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Abstract

This paper investigates the roles of risk-aversion and intertemporal substitution in the investment-

uncertainty relationship. To distinguish the effect of intertemporal substitution from that of risk-

aversion, we utilize anon-expected utility maximization approach. It is shown that not only the

degree of risk-aversion but also the elasticity of intertemporal substitution plays acrucial role in

determining the sign of the investment-uncertainty relationship for acompetitive firm in a

continuous-time dynamic model. Also, the non-expected utility approach gets rid of undesirable

properties of the investment function derived in the standard state- and time-separable expected-

utility setup.
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1. Introduction

Beginning with the influential contribution of Hartman (1972), which was in turn related to

the seminal work of Oi (1961), alarge number of theoretical studies hive been done on the

investment-uncertainty relationship. Hartman showed that a $\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}- \mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{i}\cdot \mathrm{g}$ spread in the

distribution of the price of output leads acompetitive risk-neutral firm to increase investment in a

discrete-time dynamic model of investment. Abel (1983) verified this finding in acontinuous-time

setting. This somewhat paradoxical result depends crucially on the fact that the marginal product

of capital is aconvex function of the random variable(s) and therefore is due to Jensen’s

inequality. However, such recent empirical studies as Calgagnini and Saltari (2001), Ferderer

(1993), Guiso and Parigi (1999), Leahy and Whited (1995), and Price (1996) find evidence for a

negative relationship between investment and $\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{y}^{1}$.
In order to reconcile the theoretical predictions with the empirical findings, we need an

element of concavity $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ asymmetry. Anatural way to introduce asymmetry is to consider

irreversible investment. The literature on irreversible investment (e.g., Pindyck, 1988) has shown

that increased uncertainty reduces the optimal rate of investment. The asymmetry in the

investment process arises not only from the strict irreversibility but also when the cost of adjusting

capital stock downward is much larger than the upward adjustment $\infty \mathrm{s}\mathrm{t}^{2}$. However, as Caballero

(1991) correctly points out, asymmetric adjustment costs are not sufficient to yield the result.

Another important condition is required that ensures some linkage between current and future

investment like decreasing returns to scale or downward sloping demand. Only when the

aforementioned two conditions are met, the irreversibility effect can dominate the convexity

effect. This implies that under the assumption of the competitive firm with linearly homogenous

technology, such as Hartman and Abel, irreversibility does not play acrucial role.

Risk-aversion is another line to invalidate the convexity of the marginal product of capital

of the competitive firm with linearly homogenous technology. In the case of arisk-averse firm
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although its cash flow is still aconvex function of the output price, its expect\’ed utility is a

concave function of its cash flow. In other words, the convex profit function is passed through a

concave utility function. As Nakamura (1999) shows, with enough risk aversill, $\mathrm{n}$, the convexity

argument can be turned $\mathrm{a}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}^{3}$. However, the investment function derived there has acouple of

strange properties: avery risk-averse firm behaves like arisk neutral one and arise in acapital

depreciation rate may increase investment.

Recently, Saltari and Ticchi (2001) shows that the above strange features can be gotten rid

of by distinguishing the intertemporal substitution from the risk-aversion in adiscrete-time setup

with i.i.d. uncertainty of astochastic variable. They use Kreps-Porteus non-expected utility

preferences instead of time- and state-separable isoelastic preferences. This paper shows that their

results hold in acontinuous-time setting with uncertainty that follows astochastic Brownian

motion.

The organization of the rest of this paper is as follows. Section 2presents asimple

investment model of afirm with anon-expected utility preference. Section 3investigates the role

of intertemporal substitution in the investment-uncertainty relationship. The final section provides

some concluding remarks.

