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1 Introduction
Boundary Integral Equation Method (BIEM) is considered to be an efficient solver for exterior problems. This is
particularly true in wave problems such as those in acoustics, electromagnetics and elastodynamics, because there is
no need to introduce techniques to avoid non-physical reflections from artificial boundaries with BIEM. Indeed, one
can find examples of successful use of BIEM in wave related engineering problems in literature (See Kobayashi et
al. [1] for example). It is therefore considered to be worth the efforts to further enhance the performance of BIEM in
wave problems by investigating afast method.

In elastodynamics, one can find some attempts to develop fast BIEM in frequency domain, as reviewed in Nishimura
[2]. In time domain, however, not much has been done except in the work by Takahashi et al. [3] where these authors
extended the approach by Lu et al. [4] in the wave equation to elastodynamics in $2\mathrm{D}$ . As amatter of fact one may
say that almost all of the fundamentals of the fast BIEM in wave problems in time domain have so far been developed
in Michielssen’s group. Their most advanced approach is found in Ergin et a1.[5] where they proposed afast method
(Plane Wave Time Domain (PWTD) algorithm) for the wave equation in $3\mathrm{D}$ which utilises the plane wave expansion
of the fundamental solution in the space-time and multilevel implementation. See Nishimura [2] for more references.

The purpose of this paper is to continue the efforts by Takahashi et al. [3] in $2\mathrm{D}$, and to extend the PWTD approach
to elastodynamics in $3\mathrm{D}$ .As we shall see the extension is straightforward, but is by no means automatic. This is because
of the presence of two waves ($\mathrm{P}$ and $\mathrm{S}$ waves) in elastodynamics and the time integration found in the elastodynamic
fundamental solution. In view of this, we shall present the detail of the derivation of the plane wave expansion for
elastodynamics in this paper.

This paper begins with the fundamentals of the BIEM in the time domain elastodynamics in $3\mathrm{D}$ . After abrief
recapitulation of the time-marching method with the conventional BIEM, we derive the plane wave expansion of the
time domain elastodynamic fundamental solution in $3\mathrm{D}$ in section 2. After preparing some mathematical tools, we
proceed to the description of the algorithm in section 3. It is shown that the complexity of the proposed approach
is either $O(N_{s}\log^{2}N_{s}N_{t})$ or $o(N_{s}^{3/2}N_{t})$ depending on the algorithm used for the Legendre transformation. The
performance of the proposed algorithm is tested in section 4where problems having the spatial DOF of $O(10^{4})$ are
considered. The proposed approach is concluded to outperform the conventional BIEM even in the smallest problem
considered.

2 Formulation

2.1 Governing equations and BIE
Let $D\subset \mathrm{R}^{3}$ be adomain having asmooth boundary $\partial D=S$ . The initial boundary value problem for 3dimensional
elastodynamics in time domain is formulated as follows: To solve

$\mu u_{\dot{l},jj}(x, t)+(\lambda+\mu)uj,ij(x, t)+b_{:}(x, t)=\rho^{\text{\"{u}}}:(x, t)$ (1)

for the unknown vector function (displacements) $u_{i}(x, t)(x=(x_{1}, x_{2}, x_{3})\in D, t\in(0, \infty))$ subject to certain initial
and boundary conditions, where $u$ stands for the displacement vector, $and $t$ are the spatial variable and time, Aand
$\mu$ are Lam\"e’s constants, $\rho$ is the density and $b$ is the body force per unit volume, respectively. Also, we have used the
summation convention for repeated indices. As typical initial and boundary conditions we consider the following:

initial condition $u(x, \mathrm{O})=\dot{u}(x, 0)=0$ in $D$

boundary condition $u(x, t)=\overline{u}(x, t)$ on $S_{1}$ (2)

$t(x, t)=\overline{t}(x,t)$ on $S_{2}$

where $(^{-}.)$ indicates function given on the boundary. Also, $S_{1}$ and $S_{2}$ are parts of the boundary $S$ such that $S=S_{1}+S_{2}$

holds, and $t$ stands for the traction defined by

$t_{:}(x, t)=C_{\dot{|}jk\iota}n_{j}(x)uk,l(x, t)$ ,
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where n is the outward normal vector to S and $C_{jkl}\dot{.}$ is the elasticity tensor defined in terms of Lamb’s constants A
and $\mu$ by $C_{\dot{l}jk\iota}=\lambda\delta_{jj}\delta_{kl}+\mu(\delta:k\delta jl +\delta i\iota\delta jk)$ .

Assuming the body force to vanish, we obtain from (1) the following boundary integral equation:

$\frac{1}{2}u:(x,t)+\dagger_{S}T_{\dot{|}j}(x,y,t)*u_{j}(y,t)dS_{y}=\int_{S}\Gamma_{\dot{|}j}(x-y,t)$ , $t_{j}(y, t)dS_{y}$ $x\in S$, $t>0$ (3)

where the superimposed -stands for the Cauchy principal value of an integral $\mathrm{a}\mathrm{n}\mathrm{d}*\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}$ the convolution with
respect to time. The integrals on the RHS and LHS of (3) are called the single and double layer potentials, respectively,
whose kernels $\Gamma$ and $T$ are defined by

(4)$\Gamma_{\dot{|}j}(x,t)=\frac{1}{4\pi\mu}[\frac{\delta(t-|x|/c_{T})}{|x|}\delta_{\dot{|}j}-c_{T}^{2}\partial_{\dot{1}}\partial_{j}(\frac{(t-|x|/c_{T})_{+}}{|x|}-\frac{(t-|x|/c_{L})_{+}}{|x|})]$ ,

$T_{\dot{|}j}(x,y,t)=Cj \mathrm{t}nmn\iota(y)\frac{\partial}{\partial y_{n}}\Gamma_{\dot{|}m}(x-y,t)$ (5)

where $c_{L}$ and $c_{T}$ are velocities of $\mathrm{P}$ and $\mathrm{S}$ waves defined by

$c_{L}=\sqrt{\frac{\lambda+2\mu}{\rho}}$, $c_{T}=\sqrt{\frac{\mu}{\rho}}$,

$\delta_{\dot{|}j}$ is Kronecker’s delta and $f_{+}=(|f|+f)/2$ .

