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Abstract

It is widely known that distributions of stock-price fluctuations show afat tails.”
This report explains the fat-tail distributions as aresult of local interaction be-
tween traders of bounded sight. Percolation theory, atheory of statistical physics,
is employed to model the markets. It enables us not only to reproduce the fat-tail
distribution, but to define and calculate the floor and ceiling for stock prices.

1 Introduction

Most financial theories, such as the Black-Sholes model (1973), usually assume stock
price returns are normally distributed. Mandelbrot (1963) and Fama (1965), however,
had already pointed out that stock return distributions usually show higher kurtosis
or fatter tails than the normal distribution. In other words, stock prices move more
frequently and to agreater degree than the Gaussian models predict.
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Fig.1.2: The $\log$ of the empirical p.d.f. for NIKKEI 225 returns per day

Fig.1.2 shows the $\log$ of the empirical probabilty density function (p.d.f.) for NIKKEI
225 returns per day and the $\log$ of the Gaussian with the same mean and variance as the
empirical data. For the figure, the empirical ffiquency of returns larger than 5% per day
is higher than the Gaussian predicts. Actually, NIKKEI 225 has changed by more than
7% per day on six occasions in these 11 years, although the Gaussian model would need
2, 000 years to experience such afluctuation six times.

Many research papers have investigated the statistical properties of stodc price fluc-
tuations, however, the focus has not been on the reasons why the distributions have
these fat tails. This paper shows that the fat tails can be explained by local interaction
between traders in stock markets. The main assumption is that traders have bounded
sight, which means that each of them has no interest in price changes of stocks he does
not hold. This behavior causes localised interaction between the traders because buying
or seling has an effect only on other traders sharing the same stocks.

Percolation theory, atheory of statistical physics, is employed to model the local
interaction. Stauffer and Penna (1998) also applied percolation theory to stock markets.
As illustrated in Section 2, however, their model was based on the herding effect by
which traders follow trends without considering any economic data. Stauffer and Penna
assumed people go to aneighborhood bank or broker for investment advice, so that
they form acluster sharing the same advice. On the other hand, this paper models
the stock market as anetwork of locally interacting traders. It is adifferent way from
Stauffer-Penna, and it enables us to calculate the “floor” or “ceiling” for stock prices.

This paper is constructed as follows. Section 2provides ashort summary of percola-
tion theory, and gives the Stauffer-Penna model as an example. Section 3, the main part
of this paper, gives the model and some concepts. It will be shown that distributions
generated by numerical simulations of the model have fat tails. In section 4, parameters
of the model are estimated using NIKKEI 225 Index from 1991 to 2001. Moreover, the
floor and ceilng for NIKKEI 225 are defined and calculated. Section 5gives concludin
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2Percolation Theory and the Stauffer-Penna Model

In 1957, Broadbent and Hammersley developed the percolation theory as ameans
to design gas masks (Broadbent-Hammersley, 1957). The essence of their idea can be
explained by the following example. Suppose that afire breaks out in alarge orchard,
where trees are planted at the vertices of asquare lattice $Z^{2}$ . Trees in the neighborhood
of aburning tree will catch fire with probability $p\in[0, 1]$ . The probability $p$ is sometimes
called the influence rate.

The fire is supposed to be fierce enough to burn trees out instantaneously, so that the
spread of fire happens only once for each tree (Fig.2.1).
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Acluster of burned trees

Fig.2.1: Percolation of aforest fire

The fire results in acluster of burned trees. Let $C$ be aformed cluster, that is aset of
vertices of $Z^{2}$ which belong to the cluster, and $|C|$ be asize of the cluster $C$ .
Definition 1The percolation probability $\theta(p)$ is the probability that the origin belongs
to an infinite cluster for each $p\in[0, 1]$ , and defined by

$\theta(p)=P_{p}(|C|=\infty)=1-\sum_{n=1}^{\infty}P_{p}(|C|=n)$ , (1)

where $P_{p}(|C|=n)$ denotes the probability that the cluster size $|C|$ equals $n$ when the
influence rate $p$ is given.

The following theorem is the reason why the percolation theory has grown into the biggest
interests in the study of statistical physics and probability theory.