2. The model

Consider acompetitive firm using labor $L(t)$ and capital $K(t)$ to produce output $\mathrm{Y}(t)$

according to aCobb-Douglas production function:

$\mathrm{Y}(t)\approx L(t)^{\alpha}K(t)^{1-\alpha}$ with $0<\alpha<1$ . (1)

The firm hires labor at afixed wage rate $w$ and adjust labor input within each period. Therefore,

the instantaneous profit function takes the form:

$hp(t)^{(1-a)}K(t)=$ $\max_{L(t)}\{p(t)L(t)^{a}K(t)^{1-a}-wL(t)\}$ , (2)
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where $p(t)$ is the output price and $h-(1-\alpha\cross\alpha/w)^{a/(1\mathrm{r})}$ . Suppose that $I(t)$ is the rate of

investment and $p,(t)$ the investment goods price. Then the firm’s cash flow $\pi(t)$ becomes

$\pi(t)-hp(t)^{\gamma(1\mathrm{r})}K(t)-p,(t)I(t)$ . (3)

The investment goods price is considered to be related with the profitability of the existing capital

stock or the marginal revenue product of capital $hp(t)^{\mathrm{V}(1-\alpha)}$ .For analytical tractability, we assume

the ratio of $p_{J}(t)$ to $hp(t)^{\psi(1-\alpha)}$ is constant at $q$ over time,

$p_{l}(t)/hp(t)^{\mathrm{y}(1-\alpha)}-q$ or $p_{J}(t)-qhp(t)^{\mathrm{V}(1-a)}$ . (4)

This assumption implies that the price of the investment good is anonlinear function of the output

price. Since the output price does not have atrend, however, this assumption might not be strong,

especially if uncertainty (o)is not $\mathrm{b}\mathrm{i}\mathrm{g}^{4}$.
The output price evolves according to the folowing equation:

$dp(t)/p(t)-\ovalbox{\tt\small REJECT}(t)$ , (5)

where &(t) is aWiener process with mean zero and unit variance, and $\sigma$ is apositive constant.

Also, the capital accumulation equation is

$p(t)$ $-\{I(t)-\delta K(t)\mu t$ , (6)

where ais the constant capital depreciation rate. Let us define $W(t)-hp(t)^{\psi(1-a)}K(t)$ , which

is the value of capital stock evaluated by the current $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{f}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{h}.\mathrm{t}\mathrm{y}^{5}$.Applying Ito’s lemma to obtain

$dW \sim\frac{\partial W}{\partial K}dK+\frac{\partial W}{\partial p}dp+\frac{1}{2}\frac{\partial^{2}W}{\partial K^{2}}(dK)^{2}+\frac{1}{2}\frac{\partial^{2}W}{\partial p^{2}}(dp)^{2}+\frac{\partial^{2}W}{\partial K\partial P}(dK)(dp)$ . (7)

For notational convenience, time arguments are suppressed as long as no ambiguity results.

Substituting (3), (4), (5), and (6) for (7), and recognizing that $(dt)^{2}arrow(dt)(\ )-0$ and

$($&$)^{2}-dt$ , we have

$dW$ rwWdt $+\sigma_{W}W\ -(\pi/q)dt$ , (8)
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where $r_{\mathrm{n}^{\mathrm{r}}}=$

$[\alpha\sigma^{2}/2(1-\alpha)^{2}]+q^{-1}-\delta$ and $\sigma_{W}=$ $\sigma/(1-\alpha)$ , both of which are constant over

time. We can interpret that $r_{W}$ is the expected rate of return of “risky” asset $W(t)$ , and $\sigma_{W}^{2}$ is its

instantaneous variance.

To distinguish the effect of intertemporal substitution from that of risk-aversion, we employ

anon-expected utility maximization setup. We assume that at point in time $t$ the firm maximizes

the intertemporal objective $V(t)$ by recursion,

$f([1- \gamma\psi(t))-(\frac{1-\gamma}{1-1/\epsilon})\pi(t)^{1-\nu e}h+e^{-\beta}f([1-\gamma]E_{\ell}V(t+h)),$ (9)

where the function $f(x)$ is given by

$f(x)=$ $( \frac{1-\gamma}{1-1/\epsilon})\chi^{(1-\psi e)/(1-\gamma)}$ . (10)

In (9), $h$ is the economic decision interval, $E_{t}$ is amathematical expectation conditional on time-

$t$ information, and $\rho>0$ the subjective discount rate. The parameter $\gamma>0$ measures the relative

risk-aversion while the parameter $\epsilon>0$ is the intertemporal substitution $\mathrm{e}1\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}^{6}$. When

$\gamma=1/\epsilon$ , so that $f(x)\approx x$ , our setup is the standard state- and time-separable expected-utility

setup, which does not allow independent variation in risk aversion and intertemporal

substitutability over $\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}^{7}$.