2.2 Plane wave expansions of the kernels
The most important ingredient in the proposed fast method of solving integral equations in time domain is the plane
wave expansion of the fundamental solution $\Gamma$ . To obtain one, we use amore concise expression for $\Gamma$ than the one in
(4). Namely, we use

$\Gamma_{j}.\cdot(x,t)=\frac{1}{\rho}[\partial.\cdot\partial_{j}\int\int\frac{\delta(t-|x|/c_{L})}{4\pi|x|}dtdt+e_{\dot{\mu}k}e_{q\mathrm{j}k}\partial_{p}\partial_{q}\int\int\frac{\delta(t-|x|/c_{T})}{4\pi|x|}dtdt]$ (6)

where eXjk is the alternating symbol. From this expression, we see that the plane wave expansion of $\Gamma$ is obtained
from asimilar expansion for the function

$\Lambda_{\dot{|}j}(x,t;c)=\partial_{\dot{1}}\partial \mathrm{j}\int\int\frac{\delta(t-|x|/c)}{4\pi|x|}dtdt$,

where $c$ is apositive constant.
In order to expand $\Lambda_{\dot{\iota}j}$ into plane waves, we start fiom the Fourier transform of Awith respect to space and time:

$\frac{\xi.\xi_{\mathrm{j}}}{\omega^{2}(|\xi|^{2}-\omega^{2}/c^{2})}$

.
(7)

where $\xi$:and $\omega$ me the spatial and time Fourier parameters. In the inverse transform of (7) we use the $\mathrm{w}\mathrm{e}\mathrm{U}$-known lim-
iting absorption principle which states that acausal (anti-causal) Fourier inverse transform (see (8) for the definition)
is obtained as one takes the $\omega$ integral on the real axis as the limit from the Imu $>0$ (Imu $<0$) side in the complex
plane. Therefore the integral

$\lim_{{\rm Im}\omegaarrow\pm 0}\frac{1}{(2\pi)^{4}}\int\int\int\int\frac{\xi_{\dot{1}}\xi_{j}e^{\dot{|}\xi\cdot x-idt}}{\omega^{2}(|\xi|^{2}-\{v^{2}/c^{2})}d\xi_{1}d\xi_{2}d\xi_{3}\mathrm{d}v$ (8)

gives $\Lambda_{\dot{|}j}(x,t;c)$ if one takes the upper limit in (8) while the same integral will be equal to

$\Lambda_{j}’.\cdot(x,t;c)=\partial_{\dot{1}}\partial_{\dot{g}}\int\int\frac{\delta(t+|x|/c)}{4\pi|x|}dtdt$

if the other limit is taken.
We now rewrite the integral in (8) into the following form:

$\lim_{{\rm Im}\omegaarrow\pm 0}\frac{1}{(2\pi)^{4}}\int\int\int\int\frac{\xi_{\dot{1}}\xi_{j}e\xi\cdot x-udt}{\omega^{2}(|\xi|^{2}-\omega^{2}/c^{2})}.\cdot d\xi_{1}d\xi_{2}\tilde{d}\xi_{3}\mathrm{d}v$

$=$ $\mp\frac{t}{8\pi}\partial_{\dot{1}}\partial_{j}\frac{1}{|x|}+\frac{1}{(2\pi)^{4}}\lim_{\mathrm{I}\mathrm{m}\mathrm{t}darrow\pm 0}\not\in$ $\int\int\int\frac{\xi_{\dot{1}}\xi_{j}e^{\dot{l}\xi\cdot x-\dot{u}dt}}{\omega^{2}(|\xi|^{2}-\omega^{2}/c^{2})}d\xi_{1}d\xi_{2}\ \mathrm{d}v$ , (9)
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where the sign of integration with asuperimposed $=\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}$ that the integral is taken in the sense of the finite part.
We next assume $x_{3}>0$ to evaluate the 2nd term on the RHS of (9), denoted by I, in the following form:

$I= \frac{1}{2(2\pi)^{3}}\lim_{{\rm Im}\omegaarrow\pm 0}\not\in$ $\int\int\frac{\xi_{i}\xi_{j}e^{i(\xi_{1}x_{1}+\xi_{2}x_{2})-\sqrt{\xi_{1}^{2}+\xi_{2}^{2}-\omega^{2}/c^{2}}x_{3}-i\omega t}}{\omega^{2}\sqrt{\xi_{1}^{2}+\xi_{2}^{2}-\omega^{2}/c^{2}}}d\xi_{1}d\xi_{2}d\omega$

where we now have

$\xi_{3}=i\sqrt{\xi_{1}^{2}+\xi_{2}^{2}-\omega^{2}/c^{2}}$ .

Using the change of variables given by

$\xi_{1}=R\cos\phi$ , $\xi_{2}=R\sin\phi$ ,

we have

$I= \frac{1}{2(2\pi)^{3}}\not\in$ $\int_{0}^{\infty}\int_{0}^{2\pi}\lim_{{\rm Im}\omegaarrow\pm 0}\frac{\xi_{i}\xi_{j}e^{\dot{l}(\xi_{1}x_{1}+\xi_{2}x_{2})-\sqrt{R^{2}-\{v^{2}/c^{2}}x_{3}-\dot{l}1dt}}{\omega^{2}\sqrt{R^{2}-\omega^{2}/c^{2}}}RdRd\phi d\omega$ . (10)

Splitting the domain of the $R$ integration into subdomains $|R|$ $>|\omega|/c$ and $|R|$ $<|\omega|/c$ and using some changes of
the variables we obtain

$\lim_{{\rm Im}\omegaarrow\pm 0}\frac{1}{(2\pi)^{4}}\int\int\int\int\frac{\xi_{\dot{l}}\xi_{j}e^{\dot{\iota}\xi\cdot x-\iota\omega t}}{\omega^{2}(|\xi|^{2}-\omega^{2}/c^{2})}d\xi_{1}d\xi_{2}d\xi_{3}d\omega$

$=$ $\mp\frac{t}{8\pi}\partial_{i}\partial_{j}\frac{1}{|x|}\mp\frac{\partial_{t}}{2(2\pi)^{2}c^{3}}\int_{S_{k}\cap\{k_{3}0\}}>k_{i}k_{j}\delta(t-x_{l}k_{l}/c)dS_{k}<$

