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Abstract

This paper offers amodel which enables us to understand the
uniqueness of equilbrium in global games, purification of mixed strat-
egy equilbria, and the quantal response equilbrium in aunified way.

1Introduction and the Unified Framework

This paper offers amodel which enables us to understand the uniqueness
of equilibrium in global games, purification of mixed strategy equilibria,
and the quantal response equilibrium in aunified way. These concepts are
presented independently in the literature but the structure of these idea has
acommon feature. This is what we intend to demonstrate in this paper.

We consider aclass of Bayesian games with I players. Each player has
afinite action set $A_{:}$ . An action profile is denoted by $a=$ $(a_{1}, \ldots, a_{I})\in A\equiv$

$A_{1}\cross\cdots\cross A\mathrm{j}$ . As is in the standard framework, each player $i$ chooses an
action after observing her private type $t_{:}$ chosen from aset of private types
$T_{\dot{l}}$ , and the players have acommon prior probability measure $P$ over the
set of type profiles $T_{1}\cross\cdots$ $\cross TI\equiv T$ . When atype profile $t$ , is realzed,
player $i$ ’s payoff to action profile $a$ is $u:(a,t)$ . Each player is assumed to be
aBayesian expected utility maximizer, thus after observing aprivate type $t_{:}$

player $i$ chooses an action that maximizes the conditional expected utility.
We allow for mixed actions, and denote by the set of probability measures
on $A_{:}$ and $A$ by $\triangle(A:)$ and $\triangle(A)$ , respectively.

“This is more or less aresearch plan and the results reported in this paper are to be
elaborated
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We further make two assumptions on utility functions. First we assume
that utility function is additively separable as follows.

Assumption 1For each player $i$ , $ui(a, t)$ $=gi(a)+\epsilon_{i}(ai, t:)$ for all $a\in A$

and $t\in T$ , for some functions $g_{i}$ : $Aarrow \mathbb{R}$ , and $\epsilon_{i}$ : $A_{i}\cross T_{\dot{l}}arrow \mathbb{R}$.

Notice that the function $g_{i}$ depends on the action profile only, thus there
is no uncertainty about the part of payoffs given by $g_{i}$ . The function $\epsilon_{i}$ only
depends on player $i’s$ action and type. An interpretation of this assumption
is that the function $g_{i}$ describes the “fundamentals” of the game and $\epsilon$

represents the uncertain or “noise” part of the utility.
The second assumption is about the role of private information.

Assumption 2For each player $i$ , $t_{i}\neq t_{i}’$ implies that $\epsilon:(a:,t:)\neq\epsilon:(a_{i},t_{i}’)$

for some $a_{i}\in A_{i}$ .

So each private type $t_{i}$ is associated with aunique vector of payoffs’
$(\epsilon_{i}(a:, t_{i}))_{a\in A}::\in \mathbb{R}\# A:$ . Thus, under the assumption that the payoff func-
tions are common knowledge among the players, if aplayer could observe
payoffs to each action profile, he needs not to observe $t_{:}$ , that is, the vector
$(\epsilon_{i}(ai, t_{\dot{l}}))_{a:\in A}$:contains all the private information he could learn.

So under this assumption, it is convenient to suppress the reference to
private type $t_{i}$ , and assume that the vector ofplayer’s own payoffs $(\epsilon:(a_{i}, t:))_{a\in A}:$ :
is observable to each player. That is, each player $i$ observes the realzation
of random vector $t\mapsto(\epsilon:(ai, ti))\in \mathbb{R}\# A:\equiv\Omega_{i}$, where $t$ is drawn from
the sample space (state space) $T$ according to the probability measure $P$ .
With aslight abuse of notation, we denote the random vector by $\tilde{\epsilon}_{i}$ , are-
alization of $\tilde{\epsilon}_{\dot{l}}$ by $\epsilon:\in \mathbb{R}\# A:$ . For arealized payoff $\epsilon_{i}$ , Denote the element
corresponding to action $a_{i}$ by $\epsilon_{i}(a:)$ .