Theorem 1There uniquely exists $p^{c}\in$ $(0, 1)$ such that

$\theta(p)\{$

$=0$

$>0$

$(p<p^{c})$

(2)
$(p>p^{c})$
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(Proof) See Grimmett (1999), pp.15-19.

Theorem 1means that the cluster will be finite with probability 1if $p<p^{\mathrm{c}}$ , but it $\mathrm{w}\mathrm{i}\mathrm{U}$

become infinite with positive probabilty if $p>p^{c}$ (Fig.2.2). The critical value $p^{\mathrm{c}}$ is called
the critical probability. The above forest fire model (Fig.2.1) is called (2-dimensi0nal)
site percolation, and in the case $p^{\mathrm{c}}=0.592745$ $\cdots$ is known.
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Fig.2.2: The phase transition in percolation

Apparently, $\theta(p)$ is anon-decreasing function of the iffiuence rate $p$, and both of
$\theta(0)=0$ and $\theta(1)=1$ are satisfied. It is believed that $\theta(p)$ behaves as indicated in
Fig.2.3, which shows that a“phase” of the model changes as $p$ increases.

Stauffer and Penna (1998) applied the percolation theory to stock markets in order
to explain fat tails of stock return distributions. They emphasized aherding effect in
stock markets, that is, traders’ tendency to folow market trend without looking at any
economic facts. Traders are supposed to be distributed on asquare lattice with density
$p$, and they go to aneighborhood bank or broker for investment advice, so that the
people who go to the same bank $\mathrm{w}\mathrm{i}\mathrm{U}$ share the same advice, and they form apercolation
cluster of traders sharing the same expectation. Each cluster randomly decides to buy
(with probabilty $\alpha/2$ ), to sell (with probability $\alpha/2$), or not to trade (with probability
$1-\alpha)$ during the current time period. Let $C_{+}^{1}(t)$ , $C_{+}^{2}(t)$ , $C_{+}^{3}(t)$ , $\cdots$ be buying clusters,
and $C_{-}^{1}(t)$ , $C_{-}^{2}(t)$ , $C_{-}^{3}(t)$ , $\cdots$ selling clusters at period $t$ (Fig.2.4). Then the return $\mathrm{A}\mathrm{S}/\mathrm{S}$

of the stock $S$ at $t$ is propotional to excess demand:

$\frac{\Delta S_{\ell}}{S_{t}}=\rho(\sum_{j}|C_{+}^{j}(t)|-\sum_{j}|C_{-}^{j}(t)|)$ , (3)
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Fig.2.4: The StaufFer-Penna mode
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where $\Delta S_{t}=S_{\ell+1}-S_{\ell}$ . Stauffer and Penna investigated how the model behaves when the
activity parameter $\alpha$ increases from small values towards unity, and showed by computer
simulations that the generated distributions have fat tails when $0<\alpha\ll 1$ , but that
they resemble Gaussian when a \sim 1.

Their model succeeded in generating fat-tail distributions, however, their assump-
tion of the herding effect by whic traders form percolation clusters seems somewhat
unrealistic. In fact, they admitted that their model’s assumption may be valid only for,
for example, markets in 19th century because in modern markets “everybody on Earth
shares the same information within minutes”. Adding to this, their assumption admits
only constant influence rate $p$. This means that their model cannot have the property of
phase transition that is the most fascinating aspect of percolation theory. The model of
this paper, however, is based on another assumption, that is, bounded sight of traders.
This assumption not only seems more plausible than that of Stauffer-Penna, but can
accept variable influence rates. $\mathrm{h}$ other words, the model of this paper has the phase
transition property.

3The Model

In this section, we $\mathrm{w}\mathrm{i}\mathrm{U}$ give the model of this paper. The model is specified for simplicity
of computer simulations. The results will be used to show the model does indeed have
fat tails.

Suppose $N$ traders, and trader : $(=1, \cdots,N)$ holds $M_{i}$ kinds of stocks, $B_{}^{1}$ , $\cdots$ , $B_{}^{M_{i}}$ .
For example, when $M_{1}$ $=\cdots=MN$ $=2$ and

$B_{1}^{1}=B_{2}^{2}$, $B_{2}^{1}=B_{3}^{2}$ , $\cdots$ , $B_{N-1}^{1}=B_{N}^{2}$ , and $B_{N}^{1}=B_{1}^{2}$ ,

the market has $N$ kinds of stodcs, and the structure of the market can be represented by
a1-dimensional torus $S^{1}$ (Fig.3.1). Each trader is supposed to look at only the stocks

he holds and astock price index $S$ , such as NIKKEI 225 or S&P500. $\mathrm{h}$ other words, he
has no interest in (or does not notice) selling or buying of stodcs he does not hold. For
simplicity, the contents of each trader’s portfolio are assumed to be unchanged through
time.

