)

and define two kinds of basis of this algebra for k < n, just as in
the case of Spin(2n + 1). The argument goes well for this algebra
similarly as that of Spin(2n + 1). Finally we consider the associater
of the irreducible representations A ® ®*V and AR RV ® det,

where ‘det ’ denotes the linear representation of Pin(2n) induced from

the natural homomorphism Pin(2n) — O(2n) LN {1}.

This associater is given by the endomorphism (A®id) € End(A @ ®* V),

where A is the associater for A and is given by the degree opera-
tor Aliy,d,13,... 5] = (=1)"[i1,42,%3,... ,iz]. This associater com-
mutes with the action of Spin(2n) and if it is restricted to the irre-
ducible representation [A,d] of Pin(2n), it becomes an associater of
[A, 6] = [A, 6] @ det and its {+1}-eigenspaces give the irreducible rep-
resentation s (1/2 + 6)§pin(2n) of Spin(2n) respectively. So we can pick
up the irreducible representation of Spin(2n).

2. A SUMMARY OF REPRESENTATION OF Spin(2n) AND Pin(2n)

We first fix notations. As the defining symmetric matrix of O(2n),
we take an anti-diagonal matrix S = (§;2n41_;) of size 2n.

The set P* of the dominant integral weights for Lie algebra so(2n, R)
is given by

P+={A1€1+/\2€2+...+/\n€n;)\12/\22...2IAnIZO}
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-where all the \;’s are integers or half-integers (namely 1/2+Z) simul-
taneously.

Let Agpin(2n) denote the irreducible representation (or character) with
A\ € PT.

If all the )\,’s are integers, the corresponding irreducible representa-
tion comes from that of SO(2n) and we also write )\50(2”) instead of
A.S’pm(2n)-

Then (1 )So(zn) is the vector representation (the natural representa-
tion) and (1%)so(2n) is the irreducible representation AV of s0(2n) (i =
1,...,n—1).

For S’O(2n), A™V is not irreducible and A" V = (1")son)+(1""", —=1)s0(2n)-

As usual, we denote this representation A\'V by e; fori =1,2,... ,n—1
and e} = (1")so(2n) and e, = (1"1, —1)s0(2n)-

We note that \'V = /\2""’V For a partition § = (d1,02,...,6n)
we denote the irreducible representations by

(1/2 + 6)piniomy = (1/2+ 61, 1/2 4 6, 1/2 + 65 spin(an)
and -
(1/248) 5pinany = (1/24+61,1/24+ 82, ,1/2+ 601, =1/2= 6n) spincan):

We put simply AT = (1/2 + @)gpm(zn) and A™ = (1/2 + 0) 5, (2n)-
We also put A = At + A~ and A'= AT - A~

For A = (1/2+61,1/2+ 63,...,1/2 + 6,) € P*, we introduce the
sum character and the difference character for Spin(2n) and denote
them by

[A? 5]5'?’5"(2“) )‘Spm(Zn) (1/2 + 6)Spm(2n) + (1/2 + 5)§pin(2n)

and

[A, 6]Spin(2n) A ;111(211) (1/2 + 6)Sp¢n(2n) (1/2 + 5)§pin(2n)"

Then [A, 6] spin(2n) becomes the irreducible character of Pin(2n).
Similarly for a partition u = (u1, 2, .. ,Mn), We denote the sum
character and the difference character for SO(2n) by

Ngt))(zn) (/J’17 M2, - - - aﬂn)S"O(2ﬁ) + (,U:l, -+« Bn-1, _I‘Ln)SO(?;’l)v |

and

quo(zn) (B2, 2, - - ?,Iin)SO(zn) = (pa,--- Mn—l,'—#n)sb(‘zn)-

For a partition p with £(u) < n, psoen) becomes an irreducible
character of O(2n), so we sometimes write uo(gn) for Kso(2n) in this
case. '

If 4(u) = n, N(sc))(zn) is the irreducible character of O(2n) and we

sometimes write po(2n) for :“Eeo)(zn)-
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Centralizer algebras for even Spin
Fore € {£1},ife = +1, we put A* = A+, ¢ = ¢, (1/2+6)§pm(2n) =
(1/2 + 5);1”."(2”), etc. andife = -1, A= A", ¢ = ¢, (1/2 +
0)5pin(zn) = (1/2 + 6) 5pin(2n)» €tC-.
Theorem 2.1. For ¢, €1, ¢; € {+1}, we have the following formulas.

(1)

: [n/2)
(2.1.1) (AP =€+ en .
1=0
((n=1)/2)
(2.1.2) ATA™ = Y enya
=0 ’

(ii) For a partition § with its length £(6) < n, we have

(2.1.3)
(1/2 + 6)?9pin(2n)(1)50(2")
= (/24 O spineamy + D (1/2+ Wpinamy + 3 (1/2+ W)spincany-
uDé Op
[/d]=1 [6/ul=1
If £(8) = n, we have

(1/2 + a)fgpin(2n)(1)50(2h)

(2.1.4) = > (1/2 + ) Spingmy + Y (1/2+ 14) Spin(2n)-
56 =)
I;t(7<5)|:1, |5/,,|';1
u)Sn

(iii) For a partition p with £(u) < n, we have

(2.1.5) | ‘
Afuso(any = Z (1/2 + v)Spin(an) + Z (1/2+v ) Spin(zn)-
udv puv
/v vertical strip 1/v vertical strip
l#/v|=0 mod 2 l#/v|=1 mod 2

