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1 Introduction
The aim of this paper is to classify the minuscule heaps over simply-laced,
star-shaped Dynkin diagrams.

A simply-laced, star-shaped Dynkin diagram $\Gamma$ is a simple graph (without
loops or multiple edges) like the one in Figure 1. It has anode $0$ , and several
branches $R^{1}$ , $R^{2}$ , $\ldots$ , $R^{l}$ emanating from $0$ . We call $\mathit{0}$ the center of $\Gamma$ , and
the number of nodes on $f\dot{f}$ (not including o) the length of the branch $\dot{H}$ . If
$l\geq 3$ , then $\mathit{0}$ is uniquely determined by $\Gamma$ . We mainly deal with such cases.
If the length of $\dot{R}$ is $l_{:}$ , then we say that $\Gamma$ is of type $\mathrm{S}(\mathrm{Z}\mathrm{i}, l_{2}, \ldots, l_{f})$ ,

$\Gamma$ is an example of aDynkin diagram, namely and encoding of agen-
eralized Cartan matrix $A=(a:,j):,j\in I$ , associated to which is a Kac-Moody
Lie algebra $g$ $=\mathfrak{g}(A)(\mathrm{s}\mathrm{e}\mathrm{e}[1])$ . The set I indexing the rows and columns of
$A$ is the node set of $\Gamma$ , which we denote by $N(\Gamma)$ . $\mathrm{g}(A)$ is ageneralization
of a finite dimensional semi-simple Lie algebra, say over $\mathbb{C}$ , and defined by
acertain presentation determined by $A$ . AU simple finite-dimensional cases
(types $A_{n}$ ($n$ $\geq 1$ ), $D_{n}(n\geq 4)$ and $E_{n}(n=6,7,$ $8)$ ) are included in our class.

Minuscule heaps arose in connection with the $\mathrm{A}$-minuscule elements of
the Weyl group $W$ of $g$ . According to R. Proctor [6] and J. Stembridge
[9] the notion of A-minuscule elements of $W$ was defined by D. Peterson in
his unpublished work in the $1980’ \mathrm{s}$ . Let Abe an integral weight for 9. An
element $w$ of $W$ is called A-minuscule if it has areduced decomposition
$s:_{1}s:_{2}\ldots s_{\dot{l}_{p}}$ such that

$s:_{k}(s_{i_{k+1}}\ldots s_{i_{\mathrm{p}}}\mathrm{A})=s_{i_{k+1}}\ldots s_{i_{p}}\mathrm{A}-\alpha$:for all $1\leq k\leq p$ ,

and is called minuscule is $w$ is A-minuscule for some integral weight A. Here
$aik$ is the simple root corresponding to $s_{i_{k}}$ . It is known that aminuscule ele-
ment is fully commutative , namely any reduced decomposition can be con-
verted into any other by exchanging adjacent commuting generators several
times (see [6, \S 15], [7, Theorem $\mathrm{A}$] and [8, Theorem 2.2], or [9, Propositio
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Type

Figure 1: Astar-shaped Dynkin diagram

2.1]). To afully commutative element $w$ , one can associate a $\Gamma$-labeled poset
called its heap. A $\Gamma$-labeled poset is atriple $(P, \leq\phi)$ in which $(P, \leq)$ is
aposet and $\phi$ : $Parrow N(\Gamma)$ is any map (called the labeling map). Alinear
extension of a $\Gamma$-labeled poset naturally gives aword in the generators of
$W$ . The heap of afully commutative element $w$ is a $\Gamma$-labeled poset whose
linear extensions give all reduced decompositions of $w$ . Aminuscule heap
is the heap of aminuscule element of $W$ . Stembridge obtained the following
structural conditions for afinite $\Gamma$-labeled poset to be aminuscule heap ([8,
Proposition 3.1]).

(HI) If $parrow q$ in $P$ , then $\phi(p)$ and $\phi(q)$ are either equal or adjacent in $\Gamma$ .
Moreover, if $p$ , $q\in P$ are incomparable, then $\phi(p)$ and $\phi(q)$ are not
equal, and not adjacent in $\Gamma$ .

(H2) If $p$ , $q\in P,p<q$ , $\phi(p)=\phi(q)=v$ and no element in $[p, q]$ except $p$ , $q$

are labeled $v$ , then exactly two elements in $[p, q]$ have labels adjacent
to $v$ . (This is asimplified version accommodated to the simply-laced
cases only.)

The interval appearing in (H2) is important in minuscule heaps, and will be
called a $v$-interval. We start from this characterization, namely we define
aminuscule heaps over $\Gamma$ to be afinite $\Gamma$-labeled poset $(P, \leq, \phi)$ satis-
fying (HI) and (H2). The isomorphism classes of minuscule heaps over $\Gamma$
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corresponds bijectively with the minuscule element of $W$ , where an isomor-
phism is defined to be aposet isomorphism commuting with the labeling
maps. R. Proctor showed that, if $\Gamma$ is simply-laced and Ais dominant, then
the minuscule heap constructed from aA-minuscule element is ad-complete
poset, anotion defined by himself, $d$-complete posets enjoy nice properties
such as the hook length formula and jeu de taquin, and are expected to be
anice class of posets that generalize Young diagrams. He introduced the
operation of slant sum, and enumerated all 15 types of “slant-irreducible”
d-complete posets, namely the ones irreducible with respect to the slant sum
decomposition. Then J. Stembridge classified the slant-irreducible minuscule
heaps over multiply-laced Dynkin diagrams $\Gamma$ , where Awas still assumed to
be dominant.

