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Abstract. The purpose of this article is to investigate epistemic conditions
that induce sequential equilibrium outcome in agiven extensive form game.
If players mutually know that every player maximizes her own expected pay-
off at any information sets then the outcome yields asequential equilibrium:
This is an extension of the result of Aumann (1995, Games and Economic
Behavior, 8:6-19) in perfect-information game. In this paper, we suppose
that each player has $\mu$-rationality, which means that he knows that he max-
imizes his own payoff according to the belief $\mu$ . Furthermore we introduce
the notion of $\mu$-consistency in imperfect information game. Our main the0-
rem states that mutual knowledge of $\mu$ rationality and $\mu$-consistency induces
the sequential equilibrium outcome in an extensive form game.
Keywords: Knowledge, Rationality, Epistemic conditions, Backward induc-
tion, Sequential equilibrium.

1. Introduction

This paper investigates what epistemic conditions induce asequential equilibrium,
that is, what each player should know in order to achieve the sequential equilibrium
in agiven game. Though there are many equilibrium solutions in an extensive form
game, it is not clear how players achieve these solutions. This paper aims to fill this
gap for sequential equilibrium in an extensive form game in imperfect information.

In normal-form game, Aumann and Brandenburger (1995) gives epistemic con-
ditions for leading to Nash equilibrium: Suppose that the players have acommon
prior, that their payoff functions and their rationality are mutually known, and
that their conjectures for the opponents’ actions are commonly known. Then the
conjectures form Nash equilibrium.

In extensive form game we are bothered by the contradiction between play-
ers’ rationality and solution concepts. The contradiction is presented by Rosenthal
(1981) informally and by Reny (1992) and Ben-Porath (1997) formally. They show
that players’ rationality at the root in the extensive form game does not always lead
to the backward induction outcome by examining the centipede game.

On the other hand Aumann (1995) establishes the theorem that players’ rati0-
nality at every node in perfect information games can lead to the backward induction
outcome.

*This is apreliminary version and the final form will be published elsewhere
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In this paper we investigate in the same line of Aumann. We extend his result
in perfect information game to in iihperfect information game as follows:

Main Theorem. The mutual knowledge of $\mu$-rationality leads to a sequential equi-
librium in an extensive form game.

Precisely, if everybody knows that each maximizes his own expected payoff accord-
ing to the common belief $\mu$ at each information set, then the assignment associated
with $\mu$ induces the sequential equilibrium.

This paper is organized as follows: In Section 2we recall an extensive form game
and the sequential equilibrium based on Kreps and Wilson (1982). In addition, we
introduce knowledge of players and $\mu$-rationality, and we show some basic lemmas.
In section 3we present the main theorem and give the proof.

2. Game and Knowledge

2.1. Extensive-form Games
We consider afinite extensive form game. By this we mean astructure $G=\langle(T,$ $\prec$

$)$ , $N$, $(\mathrm{I}_{\dot{l}}):\in N$ , $(A:):\in N$ , $(u:):\in N\rangle$ consisting of as follows: $T$ is the finite set of nodes
that is divided into the set of players’ decision nodes $X$ and the set of the terminal
nodes $Z$ . We assume there is no chance moves for $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}1\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}^{1}.(T, \prec)$ forms atree
with the unique root: The $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\prec \mathrm{i}\mathrm{s}$ atotally order on the predecessors $P(x)$

of each member $x$ in $T$ and $p(x)$ is the immediate predecessor of $x$ . $N$ is aset of
finitely many players. For each $i\in N$ , $X_{\dot{1}}$ is the subset of $X$ that consists of $i’ \mathrm{s}$

decision nodes and thus $X$ is the disjoint union of all the sets of $X_{:}$ ’s. We denote
by $1(\mathrm{x})$ the player making his decision at $x$ $\in X$ .