At every period $t$ , traders behave as folows:

(Step 1) At the beginning of period $t$ , arandomly chosen trader $i$ becomes bull (with
probability 1/2) or bear (with probability 1/2). If he becomes bull, he sends a
buying order and tries to increase his holdings $B_{i}^{1}$ , $\cdots$ , $B_{}^{M_{i}}$ . $\mathrm{B}$ he becomes bear, on
the other hand, he tries to sell his holdings. The reason why trader $i$ wants to buy
or $\mathrm{s}\mathrm{e}\mathrm{U}$ his stodcs may be rational (e.g. he has received positive or negative news
on fundamentals), irrational (e.g. fads, trends, or sunspots), or exogenious (e.g. he
needs money for marriage).

(Step 2) By looking at trader $\mathrm{t}’ \mathrm{s}$ buying (or selling) order, neighborhood traders of $i$ ,
i.e. traders sharing stodcs with trader $i$ , can reason that trader :becomes $\mathrm{b}\mathrm{u}\mathrm{U}$ (or
bear)
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Fig.3.1: The $S^{1}$ network structure of the market

If they see that trader $i$ is trying to buy the stodcs, each of them becomes bull with
probability pu, or remains neutral with probability $1-p^{u}$ . Traders influenced by
trader $i’ \mathrm{s}$ bull order also send buying orders to the market.
If they see trader $i$ ’s selling, on the other hand, each of them becomes bear with
probability $p^{d}$ , or remains neutral with probability $1-p^{d}$ . Atrader who becomes
bear also tries to sell his holdings.
In other words, the influence rate of abull order is given by $p^{u}$ , and that of abear
order is $p^{d}$ . The influence rates, $p^{u}$ and $p^{d}$ , a $\mathrm{e}$ assumed to be functions of the stock
price index $S$:that is, $p^{u}=p^{u}(S_{t})$ is adecreasing function of the stock price index
$S_{t}$ at period $t$ , and $p^{d}=p^{d}(S_{t})$ is an increasing function of $S_{t}$ (Fig.3.2).

(Step 3) The return $\Delta S_{t}/S_{t}$ of the stock price index $S_{t}$ is assumed to be propotional to
the number of bull (or bear) traders at every $t$ :that is,

$\frac{\Delta S_{t}}{s_{t}}=\rho \mathrm{x}sgn(C_{\ell})\mathrm{x}|C_{t}|$ , (4)

where $\Delta S_{t}=\mathrm{s}\mathrm{e}11-S_{t}$ , $\rho$ is apositive constant, $|C_{t}|$ is the size of the cluster of
bull (or bear) traders $C_{t}$ at $t$ , and

$sgn(C_{t})=\{$

+1 (if $C_{i}$ is a bull cluster)

-1 (if $C_{t}$ is a bear cluster)
(5)

Equation (4) defines astochastic process $S=(S_{t})_{t=1,2,3},\cdots$ of the price index. Note that
both of the price and the quantity of the stocks are ignored in this model
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Fig.3.2: The influence rates of bull and bear order

For simplicity of numerical simulations, a2-dimentional square lattice network is
investigated in this paper. There are $N\mathrm{x}N$ traders in the market, and each trader $($:, $j)$ ,
$1\leq i,j\leq N-1$ , holds 4kinds of stocks, $B_{(ii)}^{(i+1\mathrm{j})}|$ , $B_{(\dot{t})}^{\mathrm{t}^{-1}i)}$ , $B_{(\dot{\rho})}^{(\dot{\rho}+1)}$ and $B_{(,j)}^{(,j-1)}$ . Trader
$($:, $N)$ is assumed to hold $B_{(i_{N}^{1)})}^{\mathrm{t}},$’instead of $B_{(,N)}^{(,N+1)}$ , and trader $(N,j)$ holds $B_{(Ni)}^{(1,j)}$ instead
of $B_{(N,j)}^{(N+1_{1}j)}$ . Anetwork structure of the market is given by $B_{(\mathrm{j})}^{(k,l)}=B_{(k,l)}^{(\dot{|}\mathrm{j}\}}$:that is, each
trader shares one of his four holdings with only one of his four neighborhood traders.
Traders on an edge of the $\acute{\mathrm{n}}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}$ share their stocks with traders on the opposite edge
(for example, trader (:, $N$) shares stodc $B_{(i_{N)}^{1)}}^{\mathrm{t}},\cdot$ with trader $(i,$ $1)$ ). This market is modeled
by site percolation on a2-dimensional toru $S^{2}$ (Fig.3.3).