In this paper, we assume that $\Gamma$ is simply-laced and star-shaped, but
remove the assumption that Ais dominant. As an intermediary for classifying
these minuscule heaps over such $\Gamma$ , we introduce the notion of $D$-matrices(see
\S 4). They represent the structure of the intervals $[b_{o}, t_{o}]$ of minuscule heaps,
where $b_{o}$ and $t_{o}$ respectively are the smallest and largest elements labeled
by $0$ , the “central node” of $\Gamma$ , respectively. We characterize the D-matrices
for any fixed such $\Gamma$ , and then give acomplete description of the set of all
minuscule heaps which share the structure of $[b_{o}, t_{o}]$ represented by each D-
matrix. To describe these minuscule heaps, we introduce the notion of slant
lattice over $\Gamma$ (see \S 4). It plays the role of a“universal holder” to embed
all minuscule heaps over $\Gamma$ , and provides a“standard coordinate system” to
compare them up to isomorphism. Our main results are Theorems 4.8 and
5.6.

The paper is organized as follows. \S 4, 5 form the main part of this paper,
where we classify the minuscule heaps over simply-laced, star-shaped Dynkin
diagrams. To reach there, we collect some basic facts in \S 2, and introduce
the notion of the slant lattice in \S 3.

2Preliminaries
First note that all poset appearing in this paper, including infinite ones,
satisfy the following condition:

$(^{*})\mathrm{I}\mathrm{f}p$, $q\in P$ and $p\leq q$ , then there exists afinite sequence of elements of
$P$ , say $p_{0},p_{1}$ , $\ldots$ , $p_{l}$ , such that $p0=p$, $p_{l}=q$ and $p_{\dot{l}}$ covers $p_{i-1}$ for $1\leq i\leq l$ .

We call such asequence $p_{0},p_{1}$ , $\ldots$ , $p_{l}$ asaturated chain from $p$ to $q$ .
Let $(P, \leq, \phi)$ be a $\Gamma$-labeled poset. For each $v\in N(\Gamma)$ , we denote by $P_{v}$

the set of all elements in $P$ labeled $v$ . For $\Gamma’\subset\Gamma$ , we denote $\bigcup_{v\in N(\Gamma’}{}_{)}P_{v}$ by
$P_{\Gamma’}$ . It is each to see the following
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Proposition 2.1. Let $\Gamma$ be any Dynkin diagram. Let $(P, \leq, \phi)$ be a F-labeled
poset satisfying (HI), and $v$ a node of F. Then $P_{v}$ is totally ordered.

Now let $(P, \leq,$ be a minuscule heap over $\Gamma$ . By the support of $P$ we
mean the image of $\phi$ , which is denoted by $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}P$ . Minuscule heaps with

acyclic support has additional nice properties. Following [8], we denote this

condition by (H4), namely

(H4) $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}P$ is acyclic. ((H3) is used in [8] for another condition for domi-
nant minuscule heaps.)

Note that (H4) is always satisfied if $\Gamma$ is star-shaped (see \S 4), since such $\Gamma$

are acyclic.

Proposition 2.2. Let $(P, \leq, \phi)$ be a minuscule heap over $\Gamma$ .
(1) If $C$ is a convex subset of $P$ , then $(C, \leq|c, \phi|c)$ is a minuscule heap

over $\Gamma$ , where $\leq|C$ and $\phi_{|C}$ are the restrictions of the ordering $\leq and$ over
$\Gamma$ . In particular, all order ideals, order filters, intervals, open intervals, and
connected components of $P$ are minuscule heaps over $\Gamma$ .

(2) The dual poset of $P$ is a minuscule heap over $\Gamma$ . Namely, $(P, \leq*,$

is a minuscule heap over $\Gamma$ .

It is also easy to see the following.

Proposition 2.3. Let $(P, \leq, \phi)$ be a $\Gamma$ -labeled poset satisfying (HI), Then
$P$ is connected if and only if $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}P$ is connected.

We say that two subdiagrams $\Gamma_{1}$ and $\Gamma_{2}$ of $\Gamma$ are strongly disjoint if

their node sets are disjoint and if no node of $\Gamma_{1}$ is adjacent to any node of
$\Gamma_{2}$ in $\Gamma$ .

Remark 2.4. Let $P_{1}$ , $P_{2}$ , $\ldots$ , $P_{c}$ be the connected components of $P$ . Propo-

sition 2.3 implies that the subdiagrams $\Gamma_{i}$ of $\Gamma$ with node sets $\phi(P_{i})$ , $i=$

$1,2$ , $\ldots$ , $c$ , are connected and pairwise strongly disjoint. Hence $\Gamma_{1}$ , $\Gamma_{2}$ , $\ldots$ , $\Gamma_{c}$

are the connected components of $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}P$. This establishes aone-t0-0ne cor-
respondence between the connected components of $P$ and those of $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}P$ .
A $\Gamma$-labeled poset is aminuscule heap over $\Gamma$ if and only if its connected com-
ponents are minuscule heaps over $\Gamma$ and their supports are pairwise strongly
disjoint.