The information that player $i$ possesses is represented by $i’ \mathrm{s}$ information par-
tition $\mathrm{I}_{\dot{l}}$ on $\chi_{:}$ consisting of components $I_{\dot{l}}$ called $i’ s$ information set. When aset

$I.\cdot\in \mathrm{I}_{\dot{l}}$ contains anode $x$ $\in X\mathrm{i}$ , we denote it by $I_{\dot{1}}(x)$ (or simply by $I(x).$ ) Each
information set is identified with the set of all the decision nodes among which the
player can not distinguish. In addition Idenotes the disjoint union of all $\mathrm{I}_{\dot{1}}$ ’s.

Each player $i$ has afeasible action set $A_{:}(I)$ at every $I\in \mathrm{I}_{\dot{1}}$ . Since each of $i$ ’s
information sets is the set of nodes that she can not distinguish, the feasible action
sets $A_{:}(x)$ , $A_{:}(x’)$ at $x$ , $x’\in I$ are identified wit each other, which denotes $A_{:}(I)$ . We
denote by $A_{:}$ the set of all profiles of $i$ ’s feasible action that is, $A_{:}\equiv \mathrm{x};\epsilon\tau.\cdot A:(I)$ .

In this paper we focus on games with perfect $oe\omega ll^{2}$. An extensive form game $G$

is said to be with perfect recall if the following conditions are satisfied:

1. For any two nodes in asame information set, it is impossible that one node is
the predecessor of the other one.

2. For any three nodes $x$ , $x’,x’\in\chi_{:}$ with $x’\in I(x’)$ and $x$ $\in P(x’)$ , there exist
$\hat{x}\in I(x)$ $\cap \mathrm{P}(\mathrm{x})$ and $a\in A_{:}(I(x))$ such that if $a$ respectively reaches $x’$ and $x’$

then it is played at both $x$ and $\hat{x}$ .

1 We restrict our attention into the case that the number of the initial node is just one
for simplicity.

2 Kuhn (1953)
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The assumption of perfect recall plays crucial in the main theorem, $i’ \mathrm{s}$ payoff func-
tion $u_{i}$ : $Zarrow \mathrm{R}$ is areal-valued von Neumann-Morgenstern utility on the outcomes
for all players.

Alocal strategy at $I\in \mathrm{I}_{\dot{l}}$ for player $i$ is aprobability distribution $b_{i}^{I}$ on $A_{i}(I)$ ,
and $i$ ’s behavior strategy $b_{i}$ is the profile $(b_{i}^{I})_{I\in \mathrm{I}}.\cdot$ . Abehavior strategy $b_{i}$ is called
$i$ ’s pure strategy if each component of $b_{i}$ assigns the probability one to the specific
action $a^{I}\in A_{i}(I)$ at each information set $I$ . In addition, $i$ ’s mixed strategy is defined
to be the probability distribution on $A_{i}$ . By Kuhn’s theorem in Kuhn (1953) there is
aone to one correspondence between behavior strategies and mixed strategies in a
game with perfect recall, and hence we restrict our attention to behavior strategies;
hereafter behavior strategies are simply called strategies in this paper.

Let $B_{\dot{l}}$ denote the set of all strategies for player $i$ and $\mathit{1}\mathit{3}=\mathrm{x}:\in NB$:the set of
all profiles of strategies for the game. Each strategy $b\in B$ induces the probability
distribution $P^{b}$ on $T$ defined as follows: For $x\in T$ ,

$P^{b}(x):= \prod_{a\in\pi(x)}b(a)$
, (1)

where $\pi(x)$ is the set of all actions reaching $x$ from the root. The formula (1)
represents the probability to reach $x$ from the root calculated by the strategies on
$P(x)$ . $i’ \mathrm{s}$ expected utility $U_{\dot{l}}$ induced from $P$ on $B$ is defined by

$U_{\dot{l}}(b):= \sum_{z\in Z}P^{b}(z)u_{i}(z)$
. (2)