(iv) For a partition p = (uy, 2, ... ,ptn) with €(u) = n, we write
“;0(2'0 = piso(zn) 0N Pgon) = (K1, - - s U1, —Hn)so@n). Then
we have

(2.1.6) A“ ”.65'20(211) = Z (1/2 + V)?pin(2n)'
)
ulv ue‘:t?c:l strip
(—1)Iu/vl=¢; eg
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Particularly, for the exterior products e;’s if i <n, we have

A (W)soen = 9 (1/24+ T Nspinam + 2 12+ 77 )spimm)

0£2s<i 0<2s<i-1
and for €, we have ;
A, = D (1/2+ (1"7*))Spingan)
0£2s<n
and

A_Ee:z = Z (1/2 .+ (ln_l—zs))gpin@n)'

0<52s<n-1

€)= > (219500, (eh)(e) = Y (2 1%s00n

s=n mod 2 s=n—-1 mod 2
t=0 mod 2 t=0 mod 2
0Ss+tSn s+t<n—1

(€)? = (2", 2soent+ ., (2,177 =1)soen+ D (21500

s=n_mod 2 ‘ s=n. mod 2
s<n—-2 t=0 mod 2
= , s+tSn—2.

From the above, we know .all the irred spin representations occur in -
ko o i { . ‘ ;
the space AQ @ V. Also we have @ AV =2 AR(A)*, so.we have

Lemma 2.2.
(2.2.1)

k R e ,
CP¥ = Hompinan(A@ @V, AQ® V) = B2 (AV) @ @ V)7
Here the superscript Pin(2n) means the Pin(2n)-invariant space. |
So we need to give an explicit Pin(2n)-equivariant isomorphism be-

tween @2, AV and A @(A)*. ' ‘

First we give an action of Lie(Pin(2n)) = so(2n,R) on A.As a ba-
sis of A, we take a basis parametrized by all the subsets of [n] =
{1,2,...,n} and denote the basis elements by {[I]}, where I = {i1,%2,- .- »%r}
(1 <4 <ip <...<i £n)just as before and we take a set of the
simple root vectors as follows. ’ '

ad(Xi) = Exr+1 — Eﬁ-_l,?" ad(Xn) = En-im — En,n_:f’
ad(Yx) = Ery1k — EF,k_-ﬁa ad(Yy) = Epp-1 — EF——l,m
ad(h,;) = Ei,i — E--.

,1
, where k € {1,2,...,n—1} and i € {1,2,... ,n}.
The explicit action of Lie algebra so(2n,S) on this base is given as
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Centralizer algebras for even Spin

Lemma 2.3.

Xk[i17i21"' 7i1'] = {

—[’il,... ,is_l,k+1,i3+1,... ,’i,-] kazls and k+1 <

0 otherwise,
and
.. . —il,ig,...,i,-_gl z'fi,_1=n-1 andi,:n
Xaltr, to,... ,4,] = [
nlin, 22 d {0 otherwise, '
o , —[is- o it Ry iar, . y6] i k+1=4, and k > i,
}/;;[21,22,--. 77'1‘]: ..
0 : otherwise,
and
o ) —[é1,%2, ... ,ip,n—1,n] ifi, <n-—1
Yalir,te,... .4, ] = , . }
alin, o2 d {0 . otherwise,

1

hk[i11i2,-.. ,ir]= . 12
5[1'1,1'2,--- »ir] otherwise.

[il7i21"'7ir] ifke{il7i2:"'1if}

, where i1,1,,... ,i, are in the increasing order.

Moreover let A be a linear endomorphism of A defined by the degree
operator Aliy,ia,13,... ,i,] = (=1)"[é1, %2, %3, ... ,i,). Then A becomes
an associater of (A@det) = A as Pin(2n) modules and on A =
AT P A~, A is given by

A=idp+ @ —ida- .

For any sequence iy,14y,13, ... ,i, of non-negative integers, we define
the corresponding element [iy, 1,43, . . . »%r] in A such that it satisfys
the alternating property on the indices as before. ’

A compact real form s0(2n)q,; of L(Spin(2n)) @ C = s0(2n,C) is
generated by the elements v/—1k; and v/=1(X; + Y;), X; - Y;, (i=
1,2,...,n) as a real Lie algebra. , ,

Then the invariant hermitian forms of V' and A under the action of
50(2n)4; are given such that the base < U1, U, ..., Un, U, ..., up > of
V and the base [I];c[, of A become orthonormal basis respectively.

Then an explicit embedding theorem of A*V in the space A*® A is
given as follows.

We write the s0(2n)-equivariant embedding ¢, from ALV to Au R (A%2)*
by ¢;'®. Here €;,e; € {1} and we consider, as the notation, for ex-
ample, ¢;'> = ¢~ if e, = 1 and €, = —1 and so on.

Theorem 2.4. If n is an even positive integer, we have (At)* @ At
and (A~)* = A~ and only the embeddings ¢3'** corresponding to the
case €, = (—1)"%e, occurs.
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Ifn is an odd positive integer, we have (AT)* = A~ and (A7)* = At
and only the embeddings ¢;** corresponding to the case €, = —(=1)" e
occurs.