Our aim is to classify the minuscule heaps $P$ over simply-laced, star-
shaped $\Gamma$ up to isomorphism of $\Gamma$-labeled posets. By Remark 2.4, it is suf-
ficient to study each connected component. At most one of the connected
components contains $\mathit{0}$ in its support, and the rest have supports of type $A$ .
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$P$

1 $\phi$

$\Gamma$

Figure 2: The double-tailed diamond $d_{k}(1)$

The type $A$ minuscule heaps turn out to be all of the labeled posets described
in $[1, 1]$ (isomorphic to skew Young diagrams). So we concentrate on the case
where $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}P$ is connected and $0$ $\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}P$.

Let $\Gamma$ and $\Gamma’$ be Dynkin diagrams. We say that a $\Gamma$-labeled poset $(P, \leq, \phi)$

and a $\Gamma’$-labeled poset $(P’, \leq, \phi’)$ are abstractly isomorphic (or isomorphic
if no confusion would arise) if there is aposet isomorphism $\alpha$ : $Parrow P’$ and
an isomorphism of subdiagrams $\beta$ : $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}Parrow \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}P’$ such that $\beta$ maps
the label of $p$ to the label of $\alpha(p)$ for every $p\in P$ . For an integer $k\geq 3$ ,
we denote by $d_{k}(1)$ , as was done by Proctor [6], the labeled poset illustrated
in Figure 2. An interval[p, $q$] abstractly isomorphic to $d_{k}(1)$ will be called a
double-tailed diamond, with the special case where $k=3$ being called a
diamond.

Let $\Gamma$ be any Dynkin diagram. The following proposition is due to Stem-
bridge.

Proposition 2.5. [8, Propositin $\mathit{3}.\mathit{3}/Let$ $(P, \leq\phi)$ be a minuscule heap satis-
fying (H4). Let $v$ be a node in $N(\Gamma)$ and let $[p, q]$ be a $v$ -interval. Then $[p, q]$

is a double-tailed diamond. In particular, if $q$ covers two distinct elements,
then $\lceil p$, $q$] is a diamond.

Remark 2.6. In [8], Stembridge calls $d_{k}(1)$ asubinterval of type $D_{k}$ .
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The following proposition is also due to Stembridge.

Proposition 2.7. [8, Corollary 3.4] If a minuscule heap $(P, \leq, \phi)$ satisfies
(HA), then $P$ is a ranked poset, $i.e$ . there exists a function $f$ : $Parrow \mathbb{Z}$ , called

a rank function, such that $f(q)=f(p)+1$ for any covering pair $parrow q$ , which
we mean $p<q$ and $(p, q)=\emptyset$ .

3The slant lattice

In this section we define the notion of the slant lattice over an acyclic Dynkin

diagram $\Gamma$ , and show that every minuscule heap over $\Gamma$ can be “cover-
embedded”, which we define below, into this poset. For the moment, we
do not assume that $\Gamma$ is acyclic. We only assume (H4).

Now we define the slant lattice. From this point, we assume that $\Gamma$ itself

is connected and acyclic, so that any minuscule heap over $\Gamma$ satisfies (H4).

For $(u, i)$ , $(v, j)\in N(\Gamma)\cross \mathbb{Z}$ , we write $(u, i)arrow(v, j)$ if and only if $j=i+1$

and $v$ , $u$ are adjacent nodes of $\Gamma$ . We write $\leq \mathrm{f}\mathrm{o}\mathrm{r}$ the reflective and transitive

closure of $arrow$ .

Lemma 3.1, Suppose that $\Gamma$ is connected and acyclic, and let $arrow,$ $\leq be$ the

relations on $N(\Gamma)\cross \mathbb{Z}$ defined above.

(1) $\leq is$ a par tial ordering in $N(\Gamma)\cross \mathbb{Z}$ .

Let $(u, i)$ and $(v, j)$ be elements of $N(\Gamma)\cross \mathbb{Z}$ .

(2) If $\Gamma$ contains at least 2nodes, then we have $(u, i)\leq(v, j)$ if and only if
$i\leq j$ , $d(u, v)\leq j-i$ , and $d(u, v)\equiv j-i(\mathrm{m}\mathrm{o}\mathrm{d} 2)$ . Here $d(u, v)$ denotes

the distance between $u$ and $v$ in $\Gamma$ , namely the smallest $l\in \mathbb{Z}_{\geq 0}$ such
that there exists a sequence $u=u_{0}$ , $u_{1}$ , $\ldots$ , $u_{l}=v$ of nodes, or oo if no
such 1exists.

(3) (u, i) is covered by (v, j) in $N(\Gamma)\cross \mathbb{Z}$ if and only if (u,$i)arrow(v,$j).