2.2. Sequential Equilibrium3
Asystem of beliefs is the class of probability distributions $\mu$ on each information
set $I\in \mathrm{I}$;hence $\sum_{x\in I}\mu(x)=1$ for each $I\in \mathrm{I}$ . Let $\mu(x)$ interpret as abelief
assigned by $\iota(x)$ to $x\in I$ if an information set I is reached. Let $\mathcal{M}$ denote the set
of beliefs. Each member of $B\mathrm{x}\mathcal{M}$ is called an assessment. Given an assessment
$(b, \mu)\in B\mathrm{x}\mathcal{M}$ , we define the conditional probability $P^{b,\mu}(\cdot|I)$ over $Z$ by

$P^{b,\mu}(z|I)=\{$

0if$x\not\in P(z)\cap I$

$\mu(x)\prod_{a\in\pi(x,z)}b(a)$
if $x\in P(z)\cap I$ , (3)

where $\pi(x, z)$ is the set of actions which are used to reach $z$ from $x\in I$ . This
formula represents the probability of player’s assessment of reaching each terminal
node when she is at an information set $I$ . Then we define the conditional expectation
$U_{\dot{1}}^{\mu}$ under $i$ ’s information set I by

$U_{i}^{\mu}(b|I):= \sum_{z\in Z}P^{b,\mu}(z|I)u_{i}(z)$
. (4)

Let $B^{+}$ denote the set of strategies $b\in B$ such that $b(a)\neq>0$ for any $a\in A$ , and
$\mathcal{M}^{+}$ the subset of $\mathcal{M}$ which consists of $\mu\in \mathcal{M}$ such that $\mu(x)\geq 0$ at each $x\in X$ .
3 Kreps and Wilson (1982)
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For given $b\in g+$ , we say that the belief $\mu$ is associated with $b$ if it is defined by the
Bayes’ rule:

$\mu(x|b)=P^{b}(x)/\sum_{\hat{x}\in I}P^{b}(\hat{x})$
. (5)

We can now define the sequential equilibrium as follows.

Definition 1. Let $G$ be an extensive form game. We denote by $S\mathcal{E}(G|I)$ the set
of all the assessments $(b^{*},\mu^{*})$ satisfying both the conditions $(\mathrm{C}_{\mathrm{I}})$ and $(\mathrm{S}\mathrm{R}_{\mathrm{I}})$ at an
information set $I$ :

$(\mathrm{C}_{\mathrm{I}})$ An assessment $(b^{*},\mu^{*})$ is consistent at the information set $I$ . That is, there
exists asequence $\{(b^{n},\mu(\cdot|b^{n}))\}\subseteqq g+\mathrm{x}\mathcal{M}^{+}$ such that for all $x\in I$ and all
$a\in A_{\iota(I)}(I)$ ,

$\lim_{1\iotaarrow\infty}(b^{n}(a),\mu(x|b^{n}))=(b^{*}(a),\mu^{*}(x))$ .

$(\mathrm{S}\mathrm{R}_{\mathrm{I}})$ An assessment $(b^{*}, \mu^{*})$ is sequential rational at the information set I. That
is, for the information set I and for any alternative strategy profile $b_{\dot{1}}’$ $\in B_{\dot{1}}$ ,

$U_{\dot{1}}^{\mu}$ $(b^{*}|I)\geqq U_{\dot{1}}^{\mu}$ $(b_{\dot{1}}’, b_{-:}^{*}|I)$ ,

where $i=\iota(I)$ and $b_{-:}^{*}$ denotes the profile $(b_{j}^{*})_{j\in N\backslash \{:\}}$ .

Let $S\mathcal{E}(G)$ denote the intersection of $S\mathcal{E}(G|I)$ over $I\in \mathrm{I}$. We call $(b^{*},\mu^{*})\in S\mathcal{E}(G)$

asequential equilibrium of the game $G$ .

2.3. Knowledge Structure on $\mathrm{G}$

Aumann (1995) introduced the partition model of knowledge on extensive form
games. He shows that the backward induction outcome is reached by the common
knowledge of rationality in perfect information games. We will extend the model of
knowledge on perfect information game into that on imperfect information game.