$+ \frac{1}{2(2\pi)^{3}c^{3}}\not\in$ $\int_{1}^{\infty}\int_{0}^{2\pi}.\frac{|\omega|\eta_{i}\eta_{j}e^{i(\eta_{1}x_{1}+\eta_{2}x_{2})-\cup\sqrt{\rho^{2}-1}x_{3}-\dot{|}\omega t}\overline{\mathrm{c}}\mathrm{c}}{\sqrt{\rho^{2}-1}}.\rho d\rho d\phi d(l[]$ (11)

where $k$ is aunit vector and $s_{k}$ is the unit sphere in $\mathbb{R}^{3}$ . Since the last integral on the RHS is common to both
approaches of $\omega$ in the complex plane, we take the difference between these limits in (11) to have

$\Lambda_{ij}(x, t;c)-\Lambda_{\dot{|}j}’(x, t;c)=-\frac{t}{4\pi}\partial_{tj}\partial\frac{1}{|x|}-\frac{\partial_{t}}{8\pi^{2}d}\int_{S_{k}}kikj\delta(t-x \cdot k/c)dS_{k}$ . (12)

This result holds true for negative $x_{3}$ also. Substituting (12) into (6) we obtain the plane wave expansion for the
fundamental solution given by

$\Gamma_{\dot{|}j}(x, t)-\Gamma_{j}’.\cdot(x, t)=-\frac{\partial_{t}}{8\pi^{2}}\int_{S_{k}}[\frac{k_{\iota}k_{j}}{\rho c_{L}^{3}}\delta(t-x\cdot k/c_{L})+\frac{k_{p}k_{q}e_{\mu k}e_{qjk}}{\mu_{T}^{3}}\delta(t-x\cdot k/c_{T})]dS_{k}$. (13)

In this expression the function $\Gamma’$ stands for the ‘ghost’, or the anti-causal fundamental solution given by

$\Gamma_{\dot{l}j}’(x, t)=\frac{1}{\rho}(\Lambda_{ij}’(x, t;c_{L})+e_{pk}:e_{qjk}\Lambda_{pq}’(x,t;c_{T}))$ .

This function satisfies $\Gamma’(\cdot, t)=0$ for $t>0$, or, is ‘anti-causal’.
Eq.(13) gives the plane wave expansion for $\Gamma$ . One also obtains the plane wave expansion for the double layer

kernel $T$ as one substitutes (13) into (5).
Notice that the non-integral term (the first term on the RHS) in (12) vanishes as one substitutes (12) into (13).

In other words, both $\mathrm{P}$ and $\mathrm{S}$ wave components in (13) (the integrals of the 1st and 2nd terms in the integrand,
respectively) include non-causal terms in addition to causal $\Lambda_{cj}$ and anti-causal $\Lambda_{ij}’$ and these non-causal terms cancel
with each other. This means that the $\mathrm{P}(\mathrm{S})$ wave component in (13) does not vanish before the arrival of $\mathrm{P}(\mathrm{S})$ wave,
even after the ghost vanishes. One therefore has to evaluate both $\mathrm{P}$ and $\mathrm{S}$ wave components in (13) together even in
situations where the physics tells that only the $\mathrm{P}$ wave should be present
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2.3 Evaluation of potentials with the plane wave expansion

We now describe aPWTD algorithm to evaluate potentials in the time domain elastodynamics using the expansion in
(13).

Let $S_{s}$ and $S_{o}$ be disjoint spherical domains with radius of $R$ centred at $s$ and $0$, respectively. The distance between
$s$ and $0$, or $|\mathit{0}-s|$ , will be denoted by $R_{c}(>2R)$ . Also, assume that $S_{s}$ includes apart of $S$ denoted by S.. We are
now interested in evaluating the single and double layer potentials produced by densities $t$ and $u$ on S. $\mathrm{x}(0,t]$ and
observed at $(x,t)(x\in s_{o}, t\in(0,\infty))$ .

Eq.(13) shows that the plane wave expansion for the fundamental solution includes anon-physical ghost. In
utilising this expansion we have to develop an approach which guarantees that the ghost does not pollute the solution.
In order to obtain such an approach, we follow the developments of Ergin et al. [5] to write the density functions $u$

and $t$ as sums of functions $u^{z}$ and $t^{z}$ $(z=1, 2, \ldots)$ , which have supports in the finite interval $(T_{1}^{z},T_{2}^{z}]$ :

$u= \sum_{z}u^{z}$
, $t= \sum_{z}t^{z}$

.

Since we are interested in aPPlying the plane wave expansion in the evaluation of the the part of integrals in the
discretised integral equation in (3) which represent the effect from the past, we may assume that the integrals including
$u^{z}$ and $t^{z}$ are evaluated only for $t>T_{2}^{z}$ . As one sees from Fig. 1the signal from $s_{s}\mathrm{x}(T_{1}^{z},T_{2}^{z}]$ reaches $S_{o}$ after
$t=T_{2}^{z}$ if

$R_{c}-2R\geq c_{L}(T_{2}^{z}-T_{1}^{z})$ (14)

holds. One also sees that the ghost will never pollute the solution if the condition in (14) is satisfied since the ghost
will vanish before the arrival of the signal.

$x$

Fig. 1Signal and ghost

If the condition in (14) is satisfied, one can evaluate potential functions in elastodynamics for $(xx, t)(x\in S_{o},t>$

T22) and known densities $t^{z}$ and $u^{z}$ in (S. $\mathrm{x}$ $(T_{1}^{z},T_{2}^{z}])$ via

$\int_{S}$. $(T_{\dot{l}j}(x, y,t)*u_{j}^{z}(y, t)-\Gamma_{\dot{|}j}(x-y,t)*t_{j}^{z}(y,t))dS_{y}$

$=$ $- \frac{\partial_{t}}{8\pi^{2}}\int_{S_{k}}[k_{\dot{*}}\delta(t- (xx -s)\cdot k/c_{L})*\mathcal{O}^{z}(s, t, k)+e_{p’ k}k_{p}\delta(t-(xx -s)\cdot k/c_{T})*\mathcal{O}_{k}^{z}(s,t,k)]dS_{k}(15)$

where the functions $O^{z}$ and $O_{k}^{z}(k=1,2,3)$ , called outgoing rays, are defined by

$\mathcal{O}^{z}(s,t, k)$

$=$ $\int_{S}$. $( \frac{C_{jlnm}n_{\mathrm{t}}k_{m}k_{n}}{\mu_{L}^{4}}\dot{u}_{j}^{z}(y,t-(s-y)\cdot k/c_{L})-\frac{k_{j}}{\rho d_{L}}t_{j}^{z}(y,t-(s-y)\cdot k/c_{L}))dS_{y}$, (16a)
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$\mathcal{O}_{k}^{z}(s, t, k)$

$=$ $\int_{S}$. $( \frac{C_{jlnm}n_{l}e_{qmk}k_{q}k_{n}}{\rho c_{T}^{4}}\dot{u}_{j}^{z}(y,t-(s-y)\cdot k/c_{T})-\frac{e_{q\mathrm{j}k}k_{q}}{\rho c_{T}^{3}}t_{j}^{z}(y, t-(s-y)\cdot k/c_{T}))dS_{y}$ . (16b)

The outgoing rays are considered to be the time domain counterparts of the multipole moments in the Fast Multipole
Method (FMM). Notice that the elastodynamic potential functions are now expressed in terms of 4components (one
from $O$ and three from $\mathcal{O}_{k}$ ) of the outgoing rays. The same property has been observed in elastostatics as well as in
elastodynamics in frequency domain [2].