€1 €2 T ( 1 v WKl
< B LT = 5 gl Bl 5]
[n]—3—-12K
(m)itk=g
(—1)itk=e;
Here by small letters, we denote the number of the elements in the
set indezed by their capital letters.
For e} and e, we have the followings.

c16a — = (@) < (—1)W-ve
622(< 3, L L > = > soprmoonlbb |® (3K
[n}—J-12K :
(—D)itk=e
(- 1)J+k...62
Moreover each of the above @' 's becomes an zsometrzc embeddzng' ,
with respect to the invariant hermitian znner products

Here for an exterior product < l) M, W, I > of degree n, we
denotes the batns elements of e} and e respectlvely by

< 3,3, T I > =—\}—§(< 3, Wy, L, L > +(- 1)'1|<A1, W, &, T >)

and

<3 8L = (<3 8L > ()< 5, >)
Jif the right-hand sides are non-zero.

Using the above, we obtain the followmg Pm(2n) equivariant em-
bedding.

Theorem 2.5. As a Pin(2n) ( O(Zn) ) module, for an even £, the
equivariant zsometrzc embedding ¢ : /\ V — AQA*.is given by

o . |W—WNK|
¢e(< Jy, W, W, 1 >) = Z 2((n}|)3‘ lll)/2 [—l)-K-)] [—\1)—&)] .

[n]-3—12K

and for an odd ¢, the equivariant isometric embeddzng ¢g /\ V —
A QR A* is given by

(__1)|w—wnK|+|I|+|x|

bo(< b 8, L, I >)= Y, e BBIS LK

[n] ~J—IDK

This theorem is crucial for us to consider the invariant theory for the
group Pin(2n) (O(2n)).
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3. INVARIANT THEORETICAL PRELIMINARIES

We consider the invariant theory for Pin(2n) (O(2n)). As before,
the First Main Theorem tells us that the invariant symmetric forms
(Vi, vj)’s generate the invariants. Since

Endrinan (AB@ V) = (A@ARE V)™ = (@1, A VRS V)00,

it is enough to obtain an explicit base of the invariant polynomials in
the space '

(AV'®V)%e(c (@ V1o ¢ p( v)om)

We can assume r + s = 0 mod 2. Those basis elements are multi-
linear in each variable and has the alternating properties in the first r

g r+s
variables, regarded as the elements in P(€D V)02
As in the case of Spin(2n+1), let t = {tite, ...t} (hi<ta<...<
tr) and m = {m,,... ,m,} and 1 = {l,..., 1.} be ordered index sets

(or sequences) such that as sets, they are mutually disjoint and satisfy
' -7

the condition [s] = tUmuUl. By {m,1}, we denote the u = z
of indices {m, 1} = {{m,,1,}, {ma, b}, ... S{ma, W)}

So the invariant polynomials can be written as sums of the following
polynomials: . »

pairs

1 u
Tt fmyy = ) Z 6(0')()(0‘1(1)’ th)(xo-1(2), Ytz) - (xa'l(r)7 ¥yt,) X H(ymj,)'lj)-
' 0€6, ‘ Ji=1

Here x; (j = 1,2...,7) are the components of the first r tensors
in ® ™V and ¥; (4 =1,2...,s) are the components of the latter s
tensors in @' V.

Lemma 3.1. Let CP} = Hompin2n)(AQ@ @V, AQ R'V). If s =
k+1=0 mod 2, we take only t’s such that t| =0 mod 2. If s =
k+1=1 mod 2, we take only t’s such that [t| =1 mod 2. ,
Then the above T (my)’s span linearly the whole space of the CPk.
Moreover if s =k +1 < 2n+2, Ty (my (tUmUl= (s]) are linearly
independent, i.e.,

CP}‘ = @ CTt,{m,[} .

tUmUI=[s]

As before we have a natural correspondence between the generalized
Brauer diagrams GBY¥ and the polynomials Tt {m,1}-

We denotes these elements by adding the suffix ’inv’ to the diagrams
Dk
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4. A REPRESENTATION THEORETIC PARAMETERIZATION
From Theorem 2.1, we can show that dim(Hom pin(an) (A & ANV, A)) =

1 and define a Pin(2n)-equivariant homomorphlsm from A ® /\ V to-

A as follows.
Definition 4.1. If k is even, we deﬁnq ,
pri([L]® < I, W, d, I >) - |
0 - if1¢ T,
=3 (3 yweenmgameisnre —
V@ Jemmmmnan mer
If k is odd, we define | B
pry((L]® < I, W, &, T >)
0 fIET,
Ve <1> ) (—1)W-HnKI+KLHII QAT BD/2] 3, K, K] fICT.
L X - .

Here we put K = T —1 and € ('I') ) denotes the sign of the
L X

permutation obtained by arranging T, into I, K, in this order.

Similarly we have dim(Hompin(2n) (A, A& A*V)) =1 and and de-.

fine a Pzn(2n)-equ1var1ant homomorphlsm from A to A@ AV as
follows.