Aknowledge structure on an extensive form game G is atriple $\langle\Omega, (\Pi.\cdot):\in N,$b\rangle
consisting of the following structures and interpretations: $\Omega$ is anon-empty set, each
element $\omega$ is called astate and asubset E of $\Omega$ is called an event $\Pi_{\dot{1}}$ is amapping
of $\omega$ into 2” such that the image makes apartition on $\Omega$ consisting of components
$\Pi(\omega)$ for $\omega$ $\in\Omega$ . b is afunction ffom $\Omega$ to B and $\mathrm{b}(\omega)$ represents the $|N|$-tuple of
the players’ strategies at the state $\omega$ .

To avoid the confusion we call $\Pi_{\dot{1}}$ i’s knowledge partition. Intuitively acomponent
$\Pi_{\dot{1}}(\omega)$ of i’s knowledge partition is interpreted as the event consisting of all the states
that player i cannot distinguish from $\omega$ . i’s knowledge operator $K_{\dot{l}}$ on $2^{\Omega}$ is defined
by

$K_{\dot{1}}E=\{\omega\in\Omega|\Pi_{\dot{1}}(\omega)\subseteqq E\}$ for E $\subseteqq\Omega$ .

We will record the properties as follows: For any E, F $\subseteqq\Omega$ ,

(N) $K_{\dot{1}}\Omega=\Omega$ ;

4 Bacharach (1985)
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$(\prime \mathrm{M})$ If $E\subseteqq F$ , then $K\{E\subseteqq K_{\dot{1}}F$ ;

(K) $K_{:}(E\cap F)=K_{i}E\cap K_{i}F$ ;

(T) $K_{\dot{l}}E\subseteqq E$ ;

(4) $K_{\dot{1}}E\subseteqq K_{i}(K_{\dot{l}}E)$ ;

(5) $\Omega\backslash K_{\dot{l}}E\subseteqq K_{\dot{l}}(\Omega\backslash K_{i}E)$ .
The mutual knowledge operator $K_{E}$ on $\Omega$ is defined by $KeF= \bigcap_{:\in N}K_{i}F$. The

event $K_{E}F$ is interpreted as that ‘every player knows F.’ The common-knowledge
operator $K_{C}$ is defined by

$K_{C}E:= \cap\ldots\bigcap_{\dot{1}k}K_{\dot{l}_{1}}K_{\dot{l}_{2}}\cdots K_{i_{k}}Ek=1,2,\{:_{1\prime}j_{2},\ldots,\}\subseteq N^{\cdot}$

The event $KcE$ is interpreted as that ‘all players know that all players know that
$\ldots$ that all players knows E.’

Now, if $\phi$ is afunction on $\Omega$ and $v$ is its value then $[\phi=v]$ (or simply $[v]$ )
denotes the event $\{\omega\in\Omega|\phi(\omega)=v\}$ . Therefore for any $b_{:}\in B_{i}$ , $[b_{\dot{l}}]$ , denote the set
{ $\omega\in\Omega$ $|$ Bi(I) $=b$:}. We assume that

$[b_{i}]\subseteqq K_{E}[b_{i}]$ for every $b_{i}\in B_{i}$ , (6)

which is interpreted as that everybody knows every behavior strategy for each
player. In view of the assumption (6) we can observe that each strategies of player
$i$ is $\Pi_{i}$-measurable, and thus $K_{\dot{l}}[b_{i}]=[b\dot,]$ by (T).