For $(x, t)(x\in S_{o},t>T_{2}^{z})$ one can further rewrite (15) into

$\int_{S}$. $(T_{ij}(x, y, t)*u_{j}^{z}(y,t)-\Gamma_{ij}(x-y, t)*t_{j}^{z}(y, t))dS_{y}$

$=$ $- \frac{1}{8\pi^{2}}\int_{S_{k}}[k_{i}\delta(t-(x-\mathit{0})\cdot k/c_{L})*\mathrm{I}^{z}(\mathit{0}, t, k)+e_{pik}k_{p}\delta(t-(x-\mathit{0})\cdot k/c_{T})*\mathrm{I}_{k}^{z}(\mathit{0},t, k)]dS_{k}(17)$

where the functions $\mathrm{I}^{z}$ and Ij $(k=1,2, 3)$, called the incoming rays, are defined by

$\mathrm{I}^{z}\mathrm{S}\mathrm{o},\mathrm{t}k)$ $=$ $\mathcal{T}(\mathit{0}-s, t, k;c_{L})*O^{z}(s, t, k)$ , (18a)
$\mathrm{I}_{k}^{z}(\mathit{0}, t, k)$ $=$ $\mathcal{T}(\mathit{0}-s, t, k;c\tau)*\mathcal{O}_{k}^{z}(s,t, k)$ . (18b)

and
$\mathcal{T}(\mathit{0}-s,t, k;c)=\partial_{t}\delta(t-(\mathit{0}-s) \cdot k/c)$ .

The incoming rays are conceptually similar to the coefficients of the local expansion in FMM. Also, the expansion in
(17) and the relations in (18) are considered to be the time domain counterparts of the local expansion and the $\mathrm{M}2\mathrm{L}$

relation in the original FMM.
Finally one sums up the contributions from the $z\mathrm{t}\mathrm{h}$ time intervals given by (17) to compute the elastic potential

due to $u$ and $t$ defined in $S_{*}\mathrm{x}(0, t]$ and observed at $x\in So,t>T_{2}^{z}$ by

$\int_{S_{\mathrm{s}}}(T_{ij}(x, y, t)*u_{j}(y, t)-\Gamma_{ij}(x-y,t)*t_{j}(y,t))dS_{y}=-\sum_{v=1}^{z}\frac{1}{8\pi^{2}}$

$\mathrm{x}$ $\int_{S_{k}}[k_{i}\delta(t-(x-\mathit{0})\cdot k/c_{L})*\mathrm{I}^{v}(\mathit{0}, t, k)+e_{\mu k}k_{p}\delta(t-(x-\mathit{0})\cdot k/c_{T})*\mathrm{I}_{k}^{v}(\mathit{0}, t, k)]dS_{k}$ . (19)

3 PWTD Algorithm for elastodynamics
In this section we shall describe amulti-level PWTD algorithm for elastodynamics in $3\mathrm{D}$ using an $\mathrm{o}\mathrm{c}\mathrm{t}$-tree structure
of the boundary elements and the plane wave expansion of the potentials. We shall also discuss the complexity of the
algorithm.

3.1 Computation of the outgoing rays
We now describe how we evaluate the outgoing rays in (16) using the notation $\varphi(t)$ for either of the density functions
$u$ or $t$ .

We first discuss how we panition $\varphi$ into the sum of $\varphi^{z}$ which is nonzero only in $(T_{1}^{z},T_{2}^{z}]$ . We assume that $\varphi$ is
very smooth, or is band limited by $\omega_{\max}$ . The time increment At is then chosen as $\Delta t=\pi/\omega_{f}$ with $\omega_{f}=\chi_{1}\omega_{\max}$ ,
where $\chi_{1}(>1)$ stands for the over sampling ratio. As Ergin et al. suggest [5], we interpolate $\varphi$ using an approximately
time and band limited base function $\psi(t)$ as

$\varphi(t)\simeq\sum_{\alpha}\varphi(\alpha\Delta t)\psi(t-\alpha\Delta t)$ (20)

and group consecutive $M$ terms together to define

$\varphi^{z}(t)=\sum_{\alpha=(z-1)M+1}^{zM}\varphi(\alpha\Delta t)\psi(t-\alpha\Delta t)$ . (21)
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We thus split $\varphi$ into asum of approximately time and band limited functions $\varphi^{z}$ with the help of $M$ samples of $\varphi$ . For
the present purpose, Ergin et al. [5] suggest to use the following function for $\psi$ :

$\psi(t)=\frac{\omega_{0}}{\omega_{f}}\frac{\sin(\omega_{0}t)}{aJ_{0}t}\frac{\sin(\Omega p_{t}\Delta t\sqrt{(t/p_{t}\Delta t)^{2}-1})}{\sinh(\Omega p_{t}\Delta t)\sqrt{(t/p_{t}\Delta t)^{2}-1}}$ (22)

where $\omega_{0}=\omega_{\max}(\chi_{1}+1)/2$ , $\Omega=\omega_{\max}(\chi_{1}-1)/2$, and $p_{t}>0$ is an integer. In (22) we interpret $\sqrt{(t/pt\Delta t)^{2}-1}=$

$i\sqrt{1-(t}/p_{t}\Delta t)^{2}$ when $t<p_{t}\Delta t$ . It is seen that $\psi$ is band limited by $\omega f$ and almost vanishes for $|t|>p\iota^{\Delta t}[5]$ .
Hence, $\varphi^{z}$ is certainly band limited and approximately time limited. Since one has

$T_{1}^{z}=((z-1)M+1-p_{t})\Delta t$ , $T_{2}^{z}=(zM+p_{t})\Delta t$ (23)

from (21), one sees that the condition in (14) is satisfied if one sets $M$ so that

$M \leq\frac{R_{\mathrm{c}}-2R}{c_{L}\Delta t}-2p_{l}+1$ (24)

holds. The parameter $p_{t}$ is selected appropriately considering the accuracy and efficiency of the analysis. One may
generally say that alarge $p_{t}$ will be desirable fiom the point of view of the accuracy of (20), while taking $Pt$ too large
will make $M$ in (24) small or even negative, thus making the analysis inefficient.