Definition 4.2. For an even k, we define

inji ((3)) = - - | |

S (T g)( X ey ke k< 5,5, 3 T>)
ICT IC([n]-T) |
k=T-1 WC([n]-1-J)

[3[+{T[+2Iw|=k

For an odd k, we define

SHEVED S CENE

ICT
K=T-1

( Z (_1)|w—wnx|+|J|+|x|2(|31+|1|)/2[l)_m QK < J,,i,;[,l— >)

IC([n]-T)
WC([n]-1-J)
|31+ +2|W|=k
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Using the above pr, , we introduce a Pin(2n)-equivariant homo-

morphism pr ;_from ARR"V to AQQ®" PV as before. Here T =
{ti,t2...,5,} (b1 < ta < ... < t,)is a subset of [k] and denotes the
positions in the tensor product ®k V. Namely,

Definition 4.3. Let pry : AQQ"V — AQ ®" PV be the pro-
jection map obtained by the composition of the map Alty and pry, i.e.,
pry = pryoAlty. Here pr, acts on the alternating tensors sitting in

the positions indezed by T, in the space AQ R V.

From the definition, pr 118 the element in Hompin(2n) (A @ ®" V,ARE
and has the alternating property with the index set 7.

Similarly we define the Pin(2n)-equivariant embedding inj 1, € Hompin(o
as follows.

k—p k
Definition 4.4. Letinj; :AQ @V - AQ @V be the immersion

P
obtained by the composition of the map inj,: A — AQAYV and the
linear embedding of the resulting tensors in the positions indexed by I.

From the definition, inj 1, has the alternating property on the index
set T too.

Then we can define representaion-theoretic parameterization of the
elements in CP by the generalized Brauer diagrams GB¥ as before.

We fix an element of the diagrams GBY¥. and let T, be its isolated
points in the upper row and T, be its isolated points in the lower row.

Then the action represented by the isolated points in the upper row
corresponds to the projection pry, and the action represented by the
isolated points in the lower row corresponds to the immersion ind‘.
Namely the total action represented by the isolated points corressponds
to the composition map

ky, P'n k—py, Y .
AQR'V " HAQR?V —5AQRV.

Finally we define the action corresponding to the points which are not
isolated just in the same way as those of the ordinary Brauer diagrams.

We denote these elements by adding the suffix ’rt’ to the diagrams
of GBF. '

Whether these elements span linearly the space CS¥ or not, or
whether these elements become a base or not is not clear at present.
We show in the next section that if ¥k < n and | £ n, we give the
explicit relations between two parametrizations and that they become
a base in this case.
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5. RELATION BETWEEN TWO PARAMETERIZATION

Since the difference between two parametrizations are only in the
actions corresponding to the isolated points, we give the relations be-
tween them. Let T, (|T,| = p) be the isolated points in the upper row
and let T; (|T;| = ¢) be the isolated points in the lower row. - :

We denote the homomorphism AQ X’V — AR Q?V, deter-
mined by the invariant polynomial by w%z , or simply by 9! if the
isolated' points are tacitly understood. Here the invariant polynomial
which we consider in the above is given by

Z 5(0)()(0'1(1)’ Yh)(xd‘l(2)> ytz) v (xcr—l(r)) Ytr)
and we consider this element as the invariant polynomial in the space
p+q pt+q
(AV®AV.
The relation of the above two actions are given as follows.

-1
For any 0 € 6, and 7 € G, we-have 7 o 1/)%2 oo = lb:(k()m So
it is enough to give an explicit description for ¢LEJ ‘in terms of the
representation theoretical operators, where [p] = {1,2,... ,p} and [g] =
{1,2,...,q}. S

Theorem 5.1. Let p £ n and ¢ £ n. Then we have

. 7([1,14])
min(p,q) .. .
[ _ 0o (fi+1,0)} (U([l”])) P+ (fi+1,8)}
(5.11) 9y = g aezsj e(o) e() 0! - o i)’;
TEG,
and
(5.1.2) A
. . 7([1,1])
min(p,q) {r(i+1.p])} . .
o Ly Y{o(i+La)) (0 ([1’21))

7€86,

Here we denote o([i + 1,q]) = {o(i +1),0(i + 2),...,0(q)} and
(i + 1,p)) = {rG+1),7(i +2),...,7(p)} and (;EHV;]]%) denotes
the partial permutation of the tensor components obtained by sending
the 7(1)-th component in AQ QP V in the upper row to the o(1)-th
position in AR Q?V in the lower row and so on. Also we note that
all the indices occurring in v, pr and inj have the alternating property
respectively. '

So if k £ n andl < n, the generalized Brauer diagrams under the rep-
resentation theoretic parameterization also span the whole space CPk
and become a linear base of CP¥. :
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Remark 5.2. The right-hand side of the first formula 5.1.1 can be
considered as the composition of the homomorphisms in this order, but
the formula 5.1.2 cannot. So we put ® in the right-hand side to show
that each summand becomes a homomorphism as a whole.

Example 5.3. We show a few ezample of the relations of two param-
eterization. Let us assume that n 2> 2. '

LN T X
* Cinw * ° *rt ° rt vt " " rt Yot
[. = 1. *11]
" inw “rt rt
FIGURE 1. The relations of two parameterization

Ifp > n,wehave AQ A’V 2 AQ A" PV @det = 12 7[A, (19)).
So we need the Pin(2n) isomorphism A @, : AQ A’V — AR A™? v,
where A is the associater in Lemma 2.3 which is the isomorphism
from A @det to A and r, is a Pin(2n) isomorphism from ® A?V

to det @ A> P V given as follows.

Lemma 5.4. The so(2n)-isomorphism
£ 2n—¢
Te : /\ V — /\ vV .