Example 1. Let $G$ be an extensive form game $G=((\mathrm{T}, \prec),$ $N,$ $(\mathrm{I}_{i}):\in N,$ $(A:):\in N,$ $(u:)_{i\in N}\rangle$ .
Let $\dot{\Omega}=T\backslash Z$ and $\Pi_{\dot{l}}$ the function from $\Omega$ to $2^{\Omega}$ defined by $\Pi.\cdot(\omega)=\mathrm{I}_{\dot{l}}(\omega)$ . Given
$\mathrm{b}_{\dot{l}}^{I}$ : $Iarrow B_{i}(I)$ an arbitrary map, we set the function $\mathrm{b}_{i}=\sum_{I\in \mathcal{T}}.\cdot \mathrm{b}_{\dot{l}}^{I}$ as the disjoint
union of $\mathrm{b}_{\dot{l}}^{I}$ over $i$ ’s information sets, where $B_{i}(I)$ is the sets of feasible behavior
strategies at $I$ . Define the knowledge operator $K_{j}$ for player $j$ as follows:

$K_{j}[b_{\dot{l}}^{I}]=\{$

I if $i=j$
$\emptyset$ if $i\neq j$ ,

(7)

for any $b_{i}^{I}\in B_{i}(I)$ . Then for any $b_{i}\in B_{:}$ and $b_{i}^{I}\in B_{i}(I)$ , it can be observed that
$[b_{i}]=\mathrm{U}_{I\in \mathrm{I}}.\cdot[b_{i}^{I}]\subseteqq\cup K_{E}[b_{i}^{I}]=\mathrm{U}_{I\in \mathrm{I}}.\cdot I$ by (M), where the symbol $\mathrm{U}$ denotes the
disjoint union operator.

2.4. Rationality and Consistency
The notion of rationality defined here is an extension of that of rationality defined
in Aumann (1995). For $\mu\in \mathcal{M}$ we say that player $i$ is $\mu$ rational at $I\in \mathrm{I}_{i}$ if each
strategy that $i$ does not know never yield her expected utility value according to $\mu$

at $I\in \mathrm{I}_{i}$ greater than the actual expected utility value at $I$ . If she is rational at
any $I\in \mathrm{I}_{\dot{l}}$ , then we say $i$ to be $\mu$-rational. Formally, the event Zj(I) that player $i$

is $\mu$ rational at $I\in \mathrm{I}.\cdot$ ’is given by:

$\mathcal{R}_{i}^{\mu}(I):=b’.\cdot\in \mathrm{n}_{e_{:}}\sim K_{i}[U_{i}^{\mu}(b’.\cdot, \mathrm{b}_{-i})|I)\neq>U_{i}^{\mu}(\mathrm{b}|I)]$
, (8)
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where $\sim \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the complementation. We denote

$R_{\dot{1}}^{\mu}$

$=I\in \mathrm{I}_{j}\cap$
Xj(I) and $R^{\mu}= \bigcap_{\in N}R_{\dot{1}}^{\mu}$

.

The former event is interpreted as that player $i$ is $\mu$-rational and the latter as that all
players are $\mu$-rational. Furthermore we define the notion of $\mu$-consistency. For given
$\mu\in \mathcal{M}$ , the event of $\mu$ consisting $C^{\mu}$ is the set of all the states $\omega$ such that there
exists asequence $\{(b^{n},\mu(\cdot|b^{n}))\}\subseteqq B^{+}\mathrm{x}\mathcal{M}^{+}$ with $\lim_{narrow\infty}(b^{n},\mu(\cdot|b^{n}))=(\mathrm{b}(\omega),\mu)$.

It is well end this section in aremark: Rationality in perfect information game is
clearly equivalent to $\mu$-rationality when the belief $\mu$ is the constant function 1. That
is, the rationality in Aumann (1995) is the 1-rationality $R^{1}$ for all players in our
sense. One of the purposes in this paper is to extend the result of Aumann (1995)
in the case of $\mu$ rationality

3. The Result

Let $G$ be an extensive form game and $\mu\in \mathcal{M}$ . We denote by $SE^{\mu}(G)$ the event con-
sisting of the states $\omega$ $\in\Omega$ such that the assessment $(\mathrm{b}(\omega),\mu)\in B$ $\mathrm{x}\mathcal{M}$ constitutes
asequential equilibriums in $G$;that is,

$SE^{\mu}(G)=\{\omega\in\sqrt{l}|(\mathrm{b}(\omega),\mu)\in S\mathcal{E}(G)\}$ .