With $\varphi^{z}$ thus constructed, one may use anumerical quadrature on boundary elements and the definition in (16) to
compute the outgoing rays produced by densities on S.. The time derivative for $u^{z}$ included in (16) may easily be
obtained with the help of FFT.

In the sequel, we shall call the time interval $((z-1)M\Delta t, zM\Delta t](z=1,2, \ldots)$ the zth time interval. Notice that
this time interval is included in $(T_{1}^{z},T_{2}^{z}]$ as one can see in Fig. 2.

$\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{s}\dot{|}\mathrm{t}y\varphi$

Fig. 2Decomposition of adensity $\varphi$ to $\varphi^{z}$

3.2 Discretisation of integrals on the unit sphere

In the numerical analysis the integral on the unit sphere $s_{k}$ in (17) has to be evaluated with acertain numerical
integration. It is obviously necessary to select an appropriate set of $k\mathrm{s}$ as the integration points. Areasonable choice
is obtained as one considers the process of computing the outgoing and incoming rays.

We remember that the densities $u^{z}(t)$ and $t^{z}(t)$ are band-limited to $\omega f$ , so that the wavenumber of the densities
is estimated to be $\omega_{f}/c$ at the largest, where $c$ is the velocity of the relevant wave. Therefore the outgoing rays from
sources distributed in the source sphere $S_{s}$ , which has radius of $R$, will be represented by spherical harmonics of the
order of

$K= \frac{2R\omega_{f}\chi_{2}’}{c_{T}}$ . (25)

$(\mathrm{c}\mathrm{f}c\iota >c_{T})$ . The integral on the RHS of (19) is now approximated as

$\int_{S}$. $(T_{\dot{|}\mathrm{j}}(x,y,t)*u_{j}^{z}(y,t)-\Gamma_{\dot{|}j}(x-y,t)*t_{\mathrm{j}}^{z}(y,t))dS_{y}$
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$\simeq$ $- \frac{1}{8\pi^{2}}\sum_{p=0}^{K}\sum_{q=-K}^{K}w_{pq}[(k_{pq})_{i}\delta(t-(x-\mathit{0})\cdot k_{pq}/c_{L})*\mathcal{T}(\mathit{0}-s, t, k_{pq};c_{L})*\mathcal{O}^{z}(s, t, k_{pq})$

$+e_{jik}(k_{pq})_{j}\delta(t-(x-0)\cdot k_{pq}/c_{T})*\mathcal{T}(\mathit{0}-s, t, k_{pq};c_{T})*\mathcal{O}_{k}^{z}(s, t, k_{pq})]$

$=$ $- \frac{1}{8\pi^{2}}\sum_{p=0}^{K}\sum_{q=-K}^{K}w_{pq}[(k_{pq})_{i}\delta(t-(x-\mathit{0})\cdot k_{pq}/c_{L})*\mathrm{I}^{z}(\mathit{0}, t, k_{pq})$

$+ejik(k_{pq})_{j}\delta(t-(x-0)\cdot k_{pq}/c_{T})*\mathrm{I}_{k}^{z}(s, t, k_{pq})]$

(26)

(27)

where $k_{pq}$ , $w_{pq}$ , $\theta_{p}$ and $\phi_{q}$ $(p=0, \ldots, K, q=-K, \ldots, K)$ are defined by

$k_{pq}$ $=$ $\sin\theta_{p}\cos\phi_{q}i_{1}+\sin\theta_{p}\sin\phi_{q}:_{2}+\cos\theta_{p}:_{3}$ , (28a)

$w_{pq}$ $=$ $\frac{4\pi\sin^{2}\theta_{p}}{(2K+1)[(K+1)P_{K}(\cos\theta_{p})]^{2}}$ , (28b)

$\theta_{p}$ $=$ $(p+1)$ th root of equation $P_{K+1}(\cos\theta)=0$ , (28c)

$\phi_{q}$ $=$ $\frac{2\pi q}{2K+1}$ $(28\mathrm{d})$

in terms of the orthonormal base vectors :for the cartesian coordinate axis.

3.3 Description of the algorithm
To solve the BIE given by (3), we have to evaluate elastic potentials with known densities. In fast algorithms of the
multi-level FMM tyPe to evaluate these potentials at apoint $x$ , we split the boundary into two parts: i.e. the part
$s_{f}^{(l)}(xx)$ which is far from $xx$ and $S_{n}^{(\mathrm{t})}(x)=S$ $\backslash S_{f}^{(l)}(x)$ which is close to $x$ . The contributions to the potentials from
$S_{f}^{(\mathrm{t})}(x)$ is computed with the help of the plane wave expansion, while the evaluation of the contributions from $S_{n}^{(l)}(x)$

is passed to $l+1\mathrm{t}\mathrm{h}$ level. At the deepest level (largest $l$ ), we compute the contributions from $S_{n}^{(l)}(x)$ directly using the
conventional methods.

To describe this algorithm more precisely, we have to define what we mean by the words ‘far’ and ‘level’. We first
discretise the boundary integral equation (3) using boundary elements having $N_{s}$ spatial degrees of freedom and $N_{t}$

time intervals of the length At. For definiteness, we assume the boundary elements to be piecewise constant and the
time base functions to be piecewise linear, although these assumptions are not essential.

We next construct the $\mathrm{o}\mathrm{c}\mathrm{t}$-tree structure of boundary elements in the following manner. We first take acube which
includes the domain $D$ . This cube is called the cell of the level 0. This cube is subdivided into 8equal sub-cubes,
of which those containing boundary elements are called cells of the level 1. We repeat this subdivision until the cell
contains less than afixed number (denoted by $N_{cell}$ ) of boundary elements. Acell without children is called aleaf,
and the level number of the deepest cell is denoted by $l_{\max}$ .