If $S$ is asubset of aposet $\mathrm{F}$ , we consider two orderings in $S$ induced from
$P$ . One is just the restriction of the ordering $P$ . The subset $S$ equipped with
this ordering will be simply called asubposet of $P$ (in the ordinary sense
if it is ambiguous). The other ordering, generally weaker than the one above,

is obtained by first taking the covering relation in $P$ , restricting it to $S$ , and

then taking its reflexive-and-transitive closure. It is straightforward to check
that this is in fact apartial order. In this ordering, two elements $p$ , $p’\in S$ are
in order if and only if there is a (finite) saturated chain $p=p0,p_{1}$ , $\ldots,p_{l}=p’$

of $P$ consisting solely of elements of $S$ . It can be checked that $p\in S$ is
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$\Gamma$

Figure 3: Aslant lattice of type A

covered by $p’\in S$ in this ordering if and only if $p$ is covered by $p’$ in $P$ .
(This is not the case with the restriction of the ordering of $P.$ ) We call it the
ordering cover-induced from $P$, and we call $S$ together with this ordering
a cover-subposet of $P$ . Note that, for a general $P$, the ordering cover-
induced on $P$ itself may be strictly weaker than the original ordering, but
our assumption $(^{*})$ on $P$ assures that this does not happen. Now suppose $P$

and $Q$ are posets. We say that a map $\phi:Parrow Q$ is a cover-embedding if
it gives a poset isomorphism of $P$ with the cover-subposet $\phi(P)$ of $Q$ , namely
if $p$ is covered by $p’$ in $P$ if and only if $\phi(p)$ is covered by $\phi(p’)$ in $Q$ .

For a minuscule heap $P$ over $\Gamma$ , there is a unique rank function $f$ on $P$ up
to an additive constant for each connected component. Naturally $f$ induces
the following injection $\nu$ ffom $P$ to $N(\Gamma)\cross \mathbb{Z}$ ,

$\nu$ : $p\mapsto(\phi(p), f(p))$ .

We regard $N(\Gamma)\cross \mathbb{Z}$ as a $\Gamma$-labeled poset by defining the label of each element
$(v, i)$ to be $v$ .

Proposition 3.2. Assume that $\Gamma$ is acyclic. Let $(P, \leq, \phi)$ be a connected
minuscule heap over $\Gamma$ , let $f$ be a rank function on $P$, and let $\nu$ be the map
defined above, Then $\nu$ is a cover-embedding that commutes with the labeling
maps.

From now on, assume that $\Gamma$ is connected. If we fix an element $p$ of $P$ , we
can choose arank function $f$ such that $f(p)=0$. We define aslant lattice
$L$ over $\Gamma$

by $L=\{(q, u)\in N(\Gamma)\cross \mathbb{Z}|f(q)-d(v, u)\equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d} 2)\}$
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(see Figure 3). If $\Gamma$ contains at least two nodes, then $L$ coincides with

the connected component of the poset $N(\Gamma)\cross \mathbb{Z}$ containing $(\phi(p), 0)$ . Our

definition of $L$ depends on the choice of $(p, v)$ , but it is unique up to a

shift along the $\mathbb{Z}$ axis. Namely, Suppose we have another slant lattice $L’$

constructed from another element $p’\in P$ and arank function $f’$ . If $f’(p)\equiv 0$

$(\mathrm{m}\mathrm{o}\mathrm{d} 2)$ , then we have $L’=L$ . If $f’(p)\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} 2)$ , then we have $L’=$

$\{(v, i)\in N(\Gamma)\cross \mathbb{Z}|(v, i-1)\in L\}$ . If $P$ is not connected, then we may choose
$f$ so as to embed ${\rm Im}\nu\subset L$ .

The ordering in $L$ induced from $N(\Gamma)\cross \mathbb{Z}$ in the usual sense coincides

with the ordering cover-induced from $N(\Gamma)\cross \mathrm{Z}$ . The following is clear.

Corollary 3.3. Let $\Gamma$ be a connected acyclic Dynkin diagram, and let $(P,$ $\leq$

$\phi)$ be a connected minuscule heap over $\Gamma$ . Let $f$ be as above, and let $\Gamma$ be

the slant lattice over $\Gamma$ defined by $f$ . Then the corresponding $\nu$ is $a$ over
embedding of $P$ into $L$ .

Let $Q$ be a $\Gamma$-labeled poset such that there exist a cover-embedding $\nu$ :

$Qarrow L$ and $\# Q$ $<\infty$ . Let $f$ be the restriction of the second projection
$\nu(Q)(\subset N(\Gamma)\cross \mathbb{Z})arrow \mathbb{Z}$ . For each $v\in N(\Gamma)$ , we can set $t_{v}$ (resp. $b_{v}$ ) to

be the unique maximal (resp. minimal) element of $Q_{v}$ since $L_{v}$ is totally

ordered. We say that $Q_{v}$ is full if $f(t_{v})-f(b_{v})=2r$ , where $r+1$ is the

number of elements of $Q_{v}$ .

Proposition 3.4. Let $(P, \leq, \phi)$ be a minuscule heap satisfying (H4), and let
$v$ be a node of V. $P_{v}$ is full if and only if all $v$ -interwals are diamonds.

4The star-shaped case: cores and D-matrices

Let $\Gamma$ be astar-shaped Dynkin diagram, and let $R$ be abranch of $\Gamma$ . We de-
note the nodes of $R$ by $R_{1}$ , $R_{2}$ , $\ldots$ , $R_{l}$ in the increasing order of the distances

from $0$ . We denote by $\overline{R}$ the subdiagram with node set $N(R)\cup\{\mathit{0}\}$ , and we
sometimes denote $\mathit{0}$ by $R_{0}$ .