Similarly $SE^{\mu}(G|I)$ is the event consisting of the states $\omega\in\Omega$ such that $(\mathrm{b}(\omega),\mu)$ is
amember of $S\mathcal{E}(-G|I)$ for each information set $I$ . In addition, by the final decisions
of player $i$ we mean the set of all the nodes in $I\in \mathrm{I}_{F}\cap \mathrm{I}_{\dot{l}}$ which does not give the
chance to decide again to player $i$ . We denote by $\mathrm{I}_{F}$ the subset of Iconsisting of
all the information sets in which each player finally decides in the game G. $R_{F}^{\mu}$ is
the event of $\mu$ rationality over $\mathrm{I}_{F}$ , that is, $R_{F}^{\mu}=\mathrm{n}_{h\in \mathrm{I}_{F}}R_{\dot{l}}^{\mu}(h)$ . The main theorem
states that if $\mu$-rationality at final decision information sets for each players under
$\mu$-consistency for some $\mu\in \mathcal{M}$ is mutually known then the sequential equilibrium
is achieved in the given game $G$ . We can now state the main theorem formally as
follows:

Theorem 1. $K_{E}(R_{F}^{\mu}\cap C^{\mu})=SE^{\mu}(G)$ .

Proof. It suffices to prove that $K_{E}(R_{F}^{\mu}\cap C^{\mu})\subseteqq SE^{\mu}(G)$ . We prove it by induction as
follows. It may be assumed that $K_{E}(R_{F}^{\mu}\cap C^{\mu})\neq\emptyset$ . For each information set $I\in \mathrm{I}_{\dot{l}}$ ,
let $S.\cdot(I)$ be the subset of $\mathrm{I}_{\dot{1}}$ consisting of $i$ ’s information sets next after $i$ decides
at $I$ . We shall shall the two pints: First that for each $i\in N$ and any $h\in \mathrm{I}_{F}\cap \mathrm{I}_{\dot{1}}$ ,
$K_{:}(R_{F}^{\mu}\cap C^{\mu})\subseteqq SE^{\mu}(G|h)$ . Let $\mathrm{I}^{\prec}(I)$ denote the set of all the information sets at
which $1(\mathrm{I})$ decides after $I$ . Secondly we show that if $K_{\dot{1}}(R_{F}^{\mu}\cap C^{\mu})\subseteqq SE^{\mu}(G|h)$ at
any $h\in \mathrm{I}^{\prec}(I)$ then $K.\cdot(R_{F}^{\mu}\cap C^{\mu})\subseteqq SE^{\mu}(G|I)$ .

We shall verify the first point: For each player $i\in N$ , it follows that

$K_{E}(R_{F}^{\mu}\cap C^{\mu})\subseteqq \mathrm{n}\sim K_{\dot{1}}[U_{\dot{1}}^{\mu}b_{\acute{}}\in\epsilon_{:}$

$(b_{\dot{1}}’, \mathrm{b}|h)\neq>U_{\dot{l}}^{\mu}(\mathrm{b}|h)]\cap C^{\mu}$ .
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We note that for any $\omega\in K_{E}(R_{F}^{\mu}\cap C^{\mu})$ and for any $b_{i}’\in B_{i}$ ,

$\omega\not\in K_{i}[U_{\dot{l}}^{\mu}(b_{i}’, \mathrm{b}|I)\neq>U_{\dot{l}}^{\mu}(\mathrm{b}|I)]$

$\Leftrightarrow\exists\xi\in\Pi_{\dot{l}}(\omega)$ , $\xi\not\in[U_{\dot{1}}^{\mu}$ $(b_{\dot{l}}’, \mathrm{b}|I)>\neq U_{\dot{l}}^{\mu}$ $(\mathrm{b}|I)]$

$\Leftrightarrow\exists\xi\in\Pi_{\dot{1}}(\omega)$ , $U_{\dot{l}}^{\mu}(\mathrm{b}(\xi)|I)\geqq U^{\mu}\dot{.}(b_{i}’, \mathrm{b}(\xi)|I)$ .