1s given by follows.

re(< L, W, W, I >)=(-)< 3, %58 I >
, where WUWS = [n] — J — I and |3] + |I| + 2[W| = ¢.
The formulas are as follows. As before we define the homomorphism
[[ﬂ_ ] by the composition of the alternating operator AltM and r, and

the immersion of the alternating tensor to the positions [2n — pl.

T

Theorem 5.5. Let p > n and ¢ < n. Then as a homomorphism from

AQR’V to AQ RV, we have

(5.5.1)
()
B _ g+n T\11,91)) Po(jg+1,2n—p))} p)
Y= (O 2 ) e G AR Ty
TES,

We note that from the definition of Y8, p + ¢ must be less than or
equal to 2n, i.e., p+q < 2n.
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Let p < n and ¢ > n. Then as a homomorphism from A Q@ Q" V to
AR RV, we have

(5.5.2)
a([1,1
B ypin_ @ [2n—q] (7 ((p+1,2n—q))} (T([ld
Vg =V g g@; ) Gn-p-g  »
TEG2n—g

6. RELATIONS BETWEEN Pin(2n)- EQUIVARIANT HOMOMORPHISMS

In this section we give the relations between the compositions of pr
and inj and the contractions and the immersion of the invariant forms,
from which we can deduce the multiplication rules of the generalized
Brauer diagrams. :

Theorem 6.1. The following formulas holds for pr, inj, and the con-
traction operators Cy; j3 and the linear immersion of the invariant ele-
ment idy; ;1. Here Cy; ;) denotes the contraction (with respect to S) of
the i-th and j-th tensor components and idy = Y i, (u; ® vz + u; ® u;)
and the subindices of idy(; ;) denote the immersed positions, namely
the first tensor goes to the i-th position and the second goes to the j-th
position. .
(i) If p £ n, as the homomorphisms from A @ @’V to A (here we
consider the tensor QP V sits in the positions {g+1,9+2,... ,p+
q}), we have

(6.11)  Prypgsp ©injiugy = (“DFPU(2n = Pla Prgrigun) -

Here (2n — p), denotes the lower factorial, i.e., for any x and
non-negative integer i, we define (z); = z(z—1)(z—2)--- (z—(i—
1)). The above also holds for p = 0 and in that case we regards
pr in the right-hand side as the identity map of A.

(ii) If p £ n, as the homomorphisms from A to AQ @V (here we
consider the tensor Q° V sits in the positions {g+1,q+2,... ,p+
q}), we have

(6.1.2) PI{1,q)} © Mi1,g4p]) = (-1)®*4(2n — p), I0j{(g+1,¢+p} -
(iii) Ifp £ n andq < n, as the homomorphisms from A to A Q) XV,

we have
(6.1.3)
min(p,q) Cin
i gy © Miggrignny = 2 (~1DFEN ST (o) e(r)
=0 g€6,

TEG,[4]

[lcr idv (o) gty MM{o(i+1,0),(ati+1,a+e)}
! (g —9)(p —9)!
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Here Gpq] denotes the symmetric groups acting on the p char-
acters {g+1,¢+2,... ,¢+p}.
(iv) If p £ n and q £ n, as the homomorphisms from A @ IV to

A, we have
(6.1.4)
Pr{ind} © Pllg+1,049]} =
min(p,q)
i+(} I T C o(u),r
Y ()"0 Y (o)elr P (ol Lallnti+Lats)) IT.-: Ce W)t}
i=0 €6, (¢ — 9)(p — 2)! !
T€S,[g]

(v) If p £ n and ¢ £ n, as the homomorphisms from A@ KFV to
AQQV, (here we consider the tensor @F V sits in the posi-
tions {¢g+1,9+2,...,q9+p}.) we have

(6.1.5)
"ok {0 f+1,4))
. . 1 ot 9
Priigsiorn) My = 2 (S D elo) elr)—rZ
1=0 0€S,

TGep[‘l]
(r([q Flq+ i]))
o ([1, z]) PI{r((g+i+1,g+p))}
1! (p—12)!

Here (T([q -'i[}’ ;I])+ 1)) ) denotes the (partial) permutatzon which

sends the 7(q + u)-th component to o(u)-th position.

(vi) Ifp2t andp—t < n and ¢ £ n, as the homomorphisms from
AQRQR 'V to AQ®?V, (here we consider the tensor @V
sits in the positions {g+t+1,q+t+2,...,q+ p}.) we have

(6.1.6)

min(p_t)q)
Prilgt1,04p) Oifuarey = Y (—1)PIFHEHD) (Z ( )(2n P—g+t+i—u))x
=0 u=0

(T([q+t+ 1,q+t+i])>

(4 (fit+1,0))} o([1,1]) PT{r((g+t+i+1,g+p])}

D e(o)e(r) : : ate)}
s (g —2) 1! (p—1t—13)!

TESp_t[g+t]

Here (:‘) in the parentheses denotes the ordinary binomial co-
efficient. Ift =0, 2n—p—q+0+1i—u)y =1 and we obtain
6.1.5.