Let $P$ be aminuscule heap over $\Gamma$ with connected support containing $0$ .

By Proposition 2.1, $P_{o}$ has aunique maximal (resp. minimal) element $t_{o}$

(resp. $b_{o}$ ). Since $[b_{o}, t_{o}]$ is convex, it is also aminuscule heap. We call $[b_{o}, t_{o}]$

the core of $P$ , and we say that $P$ is unadorned if $P=[b_{o}, t_{o}]$ (see Fig 4). We
proceed in two steps. In this section we classify the unadorned minuscule
heaps over $\Gamma$ by associating then with what we call $D$-matrices. In \S 5, we
determine what adornments can be added to the core.

We can determine the possibilities of the $R_{i}$-intervals as follow

91



92



Proposition 4.1. Let $(P, \leq, \phi)$ be a minuscule heap over F. Let $R$ be $a$

branch of $\Gamma$ , and let $l$ be its length. Then

$\bullet$ Any $0$ -interval in $P$ is a diamond, namely $P_{o}$ is full
$\bullet$ If $1\leq h<l$ , then any $R_{h}$ -intemal in $P$ is either a diamond or isomor-

phic to $d_{h+3}(3)$ .

$\bullet$ Any $R_{l}$ -interval in $P$ in isomorphic to $d_{l+3}(3)$ .

(In particular, if $\Gamma$ is of type A then $P_{v}$ is full for each $v\in N(\Gamma).$ )

From now on, choose arank function on $f$ with $f(b_{o})=0$ and choose a
slant lattice $L$ which contains $(0, 0)$ , namely which contains ${\rm Im}\nu$ . We may
identify $P$ with ${\rm Im}\nu$ .

Now fix abranch $R$ and determine the shape of [$b_{o}$ , $t_{o}\cap P_{\overline{B}}$ . We distinguish

between two kinds of -intervals, namely the ones containing an element
labeled $R_{1}$ (which we call $\mathrm{f}\mathrm{f}$-diamonds) and the rest (non-R-diamonds).

Let $\Gamma’$ be the Dynkin diagram of type $A_{n}$ with node set $\{1, 2, \ldots, n\}$ and
$L’$ be aslant lattice over $\Gamma’$ containing $(1, 1)$ . We define asubset $Q$ of $L’$ by

$Q:=\{(v, q)|1\leq v\leq n, v\leq q\leq 2n-v\}$ .

We regard $Q$ as acover-subposet of $L$ , and call a $\Gamma’$-labeled poset isomorphic

to $Q$ awing over $\Gamma’$ (see Figure 5) of width $n$ .

Proposition 4.2. (1) In the above notation, $[\mathit{0}_{k}, \mathit{0}_{k+s}]\cap P_{\overline{R}}$ is a wind over
$\overline{R}$ .

(2) $[b_{o}, t_{o}]\cap P_{\overline{R}}$ is contained in the union of all wings over $\overline{R}$ in $P$ .

(3) Two adjacent $R$-diamond blocks are separated by exactly one non-R-
diamond.

(4) $[b_{o}, t_{o}]\cap P_{R}$ is contained in the union of all wings over R. If trno R-
diamonds in $P$ are separated by non-R-diamonds only, then the number

of such non-R-diamonds must be one.

Let $b_{0}=0_{0},0_{1}$ , $\ldots$ , $\mathit{0}_{c}=t_{o}$ be the elements of $P_{o}$ in the increasing order.
Then $[\mathit{0}_{0},\mathit{0}_{1}],[0_{1},0_{2}]$ , $\ldots$ , $[\mathit{0}_{c-1}, \mathit{0}_{c}]$ give all $\mathit{0}$-intervals of $P$ . We call asequence
$\mathrm{o}$-intervals $[o_{k)}o_{k+1}]$ , $[\mathit{0}_{k+1},\mathit{0}_{k+2}]$ , $\ldots$ , $[\mathit{0}_{k+s-1}, \mathit{0}_{k+s}]$ an $R$ diamond block
if $[\mathit{0}_{k}, \mathit{0}_{k+1}]$ , $[\mathit{0}_{k+1}, \mathit{0}_{k+2}]$ , . . . ’

$[\mathit{0}_{k+s-1}, \mathit{0}_{k+s}]$ are $R$ diamonds and $[\mathit{0}_{k-1}, \mathit{0}_{k}]$ ,
$[\mathit{0}_{k+s}, \mathit{0}_{k+s+1}]$ are non-R-diamonds (or $k=0$ or $k+s=c$). We call $s$ the
length of this $R$ diamond block.
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Figure 5: A wing over the Dynkin diagram of type $A_{4}$

Proposition 4.3. Let $a_{1}$ , $\ldots$ , $a_{f}$ be the lengths of the $R$-diamond blocks in
$[b_{o}, t_{o}]$ arrangedfrom bottom to top. Then the sequence $a_{1}$ , $\ldots$ , $a_{r}$ is unimodal:
$i.e$ . we have $a_{1}\leq a_{2}$ $\leq\cdots\leq a:\geq\cdots\geq 4_{-1}\geq \mathrm{O}\mathrm{r}$ , for some $1\leq i\leq r$ .