Furthermore it is observed that $\mathrm{b}_{:}(\omega)=b_{:}(\xi)$ for any ( $\in\Pi_{\dot{|}}(\omega)$ because $[b_{\dot{l}}]\subseteqq$

$K_{E}[b_{i}]$ , and thus it can be plainly obtained that for any $\omega\in K_{E}(R_{F}^{\mu}\cap \mathrm{C}")$ and for
any $b_{\dot{l}}’\in B:$ ,

$U_{\dot{l}}^{\mu}(\mathrm{b}(\omega)|I)\geqq U_{\dot{1}}^{\mu}$ $(b_{\dot{\iota}}’, \mathrm{b}(\omega)|I)$ .

Therefore we have shown that for each $\omega\in K_{\dot{l}}(R_{F}^{\mu}\cap C^{\mu})$ , $(\mathrm{b}(aJ), \mu)$ is $\mu$-rational on
any $h\in \mathrm{I}_{F}\cap \mathrm{I}_{\dot{l}}$ , and it is easily observed to be $\mu$-consistent. Therefore $K_{:}(R_{F}^{\mu}\cap C^{\mu})\subseteqq$

$SE^{\mu}(G|h)$ .
The following lemma is needed to verify the second point. We denote $\mathrm{P}(x|b):=$

$\mathrm{P}^{b}(x)$ for simplicity.

Lemma 1. For $b\in B$ , each $i\in N$ , and $I\in \mathrm{I}_{\dot{1}}$ such that $s_{:}(I)\neq\emptyset$,

$U_{\dot{l}}^{\mu}$

$(b|I)= \sum_{h\in S\dot{.}(I)}\frac{\sum_{\tilde{x}\in h}\mathrm{P}(\overline{x}|b)}{\sum_{\hat{x}\in h}\mathrm{P}(\hat{x}|b)}U_{\dot{l}}^{\mu}(b|h)$.

Proof. For $b\in B$ , $x\in I$ and $x’\in h\in \mathrm{S}\mathrm{i}(\mathrm{I})$ , it can be observed that

$\mu(x|b^{n})=\frac{\sum_{\overline{x}\in h}\mathrm{P}(\overline{x}|b^{n})\mu(x’|b^{n})}{\sum_{\hat{x}\in h}\mathrm{P}(\hat{x}|b^{n})\prod_{a\in\pi(x,x’)}b^{n}(a)}$.

Therefore it follows that

$U_{\dot{l}}^{\mu}(b|I)= \lim_{narrow\infty}\sum_{x\in I}\mu(x|b^{n})\prod_{a\in\pi(x,z)}b^{n}(a)u:(z)$

$= \lim_{nrightarrow\infty}\sum_{x\in I}\frac{\sum_{\overline{x}\in h}P(\overline{x}|b^{n})}{\sum_{\hat{x}\in I}P(\hat{x}|b^{n})}\mu(x’|b^{n})\prod_{a\in\pi(x’,z)}b(a)u_{i}(z)$

$= \lim_{narrow\infty}\sum_{h\in S\dot{.}(I)}\frac{\sum_{\overline{x}\in \mathrm{h}}P(\overline{x}|b^{n})}{\sum_{\hat{x}\in I}P(\hat{x}|b^{n})}\sum_{x’\in h}\mu(x’|b^{n})\prod_{a\in\pi(x’,z)}b(a)u:(z)$

$= \sum_{h\in S_{*}(I)}.\frac{\sum_{\overline{x}\in \mathrm{h}}P(\overline{x}|b)}{\sum_{\hat{x}\in I}P(\hat{x}|b)}U_{\dot{l}}^{\mu}(b|h)$,

in completing the proof of the lemma.