We say two cells $C$ and $C’$ of the level $l$ to be close if

$|C_{\dot{l}}-C’.\cdot|<(\beta+1)L^{(l)}$ $i=1,2$ , 3 (29)

holds, where $c_{\dot{l}}$ and $C_{\dot{1}}’$ are the coordinates of the centroids of $C$ and $C’$ , $\beta$ is anatural number and $L^{(l)}$ is the edge
length of the level $l$ cell. With this definition, the set $S_{n}^{(l)}(x)$ is defined to be the union of level $l$ cells $C’$ which is
close to $C$ if $x\in C$ . The cells $C’$ of the level $l$ which are not close to $C$ are said to be far from $C$ . In Fig.3 we have
indicated cells close to the cell $C$ when $\beta$ is equal to 1. In the rest of this paper we shall assume that $\beta=1$ .

In the evaluation of elastic potentials at apoint $x$ in alevel $l$ cell $C$, we shall use the plane wave expansion when
we compute the effects from boundary elements included in alevel $l$ cell $C’$ which is far from $C$ . The contributions
from far cells are evaluated in the form of the incoming rays associated with $C$ .

To compute contributions from cells far from $C$ , we have to determine, for each level 1, numbers $R^{(\mathrm{t})}$ , $R_{\mathrm{c}}^{(l)}$ , $T_{1}^{z^{(1)}}$ ,
$T_{2}^{z^{(1)}}$ and $M^{(l)}$ which satisfy (14) and (24), where the superposed (/) indicates that the associated quantity is for level
$l$ cells. It is considered natural to set

$R^{(l)}= \frac{\sqrt{3}L^{(l)}}{2}$ , $R_{c}^{(l)}=2L^{(l)}$ ,

except in (14), whose LHS can be put equal to $\beta L^{(l)}(=L^{(l)})$, since it is sufficient to set the LHS of (14) as the
minimum distance between $S_{o}$ and $S_{s}$ . Accordingly, one puts $M^{(l)}$ , $T_{1}^{z^{(l)}}$ and $T_{2}^{z^{(\mathrm{t})}}$ to be

$M^{(l_{\max})}$
$=$ $\frac{L^{(\mathrm{t}_{\max})}}{c_{L}\Delta t}-2p_{t}+1$ ,
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$\beta=1$

Fig. 3Near cells for acell $C$

$M^{(\mathrm{t})}$

$=$ $2M^{(l+1)}$ , $(l<l_{\max})$

$T_{1}^{z^{(\downarrow)}}$

$=$ $((z^{(l)}-1)M^{(l)}+1-p_{t})\Delta t$ ,
$T_{2}^{z^{(I)}}$ $=$ $(z^{(l)}M^{(l)}+p_{\mathrm{C}})\Delta t$

where the constant $pt$ is taken independent of the level. Also we use (25) to have

$K^{(l)}= \frac{2R^{(l)}\omega_{f}\chi_{2}’}{c_{T}}(=\frac{\sqrt{3}L^{(l)}\omega_{f}\chi_{2}’}{c_{T}})$ , (30)

which implies the following relation:

$K^{(l)}=2K^{(l+1)}$ .
Also, from (28) we have

$k_{\mathrm{p}q}^{(l)}$ $=$ $\sin\theta_{p}^{(\mathrm{t})}\omega \mathrm{s}\phi^{(l)}q:1+\sin\theta_{\mathrm{P}}^{(l)}\sin\phi_{q}^{(l)}:_{2}+\cos\theta_{p}^{(l)}:_{3}$ , (31a)

$w_{\mathrm{N}}^{(l)}$ $=$
$\frac{4\pi\sin^{2}\theta_{p}^{(l)}}{(2K^{(l)}+1)[(K^{(l)}+1)P_{K\mathrm{t}}\mathrm{t})(\cos\theta_{p}^{(l)})]^{2}}$, (31b)

$\theta_{p}^{(l)}$ $=$ $(p+1)$ th root of equation $P_{K^{(2)}}\dagger 1(\cos\theta)=0$, (31c)

$\phi_{q}^{(l)}$ $=$ $\frac{2\pi q}{2K^{(l)}+1}$ . $(31\mathrm{d})$

We now describe the algorithm to solve (3) using the plane wave expansion and an iterative solver.
1. Initial guess

Let the current time be $t_{\alpha}=\alpha\Delta t$ $(\alpha=1, 2, \ldots, N_{t})$ and all the boundary displacements and tractions in the
past, i.e. $u(\cdot,t_{\alpha’})$ and $t(\cdot,t_{\alpha’})$ for $t_{\alpha’}(\alpha’=1, \ldots,\alpha-1)$, are known.
We then provide initial guesses to the unknown parts of $u(\cdot,t_{\alpha})$ and $t(\cdot$ , $t_{\alpha})$ arbitrarily. Giving the values for
the same quantities at $t_{\alpha-1}$ would be areasonable choice.

2. Evaluation of potentials due to sources on $S\mathrm{x}(0, t_{\alpha}]$

As the density functions on $S\mathrm{x}(0,t_{\alpha}]$ are given, the potentials in (3) for each collocation point $x$ due to sources
on $S\mathrm{x}(0,t_{\alpha}]$ are divided into contributions from the near part $S_{||}^{(l)}(x)\mathrm{x}(0,t_{\alpha}]$ and far part $S_{f}^{(l)}(x)\mathrm{x}(0,t_{\alpha}]$ .

$2\mathrm{a}$ . Conhibutions from the near part $S_{n}^{(\mathrm{t})}(x)\mathrm{x}(0,t_{\alpha}]$

For each cell (denoted by $C$) of the level $l(l\geq 2)$, use the conventional direct integration to compute contri-
butions to the elastic potentials at the collocation points $(x, t_{\alpha})(x\in C)$ from densities $u(\cdot, t_{\alpha’})$ and $\mathrm{t}$ ( $-$ , ta)
$(\alpha’=1, \ldots, \alpha)$ distributed in a neighbouring cell $C’$ of the level $l$ (including $C$ itself) if either $C$ or $C’$ is aleaf
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$2\mathrm{b}$ . Contributions from the far part $S_{f}^{(\mathrm{t})}(x)\mathrm{x}(0, t_{\alpha}]$