Let $J(W(t))$ denote the maximum feasible level of the expected sum of discounted cash

flows. The value function $J(W(t))$ depends on the contemporaneous variable $W(t)$ only.

Applying Ito’s lemma to the maximization of $V(t)$ in (9), we get the following stochastic Bellman

equation:

$0\approx$ $\max_{\pi}\{[(1-\gamma)/(1-1/\epsilon)]\pi^{1-\psi e}-ff([1-\gamma]J(W))$

$+(1-\lambda)f’([1-\lambda]J(W))[J’(W)(r_{W}W-\pi/q)+(1/2)J’(W)\sigma_{W}^{2}W^{2}]\}$ . (11)
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From (11), the first-0rder condition with respect to $\pi$ is

$\pi^{-\psi\epsilon}-f’([1-\gamma\psi(W)\mathrm{y}’(W)/q-0.$ (12)

Bq. (9)’ $\mathrm{s}$ form suggests that $J(W)$ is given by

$J(W)-(aW)^{1-\gamma}/(1-\gamma)$ , (13)

where $a$ is positive constant to be determined. Eq. (12) becomes

$\pi<\mu W$ . (14)

where $\mu\sim$ $a^{1-}.q.$ .Substituting Eq. (14) for Eq. (11) gives

$a\approx\{\epsilon[\rho-(1-1/\epsilon)(r_{\Psi}-\gamma\sigma_{\Psi}^{2}/2)]\}^{\psi(1-\cdot)}q$ , (15)

and therefore

$\mu=$ $\epsilon\{\rho-(1-1/\epsilon)(r_{\Psi}-\gamma\sigma_{\Psi}^{2}/2)\rangle q$, (16)

where $r_{W}-\gamma\sigma_{W}^{2}/2$ is the risk-adjusted rate of return of asset $W$ . From Eqs. (3), (4), (14) and

(16), we have

$I(t)= \frac{hp(t)^{\psi(1-a)}K(t)-\pi(t)}{p_{l}(t)}-[\frac{1}{q}-\epsilon\{\rho.-(1-\frac{1}{\epsilon})(r_{\Psi}-\frac{\gamma\sigma_{\Psi}^{2}}{2})\}]K(t)$ . (17)

Finally, substituting the definitions of $r_{\Psi}$ and $\sigma_{\Psi}$ for Eq. (17), we have the folowing investment

function:

$I(t)\approx$ $\epsilon[\frac{1}{q}-\{\rho-(1-\frac{1}{\epsilon})(\frac{(\alpha-\gamma)\sigma^{2}}{2(1-\alpha)^{2}}-\delta)\}\mathrm{k}(t).$ (18)

We must notice that $q^{-1}$ in Eqs. (17) and (18) corresponds to $hp(t)^{\psi(1-\alpha)}/p_{l}(t)$ in Eq. (17) in

our normalization. Therefore, Eq. (18) implies

$hp(t)^{\psi(1-\alpha)} \approx\{\rho-(1-\frac{1}{\epsilon})(\frac{(\alpha-\gamma)\sigma^{2}}{2(1-\alpha)^{2}}-\delta)\}p_{l}(t)<>\Leftrightarrow I(t)\approx 0<>$ . (19)

Realizing that $\{\rho-(1-\frac{1}{e})(_{\frac{(a-\gamma)\sigma^{2}}{2(1-\alpha)^{2}}}-\delta)\}$ is the risk-adjusted discount rate, the investment function
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has plausible nature in which the marginal revenue product of capital $hp(t)^{\mathrm{y}(1-\alpha)}$ is larger than the

user cost of capital $\{\rho-(1-\frac{1}{\epsilon})(\frac{(\alpha-\gamma)\sigma^{2}}{2(1-\alpha)^{2}}-\delta)\}p_{I}(t)$ , the firm executes investment, and in the

reverse case, it sells its capital equipment.

3. The role of intertemporal substitution

From (18), we have the following relationship:

sign(dI$(t)/d\sigma$) $=sign((1-1/\epsilon)(\alpha-\gamma))=sign((\epsilon-1)(\alpha-\gamma))$ . (20)

It is evident that the sign of the investment-uncertainty relationship depends both the degree of

risk-aversion and the elasticity of intertemporal substitution. In principle, risk-aversion affects the

investment-uncertainty relationship via changing the risk-adjusted rate of return $r_{W}-\gamma\sigma_{W}^{2}/2$

while intertemporal substitution affects the relationship through the choice between current and

future cash flows.