(vii) If p £ n and ¢ £ n, as the homomorphisms from AQ RV to
A Q@ ®PV, (here we consider the tensor @V sits in the positions
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{p+q+1,p+q+2,...,p+2q}.) we have
(6.1.7)

min(p,q)

d . g inj(r(gtitlatp)}
[ Ciprarir Miguasm = D D& 3 d)e) (p—i)!

i=1 “i=0 g€By[q+p]
TEGL[g]

(0([P+ g+ 1,p+Q+i]))
7(lg+1,q+1]) DI {o(jg+p+i+1,20+p)}
! (g —1)! '
(viii) If p £ n and ¢ £ n, as the homomorphisms from ARRV to
AQRQ'V, (here we consider the tensor @'V sits in the posi-
tions [q] and ®®V sits in the positions {p+q+1,p+q+2,...,2p+

q}.) we have
(6.1.8)
P min(p,q) ,
pr{[l,q+p]}HidV{q+i,p+4+i} = Z ‘(_1)(2)+pq Z €(o) e(7) X
i=1 1=0 g€G,;

TE€G,(g+p]

( o([1,7]) )
inj i (prgrivrgrzph) \7(P+g+1,p+a+ i])) Prio(i+1,a))

(p — ) i! (-9
Remark 6.2. If we exchange 2n in the above formulas into an in-
determinate X simultaneously, we can define the ‘generic’ centralizer
algebra of CPy just as in the ordinary Brauer algebras.

7. EXAMPLES OF PRODUCTS OF THE GENERALIZED BRAUER
DIAGRAMS

From the result of the previous section, we can calculate the product
of the generalized Brauer diagrams.

As we remarked after the statement of Theorem 6.1, we change 2n
in the formulas of the theorem into an indeterminate X simultaneously
and we write down the relations of the ‘generic’ centralizer algebra of
CPy. ' ‘

We summarize other relations between the contractions and the im-
mersions and pr and inj which follow easily from the definitions. We
fix the index set of the tensor positions of ®* V from 1 to k and after
the contraction Cy; j; we consider the i-th and the j-th components are
occupied by the empty set and idy; ;; is allowed if the positions 1 and
j are occupied by the empty. ‘ '

Then we have the followings.

Lemma 7.1. (i) _
C{s,t} ldV{,’J} = idV{i,j}‘C{s,t} Zf {5, t} N {'L,]} = @
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Cinyidvyjy = (;) ifs#7.

Here (j) denotes the (partial) permutation which sends s-th com-
ponent to the j-th position.
(iii)
Cisyidv sy = (2n)id.
(iv) If s,t € T, we have
Cis,gpinj; =0,  pry idv{s,t} =0.
(v) If s,t1,ta,... ,t, € [n] are different from each other, we have

AV . ). .
(sl) it} T Wy, 5 ey (s) 1dv (1)1} = iy gs,15)-

(vi) If s,t1,ta,... ,t, € [n] are different from each other, we have

s s
PLit) i iy ts} (ti) = Pr{th___,;jr" PRy C{tl,z,} (tl) =-C{s,t2}.

(vii) If 5,t,t1,t0,... ,t, € [n] are different from each other, we have

idV{.s,t} inj{tl,... tireeste} = inj{tl,... ireerste} idV{s,t}
and

Cloty e, bty = Migey, 4o 03 Cloy -
Also we have

1dv {s,8) Pty i e} = Plity it} 19V (s}
and

C{s,t} Pty tiets} = Pty i te} C{s,t} .

Proof. The first three formulas are easy and the fourth and the fifth
formulas follow directly from the alternating property with the indices
in T of pr and inj. The rest are obvious from the definition. O

Remark 7.2. If we put e; = idv (ii41) Clijiv1), we can deduce easily
e;e;11€; = e; from the above lemma. These relations were used to de-
fine the Birman-Wenzl algebras ( g-analog of the Brauer centralizer
algebras).

Let us show some examples.

Example 7.3. In this ezample we always assume n 2> k and ezploit the
representation theoretical parameterization of the generalized Brauer
diagrams, so we omit the subscript vt here. We calculate the product
of ysys in the k = 2 generalized Brauer diagrams of the introduction.
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D—

- (X-1

Sne— S——
G—

YsYs = : ] = —-(X-1)

FIGURE 2. The result of the product of ysys

Here ys = inj( 9y C1,2) and‘yg, = injqqy (g) pryyy- From the formula
(6.1.2), we have pryyy injg; 5 = (X — 1)1injgy; (we put X for 2n.) and
the targeting homomorphism is injgy @) (X = 1)injy Cuzy = (X -

1)injgyy injgzy Cru2)- From the formula (6.1.3), we have injyy injry) =
—injy 9y —idv {12y and the final formula is given in Figure 2.
We calculate more complicated general case of Figure 3.

s 0 oo
.7;—' =3X-(X -3 RS
A ~ .

~(X =X =X =)D (-1 =y,

Here y; denotes the upper row and z; denotes the lower row given as follows.

Y1 Y2 Y3 Ya
s o [] e o L] e e \.y.. \w
Tt gy
24 2
5

FIGURE 3. The result of the product of a more compli-
cated example

In this case we must calculate

. .. ) . . 1
idv (3,5} i {1,2.6,7) (4) Pri124,7 Ca) idvis7 1,246 (3) Pr{2356) C{am -

We note that the inside homomorphism (Z) Pr{i24,7) Cia6) 1dv (5,7} IDj(12,4.6) (

is an element in CP] = Hompinpn)(AQV,AQV). (V sits in the
first place in the upper row and sits in the forth place in the lower row.

In general, the inside homomorphism is an element in CP;. Here
s is the number of the vertical lines (the edges from the upper row to
the lower row) in the upper diagram and t is the number of the vertical

)
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lines in the lower diagram. FEach of them corresponds to the indices
in the upper row of the upper diagram and in the lower row of the
lower diagram jointed with edges respectively. From Theorem 5.1, this
element must be a linear combination of GBS and using the formulas
in Theorem 6.1, we can calculate this homomorphism ezplicitly.