To sum up, player $i$ observes the realization of the random vector $\tilde{\epsilon}_{\dot{l}}$ in
$\Omega\equiv\Pi_{i=1}^{I}\Omega_{i}$ , where $\Omega_{i}=\mathbb{R}\# A$:as above, then choose apossibly random
action. The joint distribution of $\tilde{\epsilon}_{\dot{l}}$ , $i=1$ , $\ldots$ , $I$ , which we denote by $P$

abusing notation, is common knowledge. Agame is thus characterized by
$(g,\tilde{\epsilon})$ where $g=(g_{i})_{\dot{l}=1}^{I}$ and $\tilde{\epsilon}=(\tilde{\epsilon}_{i})_{i=1}^{I}$ .

Astrategy of player $i$ is ameasurable function $\sigma_{i}$ : $\Omega_{:}arrow\triangle(A_{i})$ .
The expected utility to astrategy profile $\sigma=$ $(\cdots, \sigma i, \cdots)$ is given by
$\int\sum_{a\in A}[g_{i}(a)+\epsilon_{i}(a_{i})]\sigma(a)(\omega)P(d\omega)$ , where $\sigma(a|\omega)\equiv\Pi_{i=1}^{I}\sigma_{i}(a:|\omega_{i})$ is
the probability of action profile $a$ is chosen given $\omega$ . We simply write
$E[g_{i}(\sigma)+\Xi:(\sigma_{\dot{1}})]$ for this expression. The Bayesian Nash equilibrium of
the game $(g,\tilde{\epsilon})$ is then defined as follows.

Definition 1A strategy profile $\sigma^{*}=$ $(\sigma_{1}^{*}$ , ..., $\sigma_{I}^{*})$ is a Bayesian Nash Equi-
librium (BNE) of $(g,\tilde{\epsilon})$ if $\sigma_{i}^{*}\in\arg\max_{\sigma}.\cdot E[g_{i}(\sigma_{i}, \sigma_{-i}^{*})+\epsilon_{i}(\sigma_{i})]$ for each
$i=1$ , $\ldots$ , $I$ .
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ABNE $\sigma^{*}$ induces an equilibrium action distribution $\mu\in\triangle(A)$ , $\mu(a)=$

$\mathrm{P}\mathrm{r}[\sigma^{*}(\omega)=a]$ . Let $\mathcal{E}_{g}(\tilde{\epsilon})$ be the set of aU equilbrium action distributions
induced by BNE equilbria of game $(g,\tilde{\epsilon})$ . Note that $\mathcal{E}_{\mathit{9}}(\tilde{0})$ is the set of
mixed strategy equlibrium distribution of game 9as acomplete information
strategic form game, where $\tilde{0}$ is the constant random vector yielding 0with
probability one.

2Examples

We shall give acouple of examples to show that our framework given in the
previous section is capable to discuss some $\mathrm{w}\mathrm{e}\mathrm{U}$ discussed example in the
global game literature (e.g., Carlsson and van Damme (1993), Morris and
Shin (2000) $)$ .

2-1 Investment game with private signal

The first is so called the investment game. Set $I=2$ and suppose each
player has two actions {invest $(\alpha)$ , not invest (4)}. Payoffs are given by:

$\alpha_{2}$ &
$\alpha_{1}$

$\theta,\theta$ $\theta-1,0$

$\beta_{1}$ 0, $\theta-1$ 0, 0
$\theta$ , $\theta$ $\theta-1$ , 0
0, $\theta-1$ 0, 0

but it is assumed that players do not observe 0directly. Player $i$ observes an
independent private signal $x$:with mean 0, then choose his action. It is thus
interpreted that each player observes only anoisy signal of the fundamental
value $\theta$ .

Assume that $x:\mapsto E[\theta|x:]$ is one to one, which holds under the main-
tained assumptions in the aforementioned papers. Let $\epsilon:(\alpha:)=E[\theta|x:]$ ,
$\epsilon_{i}(\beta_{\dot{l}})=0$ . Then the investment game can be reduced to the game $(g,\tilde{\epsilon})$ as
follows; when $\epsilon$ is realized,

$\alpha_{2}$
$\hslash$ $\alpha_{2}$ It

$g$ : $\alpha_{1}$ 0, 0 -1, 0 $\epsilon$ : $\alpha_{1}$ .
$\epsilon_{1}(\alpha_{1}),\epsilon_{2}(\alpha_{2})$ $\epsilon_{1}(\alpha_{1}),0$