Let $\Gamma$ be the Dynkin diagram of type $S(l_{1}, \ldots, l_{f})$ and let $R^{1}$ , $\ldots$ , $R^{r}$ be
the branches of $\Gamma$ of length $l_{1}$ , $\ldots$ , $l_{f}$ respectively. We cffi an $r\cross$ $m$ integer
matrix $B=(b_{i,j})$ , where $m$ is any nonnegative integer, a $D$ matrix for $\Gamma$ if it
satisfies the following conditions:
(1) $b_{i,j}=0$ or 1for all i and j.

(2) For each j, we have $\sum_{\dot{\iota}=1}^{\mathrm{r}}b_{i,j}=2$ .

(3) For each i, the ith row has the form

$(\#)$

for some $s_{i}\in \mathbb{Z}_{\geq 0}$ , $a_{i,1}$ , ai2, $\ldots$ , $a_{i,s}$. $\in[1, l_{i}]_{\mathrm{Z}}$ and $c_{i}$ , $d_{i}\in \mathbb{Z}_{\geq 0}$ , and the se-
quence $a_{i,1}$ , $a_{i,2}$ , $\ldots$ , $a_{i,s}$:is unimodal. If $s_{i}=0$ , then this means that all
entries in row $i$ are 0.

We include an empty matrix as aspecial case where $m=0$. What we
saw above and the shape of -intervals lead us to the following
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Lemma 4.4. Let $P$, $b_{o}$ , $t_{o}$ , $f$ as above. Define an $r\cross(f(t_{o})/2)$ -matrix $B=$

$(b_{i,j})$ by

$b_{i,j}=\{$
1 if $[\mathit{0}_{j-1}, \mathit{0}_{j}]$ is an -diamond
0otherwise,

where $\mathit{0}_{j}$ is the element of $P_{o}$ with rank $2j$ . Then $B$ is a $D- mat7^{*}ix$ for $\Gamma$ . We
call this $B$ the $D$ -matrix of $P$ .

Example 4.5. The $D$ -matrix B for $\Gamma$ constructed from P of Fig. 4is

$B=(\begin{array}{llll}1 1 1 00 1 0 11 0 1 1\end{array})$ .

Conversely, we can construct an unadorned minuscule heap for each D-

matrix for $\Gamma$ as follows. Recall that we have fixed aslant lattice $L$ over $\Gamma$

containing $(0, 0)$ .

Lemma 4.6. Let $B$ be a $D$ -matrix for $\Gamma$ with $m$ columns. Put

$Q=\{(\mathit{0},0), (\mathit{0},2), \ldots, (\mathit{0}, 2m)\}$

$\cup\cup^{r}$ {
$i=1$

( $R_{h}^{i}$ , $j)\in L|1\leq h\leq l_{i}$ , $b_{i,k}=1$ for all $k\in[j-h,$ $j+h]$ }.

$Let\leq denote$ the ordering in $Q$ cover-induced from $L$ , and let $\phi$ : $Qarrow N(\Gamma)$

denote the restriction of the first projection $N(\Gamma)\cross \mathbb{Z}arrow N(\Gamma)$ . Then $(Q,$ $\leq$

, $\phi)$ is a unadorned minuscule heap over $\Gamma$ .

Example 4.7. Let us construct the minuscule heap $Q$ from $B$ in Example

4.5. By the definition of $Q$ , we have $Q_{0}=\{(0,0), (0, 2), (0, 4), (0, 6), (0, 8)\}$ .
$P_{R_{1}}$ consists of wing of width 3. $P_{R_{2}}$ consists of 2wings of width 1. $P_{R_{3}}$

consists of 2wings, and each widths are 2and 1from bottom (see Fig. 6).

In fact, $Q$ is isomorphic to the core of $P$ .

Let $H_{0}$ denote the set of isomorphic classes of unadorned minuscule heaps

over $\Gamma$ . We can summarize the results of this section as follows. This is the
first part of our main result.

Theorem 4.8. There is $a$ one-tO-One correspondence between $H_{0}$ and the
$D$ -matrices for F.
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4.5

5The star-shaped case: adornments
In this section, we determine what adornments can be added to the cores.

Let $\Gamma$ be simply-laced, star-shaped Dynkin diagram of type $S(l_{1}, l_{2}, \ldots, l_{f})$ ,
and $L$ be a slant lattice over $\Gamma$ which contains $(0, 0)$ . Let $(P, \preceq)\subset L$ be $\mathrm{a}$

connected minuscule heap over $\Gamma$ with $\mathit{0}\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}P$ and $f(b_{o})=0$ , where $f$ is
the restriction of the second projection $N(\Gamma)\cross \mathbb{Z}arrow \mathbb{Z}\mathrm{a}\mathrm{n}\mathrm{d}\preceq \mathrm{i}\mathrm{s}$ the ordering
cover-induced ffom $L$ .