From the formula (6.1.8), we have

. . . 1 2 3
Pr{i1234) idv 4,5 = TIN5 P23}~ | 5 P33+ 5 ) P13} — | 5 ) PT{1,2}

If we apply the conjugation of the permutation n = (Z i) , we have

. . 1 2 4
PI{1,24,7} idvszy = — mMj¢s3 Pr{y 2,4} — (5) Priz4) + (5) Pr{i,4 — (5) PI{12}
From the formula (6.1.7), we have

Cl151 {1234 = iNj(3.4 PI(s) +injgs 4 ( )—m.l{z 4} ( )‘*‘“11{2 3} ( )

If we apply the conjugation of the permutation n = (é g i ‘11 §>’

we have

.. .. . . 3\ .. 3\ .. 3
Cys6) {1246y = — iNj{1,24) Pr(z) +iDig1 4 9 ) M2} {4 ) Mg (]
Since pr{2’3} inj{l,z} = —(X - 2) lnj{l} pr{3} "'{(X -1-2 +1+1-—
0)+(X-1-24+1+1-1)} (:15) from the formula (6.1.6), we have

. . 2 .
Priz4)injg 4 = (X — 2)injgy, Pryg +(2X — 3) (1) The calculation

goes on in almost similar way and the final result consists of 26 terms
in which only one term contains a vertical line. It is given in the figure

3.

8. DUAL PAIR AND Pin(2n) AND Spin(2n) REPRESENTATIONS

In this section we first define the subspace in A ® ®* V on which
the symmetric group of degree k and Pin(2n) act as a dual pair. Next
we determine the centralizer algebra CSy of Spin(2n) on the space
A® ®*V and define the subspace on which the symmetric group of
degree k and Spin(2n) act as a dual pair.

For the time being, we always assume n > k and we consider the
generalized Brauer diagrams under the representation theoretic param-
eterization.

We define the ideals of CPy as follows.

For the generalized Brauer diagrams y and z, we consider the inside
homomorphism of the product yz. (See the example 7.3 in the previous
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section.) Namely the inside homomorphism is the middle part between
the contractions and pr of z and the immersion and inj of y.

For a generalized Brauer diagram z we denote by v(z) the number
of the vertical line ( the edges from the upper row to the lower row)

in 2. Then the inside homomorphism is an element in CP:E;)) and
v(z)

the vertical lines of the corresponding element in GBv(y) are at most
min(v(z),v(y)). From Theorem 5.1, the final result consists of the
elements with at most min(v(z),v(y)) vertical lines in GBk.

Hence if we denote by J, the linear subspace spanned by all the
generalized Brauer diagrams z with v(z) < s, J, becomes a two sided
ideal of CPy. Also for a fixed index set T C [k], the linear subspace

spanned by all the generalized Brauer diagrams z in which no vertical -

lines start from the T in the upper row becomes a left ideal and we
denote this left ideal by L. Similarly the linear subspace spanned by
all the generalized Brauer diagrams z in which no vertical lines end
with the T in the lower row becomes a right ideal and we denote this
right ideal by Ry.

At present we don’t know what are the factor algebras of the chains
of the two sided ideal J,. Only we can say is that the top factor is
isomorphic to the group algebra R[S;]. Here R[G] is the subalgebra
of CPy consisting of the diagrams with k vertical lines, since CPy

contains the ordinary Brauer centralizer algebra and the symmetric

group of degree k in natural way. Namely we have
CPk = R[Gk]®3k_1.
Let us define the subspace TP of AQ@ Q" V.

Definition 8.1. Let T? denotes the intersection of all the kernels of
the contractions Cyij) (1S4 < j S k) and the projections pry;, 5, iy
r>0and1<i<ip<...<i Sk)

We note that any element of the two sided ideal Jrk—1 acts on this
space by 0 and T? is a CPy x Pin(2n) subspace. (Actually it becomes
an S; x Pin(2n) module.) Then we have the following theorem.

Theorem 8.2. Let us assume n = k. Then the symmetric group of
degree k and Pin(2n) becomes a dual pair on the subspace Ty . Namely
T is decomposed into the direct sum of the tensor products of the ir-
reducible representations with multiplicity free as follows. ‘

(8.2.1) T = > s, R[A, Mspin(zn):
A:partitions of size k

Next we move to the case k > n.
Let us define the subspace Ty, (s = 1,2,...,n) of AQ RFV. We
note that CPy contains the groups algebra R[Sy].
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Definition 8.3. Let T, denote the intersection of all the kernels of
the contractions Cy; ;3 (1 < i < j £ k) and the projections P, i)
(r>0and154,<iy<...<i, £k) and the alternating operators
Altg iy, i (T>8) of degree greater than s.

Then the spa,ce T,?s become a CPy x Pin(2n) module. For, from
Theorem 5.1 and Theorem 5.5, on this space T°s, the homomorphism

¢T corresponding to the isolated points in a generalized Brauer dia-

grams is 0 if |T,,| > |T,|. If |T,| < |T;|, then contractions must appear
in the upper row, since the upper and the lower row consist of the same
number of dots. Therefore only in the case that the number of the iso-
lated points in the upper row is equal to that in the lower row, ¥ acts
on this space non-trivially and in that case, as a homomorphism, 7 is
the composition of the alternation and the immersion up to a scalar.
From the definition, T}, is stable under the action of &;.