Influence rates of abull and bear order, $p^{u}$ and $p^{d}$, are specified by

$p^{u}(S)=e^{-\alpha S}$ and $p^{d}(S)=1-e^{-\delta S}$ (6)

Since it is known that the cluster size distribution converges as $Narrow\infty$ , this specified
model is determined by three parameters, $\alpha$ , $\delta$ , and $\rho$, if $N^{2}$ is large enough. Fig.3.4 is a
sample path of $S$ in the case of $\alpha=1.4$, $\delta=0.44$ , $\rho=0.008$ , and $N=21$ . Fig.3.5 is the
$\log$ of the p.d.f. for the returns of the data generated by the simulation. The fat tails are
clearly shown in the figure
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Fig.3.3: The $S^{2}$ network structure of the market (N $=3)$
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Fig.3.4: Asample path of S in the case of $\alpha=1.4$, $\delta=0.44$ , $\rho=0.008$, N $=21$

–Simiation $-\mathrm{o}\mathrm{e}\mathrm{I}=\dot{\mathrm{a}}$
$\mathrm{n}$

Fig.3.5: The $\log$ of the p.d.f. for the returns of S in Fig.3.4

4The Floor and Ceiling for NIKKEI 225

In this section, we $\mathrm{w}\mathrm{i}\mathrm{U}$ define the floor and ceiling for the price index process $S=(S_{t})_{\ell\in N}$

given in the previous section, and calculate them from empirical data of NIKKEI 225.
We define the floor $S_{*}$ and ceiling $S^{1}$ for $S$ as follows:

Definition 2Let $p^{\mathrm{c}}$ be the critical probability of a 2-dimentional site percolation, that
is, $p^{c}=0.592745\cdots$ .

The floor $S_{*}$ and ceiling $S^{\cdot}$ for the price index process $S=(S_{\ell})_{\ell\in N}$ given by equation
(4) are prices satisfying

$p^{u}(S_{*})=p^{\mathrm{c}}$ , $p^{d}(S^{*})=p^{c}$ (7)
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Fig.4.1: The floor and ceiling for $S$

Definition 2 $(p^{u}(S_{*})=p^{d}(S^{*})=p^{c})$ means that the probability of large price changes,
such as the falling over 20%which the $\mathrm{U}.\mathrm{S}$ . stock market experienced on October 1987,
becomes positive if the value of $S$ becomes lower than the floor $S_{*}$ or higher than the
ceiling $S^{*}:$ that is, $S$ will drastically rise when $S<S_{*}$ , or catastrophically $\mathrm{f}\mathrm{a}\mathrm{U}$ when
$S>S^{*}$ with positive probability.

In the case of the specified model (6) in the previous section, $S_{*}$ and $S^{*}$ are explicitly
solved as follows:

$S_{*}=- \frac{1}{\alpha}\log p^{c}$ , $S^{*}=- \frac{1}{\delta}\log(1-p^{c})$ . (8)

Therefore, we can calculate the floor and ceiling if we know the values of the parameters
$\alpha$ and $\delta$ . We will decide values of $\alpha$ and $\delta$ by repeating numerical simulation until we
find those which fit the empirical data well. The following conjecture is useful to reduce
the hardship of searching them.

[Conjecture] Let $\overline{S}$ be a price which satisfies $p^{u}(\overline{S})=p^{d}(\overline{S})$ (see Fig.4.1), Then, the
following will hold:

$\lim_{Tarrow\infty}[\frac{1}{T}\sum_{\ell=1}^{T}S_{t}]=\overline{S}$ (9)

Fig.4.2 shows two sample paths characterized by parameters satisfying $\overline{S}=1$ (see also
Fig.4.3). Both of them seem to fluctuate around $S=1$ .