$\beta_{1}$ $0,$ -1 0, 0 $\beta_{1}$ 0, $\epsilon_{2}(\alpha_{2})$ 0, 0
0, 0 -1, 0
$0,$ -1 0, 0

$\epsilon_{1}$
$(\alpha_{1})$ , $\epsilon_{2}$

$(\alpha_{2})$ $\epsilon_{1}$
$(\alpha_{1})$ , 0

0, $\epsilon_{2}$
$(\alpha_{2})$ 0, 0

thus

$\alpha_{2}$ A
$g+\epsilon$ : $\alpha_{1}$

$\epsilon_{1}(\alpha_{1}),\epsilon_{2}(\alpha_{2})$ $\epsilon_{1}(\alpha_{1})-1,0$

$\beta_{1}$ 0, $\epsilon_{2}(\alpha_{2})-1$ 0, 0
$\epsilon_{1}$

$(\alpha_{1})$ , $\epsilon_{2}$
$(\alpha_{2})$ $\epsilon_{1}$ $(\alpha_{1})-1$ , 0

0, $\epsilon_{2}$ $(\alpha_{2})-1$ 0, 0

Then it can be shown that the set of BNE action distributions of the invest-
ment game is exactly E9 $(\tilde{\epsilon})$ .
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2,2 Investment with public signal

This example is also discussed in Morris and Shin (2000). The setting is the
same as the investment game, except that each player $i$ observes two signals
$y$ and $x_{i}$ . Both are normally distributed around $\theta$ , and they are uncorrelated.
It is common knowledge that $y$ is publicly observed and each $x_{i}$ is privately
observed.

To transform this game to our ffamework, let $\epsilon:(\alpha_{i})=E[\theta|y, x_{i}]$ , $\epsilon_{i}(\beta_{i})=$

$0$ . It turns out that under normal distribution, any BNE of the investment
game is afunction of $\epsilon$ . (Morris-Shin). But probably this is ageneral result
for models with normal type distribution. Again BNE action distributions
of the investment game with public signal is $E_{g}(\tilde{\epsilon})$ .

3Purification and Quantal Response

In this section we argue how our model captures the ideas of the quantal
response equilibrium and purification. We will focus on 2 $\cross 2$ symmetric
coordination games of the following type, but it can be generalized: the
function $g$ is given by the following table:

We shall further assume for simplicity that $x>u$ , $y>v$ , and $u=v=0$.
Thus the class of games we consider is: when $\epsilon$ is realized, payoffs are given
by the following table:

Assume further that $x=y$, and $\mathrm{e}’ \mathrm{s}$ are independently distributed and
have continuous distributions. Then irrespective of the opponent’s strategy,
each player has aunique best action after observing $\epsilon$ , with probability one.
Notice that

$\bullet$
$\alpha_{1}$ is the best action iff $\mathrm{P}\mathrm{r}(\alpha_{2})x+\epsilon_{1}(\alpha_{1})>\mathrm{P}\mathrm{r}$ (%) $x+\epsilon_{1}(\beta_{1})$ occurs

$\bullet$ Probability of $\alpha_{1}$ is chosen $=\mathrm{P}\mathrm{r}[\mathrm{P}\mathrm{r}(\alpha_{2})x+\epsilon_{1}(\alpha_{1})>\mathrm{P}\mathrm{r}(h) x+\epsilon_{1}(\beta_{1})]$

Thus $\mu$ is aBNE action distribution iff $\mu$ has the form $\mu(a)=\mu_{1}(a_{1})\cross$

$\mu_{2}(a_{2})$ and $\mu i(a_{i})$ is exactly the probability that $a_{i}$ is the best action, given
$\mu j$ . Thus the equilibrium action distribution constitutes aquantal response
equilibrium as in McKelvey and Palffay (1995)
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Note further that if $\epsilon$ is symmetric around 0, $\mu:(\alpha:)=\mu:(\beta_{\dot{\iota}})=\frac{1}{2}$ is
aBNE distribution in which players use (interim) pure strategies, which is
indeed the idea of purification.