Let $R$ be a branch. We note that $P_{\overline{R}}$ is may not be a minuscule heap.
For every $p$ , $q\in P$ , asequence $p=p_{0}’$ , $p_{1}’\ldots.$ , $p_{l}’,$ $=q$ in $P$ such that either

$p_{i-1}’arrow p_{i}’$ or $p_{\dot{l}}’arrow p_{\dot{|}-1}’$ holds for each $i$ , $1\leq i\leq l$ is called a Hasse walk
ffom $p$ to $q$ . The following is a key lemma in the proof we omitted below.
Lemma 5.1. Let $p$ be an element of $P_{\overline{R}}$ . Put $h=d(0, \phi(p))$ , where $d(, )$ is
the distance of trno nodes as we have set in \S 4. Then there eists a unique
Hasse walk $p_{0},p_{1}$ , $\ldots$ , $p_{h}$ in $P_{\overline{R}}$ such that

(1) $\phi(p_{0})=\mathit{0}$, $\phi(p_{\dot{*}})=R_{\dot{*}}(1\leq^{\forall}i\leq h)$ and $p_{h}=p$ .

(2) If $p_{i-1}$ is covered by $p_{j}$ , then no element of $P_{R_{j-1}}$ covers $p_{j}$ in $P$ .
(These conditions say that, if we regard the sequence as a walk from $p$ to

$p_{0}$ , we keep moving closer to $P_{o}$ incessantly, and we go up instead of doum
whenever possible.)

We call such aHasse walk in Lemma 5.1 the approach to p ffom above.
We call aHasse walk which is the approach to p from above in the dual pose
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the approach to $p$ from below. In the sequel, we investigate the form of
aconnected component $Q$ of the cover-subposet $P_{\overline{R}}$ (resp. $P_{R}$ ) of $P$ (and
hence of $L$). We simply call such asubset aconnected component of $P_{\overline{R}}$ .

By Lemma 5.1, we have $\phi(Q)=\{0, R_{1}, R_{2}, \ldots, R_{m}\}$ for some $m\geq 0$ .

The following three Propositions determine the possible shapes of $Q$ .

Proposition 5.2. Let $Q$ be a connected component of $P_{\overline{R}}$ . If $\phi(Q)$ is of type
$A_{m+1}$ , then $\# Q_{R_{m}}=1$ .

Proposition 5.3. Let $(R_{0},j_{0})$ , $(R_{1},j_{1})$ , $\ldots$ , $(R_{m},j_{m})$ be the approach to the
unique element of $QRm$ from above and let $(R_{0}, i_{0})$ , $(R_{1}, i_{1})$ , $\ldots$ , $(R_{m}, i_{m})$ be
the approach to the unique element of $Q_{R_{m}}$ from below. Then we have

$Q=\cup\{(R_{k}, h)0\leq k\leq m\in L|i_{k}\leq h\leq j_{k}\}$
. (1a)

We call the approach to the unique element of $Q_{R_{m}}$ from above (resp.
below) the upper (resp. the lower) boundary of $Q$ .

Let $\alpha$ , $\beta$ , $\gamma$ , $\delta$ be nonnegative integers. We define $B_{\gamma,\delta}^{\alpha,\beta}$ (see Figure 7) to
be the set of all subsets $N$ of $L$ such that

$N=\{(R_{k}, h)|i_{k}\leq h\leq j_{k}, 0\leq k\leq\gamma\}$

for some Hasse walks $(R_{0}, i_{0})$ , $(R_{1}, i_{1})$ , $\ldots$ , $(R_{\gamma}, i_{\gamma})$ and $(R_{o},j_{0})$ , $(R_{1},j_{1})$ , $\ldots$ ,
$(R_{\gamma},j_{\gamma})$ in $\mathrm{L}$ such that

(2a) $j_{0}-i_{0}=2\alpha$ ,

(2b) $(R_{0}, i_{0})arrow(R_{1}, i_{1})arrow\cdotsarrow(R\beta, i\beta)$ ,

(2c) $(R_{\beta}, i_{\beta})arrow(R_{\beta+1}, i_{\beta+1})$ if $\beta\neq\gamma$ ,

$(2\mathrm{d})(R_{0}, j_{0})arrow(R_{1}, j_{1})arrow\cdotsarrow(R_{\delta}, j_{\delta})$,

$(2\mathrm{e})(R_{\delta}, j_{\delta})arrow(R_{\delta+1}, j_{\delta+1})$ if $\delta\neq\gamma$ , and

$(2\mathrm{f})i_{k}\leq j_{k}$ for each $0\leq k\leq\gamma-1$ , and $i_{\gamma}=j_{\gamma}$ .

Proposition 5.4. Let $\alpha$ , $\beta$ , $\gamma$ , $\delta$ be nonnegative integers. Then $B_{\gamma,\delta}^{\alpha,\beta}\neq\emptyset$ if
and only if $(\mathit{3}a)-(\mathit{3}c)$ hold.

(3a) $\alpha$ , $\beta$ , $\delta\leq\gamma\leq l$

(3b) $\beta\leq\alpha$ or $\delta$ $\leq ce$
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$..\wedge^{-}\delta-4.\cdot$

: :: :: :
$\mathrm{o}$ : .$\cdot$.