To make this clear, let us imagine atw0-period model in which the firm maximizes its

utility: $u(\pi_{1},\pi_{2})$ , subject to two budget constraints: $W_{1}-\pi_{1}=I$ and $\{1+(r_{W}-\gamma\sigma_{1r}^{2}/2)\}I=\pi_{2}$ ,

or the corresponding intertemporal budget constraint: $\pi_{1}+\pi_{2}/\{1+(r_{W}-\gamma\sigma_{W}^{2}/2)\}=$ $W_{1}$ . It is

obvious that an increase in uncertainty raises the risk-adjusted rate of return if $\alpha>\gamma$ and vice

versa, or

sign$(d(r_{W}-\gamma\sigma_{W}^{2}/2)/d\sigma)=sign$ $-\gamma)$ . (21)

[Fig. 1is around here.]

Hence, as Fig. 1shows, the intertemporal budget constraint shifts inside when $\alpha<\gamma$ . Since this
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makes the firm poorer than before, the firm’s utilty level becomes lower. (The new budget

constraint $(\mathrm{B}\mathrm{C}’)$ is now tangent to indifference curve $IC_{2}.$) By the income effect, therefore, both

$\pi_{1}$ and $\pi_{2}$ decrease. 8 At the same time, however, the substitution effect increases $\pi_{1}$ and

decreases $\pi_{2}$ because adecrease in $r_{\nu}-\gamma\sigma_{\Psi}^{2}/2$ implies an increase in the price of $\pi_{2}.1\mathrm{f}$ the

substitution effect dominates the income effect, then increased uncertainty increases $\pi_{1}$ even if

the budget constraint shifts inwards, and therefore decrease investment, $I-W_{1}-\pi_{1}$ , as Fig.l (a)

demonstrates. $\ln$ this case we have the negative investment-uncertainty relationship when $\alpha<\gamma$ .

This is the result in Nakamura (1999). But it is not always true.

If the income effect dominates the substitution effect, then there appears the case that both

$\pi_{1}$ and $\pi_{2}$ decrease as is shown in Fig. 1(b). Therefore, when the substitution effect is relatively

small, an increase in uncertainty raises investment even if $\alpha<\gamma$ . This clearly shows the

important role of intertemporal substitution in the investment-uncertainty relationship.

In our continuous-time model, since $\epsilon$ is the elasticity of intertemporal substitution, afall

in the risk-adjusted rate of return $r_{1},$
$-\gamma\sigma_{W}^{2}/2$ raises the ratio of the current profits to the wealth

$\mu=\pi/W$ when $\epsilon>1$ , but lowers $\mu$ when $\epsilon<1$ ,

sign$(d\mu/d(r_{\Psi}-\gamma\sigma_{W}^{2}/2))$ $-sign(1-\epsilon)$ , (22)

which is obvious from (16). It is also evident

$\frac{d\mu}{d\sigma}-\frac{d\mu}{d(r_{\Psi}-\gamma\sigma_{\Psi}^{2}/2)}\cdot\frac{d(r_{\Psi}-\gamma\sigma_{\Psi}^{2}/2)}{d\sigma}$ , $(\mathfrak{B}\mathrm{a})$

and therefore,

sign$( \frac{d\mu}{d\sigma})-sign(\frac{d\mu}{d(r_{W}-\gamma\sigma_{W}^{2}/2)})$ . sign$( \frac{d(_{\Gamma_{\psi}-\gamma\sigma_{W}^{2}}/2)}{d\sigma})$ . (23b)

Substituting (21) and (22) for $(\mathfrak{B}\mathrm{b})$, we have

sign(d\mu /d\sigma ) $=sign(1-\epsilon)$ $\cdot$ sign(\mbox{\boldmath $\alpha$}-\gamma )-sign(Q-\epsilon )(a-\gamma ) $)$ . (22)
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Since $I(t)=(1-\mu)W(t)$ , $dI(t)/d\sigma$ and $d\mu/d\sigma$ have the opposite signs, and hence we have

the relationship in (20).