Because it is known that the mean of NIKKEI 225 from January 1991 to September
2001 is \yen 18, 265, we can represent $\delta$ as afunction of $\alpha$ by solving $p^{u}(\overline{S})=p^{d}(\overline{S})$ , that is,

$\delta(\alpha|\overline{S})\overline{\sim}-\frac{1}{\overline{S}}\log(1-e^{-\alpha\overline{S}})$ , (10)

and substituting $\overline{S}=1.8265$ . By the function $\delta$ $=\delta(\alpha)$ , we can reduce the number of the
parameters
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(i) $\alpha=0.6,\delta=0.7959$ , $\rho=0.6$ , $=441$
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(ii) $\alpha=0.7,\delta=0.6863$ , $\rho=0.5$ , $N=441$

Fig.4.2: Two examples satisfying $\overline{\mathrm{S}}=1$
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0 $\overline{S}=1$

Fig.4.3: $\mathrm{p}^{\mathrm{u}}$ and $\mathrm{p}^{\mathrm{d}}$ in the case of Fig.4.2 (i) and (ii)
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Fig.4.4 shows asample path in the case of $\alpha=1.6$ , $\delta=0.030$ , and $\rho=0.015$ , and Fig.4.5
is the $\log$ of the p.d.f. for the absolute values of its returns. The mean and standard
deviation of the sample path in Fig.4.4 are 18, 333 and 3, 032, while those of NIKKEI 225
from January 1991 to September 2001 are \yen 18, 265 and \yen 3, 205.
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Fig.4.4: Asample path in the case of $\alpha=1.6$, $\delta=0.030$, and $\rho=0.015$

Simulation –NIKKEI225

Fig.4.5: The $\log$ of the p.d.f. in the case of $\alpha=1.6$ , $\delta=0.030$ , and $\rho=0.015$

In this case, the model seems to fit the empirical data well. The floor and ceiling
calculated from the above parameters are, however, respectively \yen 3, 269 and \yen 296, 672,
and they do not seem to be realistic. One possible explanation of such under- or overes-
timation is that the data we used is of too long periods of time. It is unlikely that the
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parameters, which depend on avariety of economic conditions, remain constant for more
than ten years.

Therefore, we should use empirical data of shorter periods to derive more precise
values of the parameters. Fig.4.6 is NIKKEI 225 from July to December in 2001, and
the parameters fitting these data are $\alpha=0.7$ , $\delta=0.58$ , and $\rho=0.0009$ . In this case,
the floor and ceiling for NIKKEI 225 become respectively \yen 7,471 and \yen 15,489, which
seem more realistic than the previous values.
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Fig.4.6: NIKKEI 225 from Ju1.2001 to Dec.2001
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Fig.4.7: Asample path in the case of $\alpha=0.7$, $\delta=0.58$ , and $\rho=0.0009$
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Fig.4.8: The $\log$ of the p.d.f. in the case of $\alpha=0.7$ , $\delta=0.58$ , and $\rho=0.0009$

5Concluding Remarks

In this paper, we modeled the stock market as anetwork of locally interacting traders.
Numerical simulations showed that the model had fat-tail distributions of returns, which
are actually observed in many markets. As application of the model, we defined the
floor and ceiling price for astock price index as critical values in the percolation process.
Moreover, we calculated them for NIKKEI 225 using the empirical data.

Traders in the market were assumed to have bounded sight. This assumption is
essential in the model, and it implies that, even through trading, each trader’s private
information may not become public but remain local. Usual models, such as Milgrom-
Stokey (1982), assume that agents have unlimited sight and rationality. Each agent
can reason the others’ private information through trading, so that any information
cannot remain unrevealed. In these models, sinse every trader knows all information in
the market, and therefore each of them decides his activity independently of the other
traders, distributions of market fluctuations will become normal because of the Central
Limit Theorem. In the setting of this paper, however, private information is revealed
not to all but only to part of traders in the market through trading. In other words,
atrader’s selling or buying affects his neighborhood traders’ decision, and this local
interaction makes it possible for the model of this paper to escape from the realm of the
Central Limit Theorem.
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