$\alpha=4\{\mathrm{o}_{\mathrm{O}\cdot \mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}^{\mathrm{O}}}^{\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}}\mathrm{O}\mathrm{O}...\mathrm{O}......\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{o}_{\mathrm{O}\cdot \mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}}$

O.$\cdot$

. .$\cdot$. $\mathrm{O}\mathrm{O}\mathrm{O}$

.$\cdot$. :
$\mathrm{O}_{\mathrm{O}}\mathrm{O}$

: :
$\check{\beta=}.3$

Figure 7: An element of $B_{12,4}^{4,3}$

(3c) If $\beta$ , $\delta<\gamma$, then $\gamma$ $\geq\alpha+2$ .
If $\beta<\gamma$ or $\delta<\gamma$, then $\gamma\geq\alpha+1$ .

$\alpha_{R}=(\alpha_{R,1}, \alpha_{R,2}, \ldots,\alpha_{R,h_{R}})=$

Let $Q_{R}^{1}$ , $Q_{R}^{2}$ , . . ., $Q_{R}^{h_{R}}$ be the connected components of $P_{\overline{R}}$ from bottom to top.
Then there are unique nonnegative integers $\beta_{R,:}$ , $\gamma_{R,:}$ , $\delta_{R,:}$ such that $Q_{R}^{i}\in$

$B_{\gamma_{R}.\dot{.},\delta_{R}}^{\alpha_{R}..,\beta_{R}}.\dot{.}’\dot{.}$ . Like $\alpha_{R}$ , we put $\beta_{R}=$ $(\beta_{R,1}.\beta_{R,2}, \ldots,\beta_{R,h_{R}})$, $\gamma_{R}=(\gamma_{R,1},$
$\gamma_{R,2}$ , $\ldots$ ,

$\gamma_{R,h_{R}})$ and $\delta_{R}=(\delta_{R,1}, \delta_{R,2}, \ldots, \delta_{R,h_{R}})$ .

Example 5.5. Let us calculate $\alpha$ , $\beta$ , $\gamma$ , $\delta$ co responding to Fig. 4.
$\alpha_{R_{1}}=(3,0)$ , $\alpha_{R_{2}}=(0,1, 1)$ , $\alpha_{R_{3}}=(1,2)$

$\beta_{R_{1}}=$ $(3, 2)$ , $\beta_{R_{2}}=(0,1,2),\beta_{R_{3}}=(1,2)$

$\gamma_{R_{1}}=(3,2),\gamma_{R_{2}}=(1,1,2)$ , $\gamma_{R_{3}}=(3,2)$

$\delta_{R_{1}}=(3,0)$ , $\delta_{R_{2}}=(1, 1,1)$ , $\delta_{R_{3}}=(3,2)$
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Conversely, we can construct minuscule heaps from acollection of such
elements of $B_{\gamma,\delta}^{\alpha,\beta}$ as follows. The following theorem gives acomplete param-
eterization of the (isomorphism classes) of minuscule heaps having afixed
$D$-matrix $B$ . This is the second part of our main result. We omit the argu-
ments to check that the resulting subsets of $L$ are actually minuscule heaps.

Theorem 5.6. [3] Let $B$ be a $D$ -matrix for $\Gamma$ , and let $P$ denote the un-
adorned minuscule heap over $\Gamma$ corresponding to $B$ constructed in Lemma

4.6. For each branch $R$ , define an integer sequence $\alpha_{R}=(\alpha_{R,i})_{i=1}^{h_{R}}$ from $B$ as
above. Let $\beta_{R}=(\beta_{R,i})_{i=1}^{h_{R}},$ $\gamma_{R}=(\gamma_{R,i})_{i=1}^{h_{R}}$ , $\delta_{R}=(\delta_{R,i})_{i=1}^{h_{R}}$ be integer sequences
satisfying the following conditions:

(1) For each $R$ and $1\leq i\leq h_{R}$ , the quadruple $\alpha_{R,i}$ , $\beta_{R,i}$ , $\gamma_{R,i}$ , $\delta_{R,i}$ satisfy the
conditions in Proposition 5.4.

(2) For each $R$ , the sequence $\gamma_{R}$ is unimodal.

(3) If $\delta_{R,i}<\gamma_{R,i}$ , then $\beta_{R,i+1}=\gamma_{R,i+1}<\delta_{R,i}(1\leq i<h_{R})$ .

(4) If $\beta_{R,i}<\gamma_{R,i}$ , then $\delta_{R,i-1}=\gamma_{R,i-1}<\beta_{R,:}(1<i\leq h_{R})$ .

For each $R$ and $1\leq i\leq h_{R}$ , choose $Q^{R,i}\in B_{\gamma_{R},\dot{.},\delta_{R}}^{\alpha_{R.*},\beta_{R}}.,.’.\cdot.$, and replace the $ith$

wing over $R$ (counted from the bottom) in $P$ by $Q^{R,t}$ . These $Q^{R,:}$ do not
overlap with one another, and the resulting $\Gamma$ -labeled poset $P’$ is a minuscule
heap over $\Gamma$ with connected support containing $0$ , having $B$ as the D-matrix,
the $Q^{R,i}$ , $i=1,2$ , $\ldots$ , $h_{R}$ , being the connected components of $P_{\overline{R}}’$ for each $R$ .
Moreover, all minuscule heaps over $\Gamma$ with connected support containing $0$

are obtained in this manner.
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