4Uniqueness of equilibrium

In our setting, the uniqueness result typical in the global game literature
obtains and it has asimple and intuitive representation and interpretation.
We shall again deal with the $2\cross 2$ game discussed in the previous section,
but again the argument can be generalzed.

Assume that $\mathrm{e}’ \mathrm{s}$ are jointly normaly distributed, but they may be cor-
related. Note that it still has the unique best action property as in the
previous section. Further assume:

$\bullet$ unbiasedness: $E(\epsilon:(\alpha:))=E(\epsilon:(\beta_{\dot{l}}))=0$

$\bullet$ symmetric variance: $Var(\epsilon:(\alpha:))=Var(\epsilon_{\dot{l}}(\beta.\cdot))=\rho^{2}(\rho\geq 0)$

$\bullet$ uncorrelated payoff noise: $Var(\epsilon:(\alpha:),\epsilon:(\beta_{\dot{l}}))=0$

$\bullet$ informational correlation:

$-Var(\epsilon:(\alpha:),\epsilon_{j}(\alpha_{j}))=Var(\mathcal{E}:(\beta_{\dot{l}}), \epsilon_{j}(\beta_{j}))=\phi\rho^{2}$ , $(|\phi|<1)$

$-Var(\epsilon:(\alpha:),\epsilon_{j}(\beta_{j}))=0$

$\bullet$ $\epsilon$ $=0$ iff $(\rho, \phi)=(0,0)$ .

So in this parametrization, parameter $\rho$ measures noisiness of the in-
formation, and parameter $\phi$ measures the degree of information about the
other’s payoffi; for instance, if $\phi$ is smal, there is less information about
the other’s payoffs.

Let $7( \mathrm{P}, \phi)\equiv\frac{1}{\rho}\sqrt{\frac{1-\phi}{1+\phi}}$, and let $r^{*}$ be defined by (I) $( \frac{\gamma(\rho,\phi)}{\sqrt{2}}r^{*})=.\frac{\tau+x-u}{x-u+y-v},\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$

$\Phi$ is the cumulative probability distribution of the standard normal distri-
bution.

Proposition 1If $\gamma(\rho, \phi)\leq\frac{2\sqrt{\pi}}{x-u+y-v}$ , then every $BNE\sigma^{*}$ has the property:
$\sigma:(\alpha:|\epsilon_{i})=1$ if $\epsilon_{i}(\alpha:)-\epsilon_{i}(\beta_{\dot{l}})>r^{*}$ and $\sigma_{\dot{l}}(\alpha:|\epsilon:)=0f\epsilon:(\alpha:)-\epsilon:(\beta_{})<r^{*}$

for $i\in\{1,2\}$ .

This result says that if payoff noise is sufficiently large ($\rho$ is large) $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$

the information of the other’s payoffs is sufficiently good ( $\phi$ is close to one),
there is an essentialy unique equilbrium.

There are two effects that drive the result. The first is the information
linkage (or, “infection”) effect. Think of smal $\rho$ , and $\phi$ close to $\mathrm{o}\mathrm{n}\mathrm{e}|$ ,
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1. If the realization of $\epsilon_{i}(\alpha_{i})-\epsilon_{i}$ (Pi) is very large, $\alpha_{i}$ dominates $\beta_{i}$

irrespective of the other’s strategy.

2. If $\phi$ is close to one, alarge difference $\epsilon_{i}(\alpha_{i})-\epsilon_{i}(\beta_{i})$ implies large
difference $\epsilon_{j}(\alpha_{j})-\epsilon_{j}(\beta_{j})$ , and hence player $i$ must infer that player $j$

has $\alpha j$ as adominant action.

3. If player $i$ believes that player $j$ plays $\alpha j$ with at least probability, say,
$p_{1}$ , $\alpha$:will be aunique best response even if $\epsilon:(\alpha:)-\epsilon_{\dot{l}}(\beta_{\dot{l}})$ is not as
large.

4. Then player $i$ must believe that player $j$ plays $\alpha j$ with at least $p_{2}>p_{1}$ .
So $\alpha_{i}$ will be abest response even for smaler $\epsilon_{\dot{l}}$

$(\alpha:)-\epsilon:(\beta_{\dot{l}})$ .

5. This argument iterates, and eventually determines the action for all
realization of $\epsilon_{i}(\alpha_{i})-\epsilon:(\beta_{i})$ .