Let $l$ be the level of the leaf containing $x$ . We note the following: for alevel $l$ cell, the time $t_{\alpha}$ belongs to the
$z_{\alpha}^{(l)}\mathrm{t}\mathrm{h}$ time interval, where $z_{\alpha}^{(l)}=\lfloor\alpha/M^{(l)}\rfloor$ and $\lfloor\cdot\rfloor$ stands for the ‘floor’ operation. At $t_{\alpha}$ the outgoing rays
$\mathrm{o}^{z^{(l)}}$ (in the rest of this paper we shall use acollective notation $0^{z^{(l)}}$ for ( $\mathcal{O}^{z^{(\mathrm{t})}}$ , $\mathcal{O}_{i}^{z^{(l)}}$ )) and the incoming rays

$\mathrm{I}^{z^{(1)}}$ corresponding to $z^{(l)}=1,2$ , $\ldots$ , $z_{\alpha}^{(\mathrm{t})}-1$ are all known (see the procedure in $4\mathrm{b}$ below). The incoming rays
$\mathrm{I}^{z^{(l)}}$ determine the layer potentials due to densities $u^{z^{(l)}}$ and $t^{z^{(l)}}$ distributed in $S_{f}^{(l)}(x)\mathrm{x}(T_{1}^{z^{(l)}}, T_{2}^{z^{(l)}}]$ via (27),
which we have had already computed in step $4\mathrm{b}$. Namely, at the collocation point $(x, t_{\alpha})$ the layer potentials
due to densities $\sum_{z^{(l)}=1}^{z_{\alpha}^{(l)}-1}u^{z^{(\mathrm{t})}}$ and $\sum_{z^{(l)}=1}^{z_{\alpha}^{(l)}-1}t^{z^{(l)}}$ on $S_{*}\mathrm{x}(0, T_{2}^{z_{\alpha}^{(l)}-1}]$ have been computed and stored. One just
recalls the values thus stored. We note that the potentials due to densities distributed on $S_{f}^{(\mathrm{t})}(x)\mathrm{x}(T_{2}^{z_{\alpha}^{(l)}-1},t_{\alpha}]$

will not reach collocation points $(x,t_{\alpha})$ before $t=T_{2}^{z_{\alpha}^{(l)}}$ , and do not have to be taken into consideration. We
have thus evaluated potentials due to densities in $S_{f}^{(l)}(x)\mathrm{x}(0, t_{\alpha}]$ .

3. Determination of the current unknowns
We update the unknowns at $t=t_{\alpha}$ following the procedures of the iterative solver used and return to step 1
if the discretised version of the BIE in (3) is not satisfied to within an allowable error. Otherwise the assumed
values for the unknowns at $t=t_{\alpha}$ are adopted as the solution at ta. If $\alpha<N_{t}$ we go to step 4. Otherwise we
terminate the analysis.

4. Computation of outgoing rays and incoming rays
Compute the outgoing and incoming rays for $z_{\alpha}^{(l)}$ in the following manner:

$4\mathrm{a}$ . Computataion of the outgoing rays (upward)

Starting from leaves up to level 2cells we compute the outgoing rays $\mathit{0}^{z_{\alpha}^{(l)}}$ at the centroid of the cell for the
$z_{\alpha}^{(l)}\mathrm{t}\mathrm{h}$ time interval if and only if the current time step number $\alpha$ is amultiple of $M^{(l)}$ . To compute $\mathit{0}^{z_{\alpha}^{(l)}}$ we
use the definition in (16) if $C$ is aleaf. For non-leaf cells we add the outgoing rays of the child cells $\mathit{0}^{z_{\alpha}^{(\mathrm{t}+1)}-1}$

and $\mathit{0}^{z_{\alpha}^{(1+1)}}$ after shifting the centres of the expansion from those of the children $(s’)$ to that of $C(s)$ . Since
upper cells require more directions (k) than the lower ones because of (30), we have to increase the number
of directions as we go up the tree structure of cells. To cope with this requirement we use an operation called
‘interpolation’. See [5] for the detail.

$4\mathrm{b}$ . Computation of the incoming rays (downward)

Starting from level 2cells we compute the incoming rays for the current $(z_{\alpha}^{(\iota)}\mathrm{t}\mathrm{h})$ time interval at the centroids of
level $l$ cells if and only if the current time step number $\alpha$ is amultiple of $M^{(l)}$ , as in step $4\mathrm{a}$ . In this process we
define the incoming rays associated with alevel $l$ cell $C$ to be the sum of the incoming rays from all the level $l$

cells (denoted collectively by $C’$) which are not close to $C$ . Such $C’\mathrm{s}$ consist of level $l$ cells which are not close
to $C$ but whose parents are close to the parent of $C$ (interaction list) and those whose parents are not close to the
parent of $C$ . The contributions to $\mathrm{I}^{z_{\alpha}^{(l)}}$ from the former (cells in the interaction list of $C$) are evaluated via (18),
but in the frequency domain using asmoothed $\mathcal{T}$ (See [5]). On the other hand, the contributions ffom the latter
$C’\mathrm{s}$ are obtained as one shifts the incoming rays of the parent of $C(\mathrm{I}^{z_{\alpha}^{(l-1)}})$ from the centroid of the parent
$(\mathit{0}’)$ to that of $C(0)$ . Notice that the number of directions $k$ required for $C$ is less than that possessed by the
parent. Therefore one has to ‘anterpolate’ the incoming rays in the downward path of the algorithm [5]. When
$C$ is aleaf, one uses the incoming rays for $C$ thus obtained $(\mathrm{I}^{z_{\alpha}^{(l)}})$ and (27) to compute the elastic potentials for
$t>T_{2}^{z_{\alpha}^{(\mathrm{t})}}$ due to $u$ and $t$ in the past distributed in far cells. The computation is carried out in the ‘cast forward’
manner with respect to time, and stored. The results will be recalled in step $2\mathrm{b}$ later.

5. Update
Update $\alpha$ by $\alpha+1$ and go to step 1.

.4 Complexity of the algorithm
$t\mathrm{e}$ consider aseries of problems with increasing domain size solved with the same accuracy (i.e. the number of nodes
$\underline{\sim}\mathrm{r}$ wave length remains constant). Ergin et al. [5] estimated that the complexity of their PWTD algorithm for the
ave equation in $3\mathrm{D}$ applied to the series of problems of this tyPe is $O(N_{s}\log^{2}N_{s}N_{t})$ . Using the same argument as
1Ergin et al., one shows that the complexity of the part of the present algorithm using the plane wave expansion is
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identical with that of Ergin et al. One also shows that the direct computation part of the elastodynamic algorithm scales
as $O(N_{s}N_{t})$ in spite of the time integration included in the potential representation of the solution. This is because the
elastodynamic fundamental solution in $3\mathrm{D}$ vanishes after the time required for $\mathrm{S}$ waves generated at the collocation
point $x$ to sweep out the part of the boundary where the contribution to the potentials at $x$ is evaluated directly. One
therefore concludes that the overall complexity of the proposed approach is $O(N_{s}\log^{2}N_{s}N_{t})$ if one follows closely
the approach proposed by Ergin et al.