In Nakamura the degree of risk-aversion and the elasticity of intertemporal substitutability

collapse into one parameter $\gamma(=1/\epsilon)$ .In this case, the relationship (20) becomes

sign(l$(t)/d\sigma$) $=sign((1-\gamma)(\alpha-\gamma))$ . (25)

If we cannot distinguish the effect of intertemporal substitutability from that of risk-aversion, we

may infer from the above that avery risk-averse firm $(\gamma>1>\alpha)$ behaves like arisk-neutral fimn

$(\gamma=0)$ since investment increases with uncertainty for both types of firms. As we have shown,

this is not true. Not risk-aversion but intertemporal substitutability plays acrucial role. Because of

low intertemporal substitutability (a small $\epsilon$ or alarge $\gamma$ ), investment increases with uncertainty

for arisk-averse firm.

In our model as well as in Nakamura’s, there is the possibility that arise in acapital

depreciation rate increases investment. This seems implausible if we do not consider the role of

intertemporal substitutability. However, it is quite natural in our model. Arise in 6surely

decreases the mean rate of return $r_{W}\approx$
$[\alpha\sigma^{2}/2(1-\alpha)^{2}]+q^{-1}-\delta$ and hence the risk-adjusted

rate of return $r_{W}-\gamma\sigma_{W}^{2}/2$ , which in turn raises the ratio of the current profits to the wealth

$\mu=\pi/W$ when $\epsilon>1$ , but lowers $\mu$ when $\epsilon<1$ .As aresult, we have the following relationship:

sign(dI/d$\sigma$) $=sign(1-\epsilon)$ , (26)

which is directly derived from (18).

4. Concluding Remarks

This paper has analyzed the investment decision of arisk-averse firm with aconstant return

to scale technology using acontinuous-time model. Appealing to anon-expected utilit
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preference, it is shown that not only the risk aversion but also the intertemporal substitution plays

acrucial role in determining the sign of the investment-uncertainty relationship. If the degree of

risk-aversion is large, the sign may be negative. However, this is true only with alarge

intertemporal substitution elasticity. lf the elasticity is low, we have the positive relationship even

for arisk-averse firm.

One way to relate the intertemporal substitution in this paper with aplausible assumption is

to consider the firm’s owners’ portfolio in which the substitution means consumption substitution

over time. However, it may be more relevant to analyze the interaction in capital markets between

risk-averse consumers and risk neutral firms in adynamic framework. This deserves the

subject of future research
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Endnotes

1 Carruth, Dickerson and Henley (2000) neatly summarizes the recent theoretical and empirical

developments in investment under uncertainty.

2 Irreversibility can be considered as aspecial case of asymmetric costs where the downward cost

is infinite.

3 Femminis (2000) also analyzes the investment decision of arisk-averse firm that can borrow

outside resources at arisk-free rate and shows that the firm’s portfolio considerations lead a

negative investment-uncertainty relationship.

4 Also, we should notice that in our model arisk-neutral firm increases investment with when

uncertainty increases due to the convexity effect as in the traditional models of investment under

uncertainty.

5 It does not introduce any problem that the capital $K(t)$ is evaluated by current profitability

$hp(t)^{\psi(1-\alpha)}$ . To characterize the solution, the absolute level of the total asset is not important.

Only the rate of return of each asset and its variance are required, which becomes clear later.

‘ For adetailed discussion on the roles of these parameters and more general preference setups,

see, for example, Kreps and Porteus $(1979, 1979)$, Epstein and Zin $(1989, 1991)$, Weil (1989), and

Obstfeld $(1994\mathrm{a}, 1994\mathrm{b})$ .
7 This paper analyzes the firm’s behavior in the limit as $h$ becomes infinitesimally small. When

$\gamma=1/\epsilon$ , (8) implies that as $harrow \mathrm{O}$ , $V(t)$ becomes the preference setup defined in Nakamura

(1999), $V(t)\approx$ $E_{t} \{(1-\gamma)^{-1}\int_{t}^{\infty}\pi(s)^{1-\gamma}e^{-\rho(s-t)}ds\}$ .

$8\mathrm{I}\mathrm{t}$ is assumed that both $\pi_{1}$ and $\pi_{2}$ are normal goods
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