We proceed to the proof of the second point. Assume now that for each $i\in N$

and $h\in \mathrm{S}\mathrm{j}(\mathrm{J})$ , $K_{i}(R_{F}^{\mu}\cap C^{\mu})\subseteqq SE^{\mu}(G|h)$ . Suppose to the contrary that there
exists $\overline{b}_{:}\in B_{:}$ such that at $(\beta\in K_{E}(R_{F}^{\mu}\cap C^{\mu})$ ,

$U_{i}^{\mu}(\overline{b}:, \mathrm{b}_{-:}(\omega)|I)\neq>U_{\dot{l}}^{\mu}(\mathrm{b}(\omega)|I)$.
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It then follows from the above lemma that

$U_{\dot{1}}^{\mu}$
$(b|I)= \sum_{h\in I}\frac{\sum_{\overline{x}\in h}P(\tilde{x}|\mathrm{b}(\omega))}{\sum_{\hat{x}\in I}P(\hat{x}|\mathrm{b}(\omega))}U_{\dot{l}}^{\mu}(\mathrm{b}(\omega)|h)$

$\geqq.\sum_{h\in S.(I)\backslash \{h’\}}\frac{\sum_{\tilde{x}\in h}P(\tilde{x}|\mathrm{b}(\omega))}{\sum_{\mathrm{f}\in I}P(\hat{x}|\mathrm{b}(\omega))}U_{}^{\mu}(\mathrm{b}(\omega)|h)$

$+ \frac{\sum_{\overline{x}\in h}P(\tilde{x}|\mathrm{b}(\omega))}{\sum_{\hat{x}\in I}P(\hat{x}|\mathrm{b}(\omega))}U_{\dot{1}}^{\mu}$
$(\overline{b}_{\dot{1}},\mathrm{b}_{-:}(\omega)|h’)$

$= \lim$$n arrow\infty\sum_{h\in S_{}(I)\backslash \{h’\}}\frac{\sum_{\overline{x}\in h}P(\tilde{x}|b^{n})}{\sum_{\hat{x}\in I}P(\hat{x}|b^{n})}U^{\mu(\cdot|b^{n})}.\cdot(b^{n}|h)$

$+ \frac{\sum_{\tilde{x}\in h}P(x’|b^{n})}{\sum_{\hat{x}\in I}P(\hat{x}|b^{n})}U_{\dot{1}}^{\mu(\cdot|b^{\mathrm{n}})}(\overline{b}_{\dot{l}}^{n},b_{-:}^{n}|h’)$

$=U_{\dot{1}}^{\mu}$ $(\overline{b}.\cdot,\mathrm{b}_{-\dot{1}}(\omega)|I)$ ,

in contradiction because player i is sequential rational at h $\in S_{\dot{1}}(I)$ . This completes
the proof of our theorem.

4. Concluding Remarks

This paper examines what epistemic conditions about players’ rationality can lead
to the outcomes induced by asequential equilibrium. Originally Aumann (1995)
shows that if players act on the rational behavior in aperfect-information game
then they can obtain the outcomes by backward induction solution. In this article
we extend this result to that about sequential equilibrium. Though he requires
common knowledge of rationality for all players, we require here only the mutual
knowledge of it. Therefore it is sufficient only to know rationality of each player.
Furthermore our theorem insists that rationality is sufficient only at the information
sets in final decision for each player.

Some related works lead to the different result ffom Aumann’s (e.g. Reny (1992),
Ben-Porath (1997) $)$ . In Aumann (1995) and our research is required rationality on
every information set, however they suppose only players’ beliefs at the beginning
of agame. Since players have the Bayesian rationality in their studies, players can
revise their own beliefs about their opponents’ behaviors or their present nodes
through moving plays. These are the different views in examining the extensive
form games. While Aumann regards rationality of players as an representation of
the equilibrium, Reny and Ben-Porath capture it as playability in agiven game.
We would like to examine the relationship between the two views in the further
research.
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