The second effect is the large noise effect. Think of $\phi=0$ , thus observe
ing one’s type give no information about the opponent’s type. Note that
the iteration argument above does not work, thus there is no informational
linkage effect in this case. But still the uniqueness obtains because of the
following:

1. If $\rho$ is very large, with probability close to one, players have dominant
actions.

2. Thus ex ante, player $i$ must assign probability close to $\frac{1}{2}$ to each action
$\alpha_{j}$ and $\beta_{j}$ .

3. If so, even if player $i$ does not have adominant action, he should choose
arisk dominant action.

We shall sketch the idea of the proof below, and aformal proof can be
found in Ui (2001b). Consider “strategy $r”$ :play $\alpha_{i}$ if $\epsilon_{i}(\alpha_{i})-\epsilon:(\beta)>r$ .
Let $G(rj,ri)=$ (EU of playing $\alpha_{i}$ ) -(EU of playing $\beta_{i}$ ) for player $i$ , when
player $j$ is playing strategy $rj$ and player $i$ has observed $ri=\epsilon:(\alpha_{i})-\epsilon_{i}(\beta_{i})$ .
Under the conditions of the uniqueness result, $G(r_{j,i}r)$ is decreasing in $r_{j}$

and increasing $r_{i}$ , and $G(r^{*}, r^{*})=0$ . We know $G(rj, r)>0$ for any $r_{j}$ if $r$ is
large. Let $\overline{r}^{1}$ be the smallest of such $r$ . Note that $G(\overline{r}^{1},\overline{r}^{1})>0$ , so there is
aunique $\overline{r}^{2}<\overline{r}^{1}$ with $G(\overline{r}^{1},\overline{r}^{2})=0$ . Then player $i$ is sure that $j$ will choose
$\alpha$ if $\epsilon j(\alpha j)-\epsilon j$ $(\beta j)>\overline{r}^{1}$ , so playing $\beta_{i}$ after observing $\epsilon:(\alpha_{i})-\epsilon_{i}(\beta)>\overline{r}^{2}$

is dominated. The argument iterates until $G(r^{*}, r^{*})=0$ is reached.

5Informational Robustness of Equilibria.

Let $N(\delta)$ be the closed ball of radius $\delta\geq 0$ about 0in $\Omega$ . If $\epsilon\in N(\delta)$

is realized, the game $(g, \epsilon)$ is close to $g$
” Fix anon increasing sequence
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$\delta_{n}\downarrow 0$ . Equilibrium $\mu\in E_{g}(0)$ is $\{\delta_{n}\}$-robust if for any sequence $\epsilon^{n}$ with
$\mathrm{P}\mathrm{r}[\epsilon^{n}\in N(\delta_{n})]arrow 1$ , there is $\mu^{n}\in E_{g}(\epsilon^{n})$ such that $\mu^{n}arrow\mu$ .

Equilibrium $\mu\in \mathcal{E}_{\mathit{9}}(0)$ is robust if it is $\{\delta_{n}\}$-robust for any $\delta_{1l}\downarrow 0$. When
$\delta_{n}=0$ , for all $n$, $\{\delta_{n}\}$-robustness is identical by definition to the robustness
concept proposed by Kajii -Morris (1997), and further elaborated in Ui
(2001a). It is interesting to find out the exact relationship.

Now consider the class of noise is restricted to the normal distribution
as in the previous section. Note that the equilibrium cut off value $r^{*}<0$ is
bounded away from 0. Thus if noise is close to zero with high probability,
$\epsilon:(\alpha:)-\epsilon:(\beta_{\dot{l}})>r^{*}$ with probability close to one. Then in the induced
equilibrium, $(\alpha_{1}, \alpha 2)$ is played with probabilty close to one. So the unique-
ness result implies that there is no equilibrium that assigns high probability
to $(\beta_{1},h)$ . When noise is not normal, uniqueness result does not hold in
general and thus the argument above does not go through. But it is known
that $(\alpha_{1}, \alpha_{2})$ is robust, whereas $(\beta 1,h)$ is not. We speculate thus there is a
clean argument in this restrictive class, without referring to the uniqueness,
to establish the robustness.
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