Since CPy is spanned linearly by the generalized Brauer diagrams
under the invariant theoretic parameterization, the space T, is invari-
ant under the action of CPy. Only the diagrams under the invariant
theoretic parameterization with the same number of the isolated points
in their upper and lower rows and without contractions in their upper
rows act on this space non-trivially.

We have the following theorem.

Theorem 8.4. Let us assume k > n. Then the symmetric group of
degree k and Pin(2n) becomes a dual pair on the subspace T0 Ezactly
speaking, T,c s 18 decomposed into the direct sum of the tensor products
of the irreducible representations with multiplicity free as follows.
(8.4.1) T, = > Ae. QLA Mspin(zn)-

A:partitions of size k
£(A)Ss

We move to the case for Spin(2n).
For Spin(2n) representatlons we consider the endomorphism (A ®

id) € End(A @ ®"* V). Here A is the associater for A and is given by

the degree operator Aliy,42,13,... ,i,] = (—1)"[é1, 42,3, . . ) Br).

Lemma 8.5. The endomorphism A ® id commutes with both of the
actions of CPy and Spin(2n) on the space A@Q Q" V.
Moreover we have

pr,o(A®id) = (-1)’Aopr,
and
inj, 0A = (-1)?(A ® id) inj, .

Then we first decompose the space A® ®" V into the irreducible
constituents under the action of Pin(2n) x CPy. Since Pin(2n) and
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CP, are semisimple and act on the space as a dual pair, from the
Wedderburn’s theorem, we have

k
AQRV = €B< [A, M spin(zn) @ Acp.-
LA)En
I(/\Ié_k
Here Acp, is the irreducible representation of CPx. We consider the
subspace [A, A]spin(2n) & Acp, as Spin(2n) x CPy module. Then we
have ' '

[A’ /\]Spin(2n) ® A(:Pk = (1/2 + A)-,;'-17'51),(211,) ® A(3Pk @(1/2 + 6) Epin(2n) ® )\CPk‘

Since ARid commutes with the action of CPy and the space [A, N spin(2n) @ Acpy
is the homogeneous component of the irreducible representation Acp,
of CPy, we have :

(A®id)([A, A @ Ace,) = (A, @ Acpy

Since (A ® id)? = id, +1 eigenspaces of A ® id in A, A ® Acp,
become Spin(2n) x CPy modules. - v

Here At @ ®* V is +1 eigenspace and A~ @ Q" V is —1 eigenspace
of A®idin AQ X" V.

From Theorem 2.1, (1/2 + X520y 2PPe2IS in A ® Q" V if and
only if 5—|A\| = 0 mod 2. Also (1/2+X) 2, @PPears in At RV
if and only if kK — |A| =1 mod 2.

So (—1)k=1M eigenspace of (A®id) in [A, ] @ Acp, is the irreducible
representation (1/2 + A)§ ;non & Acp, and (—1)k=+1 eigenspace of
(A®id) in [A, \] @ Acp, is the irreducible representation (1/2+X) gpin(an) @ AcPy-

We define the extension of the algebra CPy by (A ® id).

Definition 8.6. Let CSy. be the subalgebra of Hom(A @ ®*V,AQ R V)
generated by CPy and (A ® id). :

Then we have the following theorem,

Theorem 8.7. CSy and Spin(2n) act on the space ARRV asa
dual pair. Namely the space A @) ®k V is decomposed into a direct sum

of the irreducible modules of CSy x Spin(2n) with multiplicity free.

Then Theorem 8.2 for Spin(2n) is given as follows. Since we have
Lemma 8.5, TY in Definition 8.1 is (A ®id) stable and We decompose
T? into the %1 eigenspaces of (A®id) and denote them by TY*. Then
from Theorem 8.2, if we note that |A\| = k in this case, we have the
following. '

Theorem 8.8. Let us assume n = k. Then the symmetric group of
degree k and Spin(2n) becomes a dual pair on the subspaces T, ,?’+ and
T ,?’_ respectively. Namely T,S’i are decomposed into the direct sum of
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the tensor products of the irreducible representations with multiplicity

free as follows.

(8:8.1) T = 3 e, ®1/2+ Ninam
A:partitions of size k

and

(88.1) = T A ®1/2+ Nz

A:partitions of size k

‘Theorem 8.4 for Spin(2n) is given as follows.

We assume that k > n.

The subspace T, (s = 1,2,...,n) of A@Q ®"V in Definition 8.3
is also (A ® id) stable. We decompose T, into the 31 eigenspaces of
(A®id) and denote them by Tg7*.

From the same reason as before, we have the following theorem.

Theorem 8.9. Let us assume k > n. Then the symmetric group of
degree k and Spin(2n) becomes a dual pair on the subspaces T/?: and
T,?”s“ respectively. Ezactly speaking, T,g’:: are decomposed into the di-
rect sum of the tensor products of the irreducible representations with
multiplicity free as follows.

(8.9.1) ot = > Ae, @(1/2 + A iniam)-
A:partitions of size k
LN)Ss
(891) Tl?,,; = Z: /\Gk ®(1/2 + ’\)Epin(2n)‘

A:partitions of size k
£(A)Ss
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