Ergin et al., however, assumes that they use fast method of evaluating the Legendre transform [6] in the interpola-
tion and anterpolation to establish their complexity estimate. Since our implementation uses the standard (sometimes

called.semi-fast algori thm [6] for this purpose, however, our algorithm cannot be faster than $O(N_{s}^{3/2}N_{t})$ . In prob-
lems of the size considered in this paper, it may not be obvious if the use of ’fast’ methods for the Legendre transform
actually improves the performance of the algorithm or not.

4Numerical analysis

4.1 Details of the present implementation
In the following examples we use GMRES without preconditioning as the iterative solver to obtain the solution of
discretised version of (3) in both fast and conventional BIEM. As the initial guess, we use zero for the first time step,
and the solutions at the previous time step for the rest of analysis

As has been seen, our implementation requires the following parameters: $N_{ce}\iota\iota$ :maximum number of boundary
elements in aleaf cell (see 3.3), $n$ :parameters related to the interpolation functions with respect to time(see (22)), $\chi 1$ :
over sampling rate, At: time increment which is related to the maximum frequency of the field quantities $\omega_{\max}$ by
$\omega_{\max}=\pi/(\chi_{1}\Delta t)$ and $\chi_{2}’$ :aparameter related to the number of directions $k$ (see (25)). The following choices of the
parameters are used in the examples given below: $\chi_{1}=3.0$ , $\chi_{2}’=0.2$ and $p_{t}=3$ . This choice for $\chi_{1}$ means that one
uses 6time nodes per the shortest of the expected periods. Also, we have used an appropriate non-dimensionalisation
to set $cL=1$ , $c\tau$ $=1/\sqrt{2}$ and $\rho=1$ . This means that the Poisson’s ration is equal to 0.

In the computation we have used Fujitsu $\mathrm{V}\mathrm{P}\mathrm{P}800/63$ with $7\mathrm{G}\mathrm{B}$ of the main memory. The code is not parallelised.

4.2 Numerical example

(32)

We consider as the domain $D$ parallelepiped having the line connecting (0, 0, 0) and $(X,\mathrm{Y}, Z)$ as the space diagonal.
In the initial boundary value problem considered, the initial displacement and velocity are assumed to vanish. As the
boundary condition we prescribe the traction computed fiom the following field:

$u(x,t)=d[1$ -Cos $\frac{2\pi}{\Lambda}(t-\frac{d\cdot x}{c_{L}})]$ ,

where $d$ is aunit vector and the function Cos is defined by

$\mathrm{C}\mathrm{o}\mathrm{s}x=\{$

$\infty \mathrm{s}x$ $0\leq x\leq 2\pi$

1 $x<0$ , $x>2\pi$
(33)

The function $u$ obviously represents aplane $\mathrm{P}$ wave propagating into the direction $d$. The solution to the problem
under consideration is obviously $u$ itself. We set $d=(0, 0, 1)$ , $\mathrm{A}=0.5$ , $Z=0.80$ and $N_{t}=2\alpha$]. For the parameters
$X$ and $\mathrm{Y}$ we consider the 10 cases listed in Table 1. This table also shows $N_{s}$ . See Fig. 4(this figure shows the case
10 in Table 1)for an example of the boundary discretisation. Other parameters are set as $\Delta t=0.\mathrm{O}1$ and $N_{ceu}=150$ .
The depth of the $\mathrm{o}\mathrm{c}\mathrm{t}$-tree $l_{\max}$ is equal to 2in case 2, 3in cases 2-9, and 4in case 10. We note that the choice $\chi_{2}’=0.2$

yields that the number $K^{(2)}$ to be 24 in cases 1-9 and 56 in case 10. The number of directions in level 2cells is then
given by $(K^{(2)}+1)(2K^{(2)}+1)$ .

Table 1 $X,\mathrm{Y}$, $Z$ and $N_{t}$
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Fig. 4Boundary element discretisation used in case 10 (78,480 DOF)

Fig. 5shows the CPU time(sec) vs the number of unknowns $N_{s}$ . This figure shows that the present method is
capable of carrying out elastodynamic analysis in time domain more efficiently than the conventional method in all the
examples considered. The fluctuation of the CPU time for small $N_{s}$ seems to be due to the condition of the computer,
which is shared by many users.

Because of the restriction of the memory it was not possible to solve cases 5-10 with the conventional BIEM.
If CPU time is not important, however, one may use the conventional method in larger problems by not storing all
the integration results, but by recalculating them when needed. In this way we could solve all the cases with the
conventional approach using adesktop computer (Alpha21264 (600[MHz]), $2[\mathrm{G}\mathrm{B}]$ of memory), and could compare
the results of the proposed and conventional approaches in all cases. It was found that the maximum error of the
boundary displacements (relative to the maximum boundary displacement $(=2)$) was about 3% in both proposed and
conventional methods.

We finally remark that the following url includes animations of other examples solved with the proposed method.

http: $//\mathrm{g}\mathrm{e}\mathrm{e}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{t}$.gee . $\mathrm{k}\mathrm{y}\mathrm{o}\mathrm{t}\mathrm{o}-\mathrm{u}.\mathrm{a}\mathrm{c}$ . $\mathrm{i}\mathrm{p}/\sim \mathrm{t}\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}/\mathrm{e}\mathrm{a}\mathrm{b}\mathrm{e}$ .html

5Conclusion
In this paper we could successfully extend the PWTD algorithm proposed for the wave equation by Ergin et al. [5] to
elastodynamics in $3\mathrm{D}$ . We could also show the effectiveness of the proposed approach in simple test problems of the
spatial size of $O(10^{4})$ .

Since the method is still in its incipient stage of developments we still need to refine the code so that it can be
applied to larger problems found in engineering applications. However, the fundamentals of the approach are now
established and the numerical results seem to be promising.
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