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Two essentially different mathematical approaches to define coherent
states of finite-dimensional Hilbert spaces are analyzed. Physical realizations
of the s0-called quantum scissors to generate the finite-dimensional states via
optical truncation are discussed including the linear-0ptical scheme of Pegg,
Phillips and Barnett [Phys. Rev. Lett. 81, 1604 (1998)] and nonlinear one of
Leonski and Tanas [Phys. Rev. A49, R20 (1994)]. Distinct properties of the
generated states are studied by applying adiscrete Wigner function.

I. INTRODUCTION

In 1931, Weyl’s formulation of quantum mechanics [1] opened apossibility of studying the
dynamics of quantum systems in finite-dimensional (FD) Hilbert spaces of operators which
are bounded and have adiscrete spectrum. In 1960, Schwinger [2], by generalizing Weyl’s
formulation, triggered anew interest to investigate harmonic-0scillator states defined in
FD Hilbert spaces including contributions of Radcliffe [3], Perelomov [4], Arecchi et al.
[5], Gilmore et al. $[6,7]$ , Santhanam et al. [8], and Glauber and Haake [9] to construct
analogs of the conventional optical coherent states $[10,11]$ . In the last decade, the interest
in the FD quantum-0ptical states has been stimulated by the progress in quantum-0ptical
state preparation and measurement techniques [12], in particular, by the development of the
discrete quantum-state tomography [13] and quantum information with optical qubits.

Various quantum-0ptical states were constructed in FD Hilbert spaces in analogy to those
in the infinite-dimensional (ID) spaces (for areview see [14]). In particular, special interest
has been paid to FD coherent states (CS) [15-19]. As was shown in [14], two kinds of
FD coherent states can be distinguished as corresponding to their generation by applying
different truncation schemes, referred to as the s0-called quantum scissors. One of them
is related to truncation of the photon-number expansion of the optical state as proposed
by Pegg, Phillips and Barnett (PPB) [20] and then generalized by others [21-23]. Thus,
we shall refer to these states as the $PPB$-truncated states. Alternatively, one can analyze
states obtained by adirect truncation of operators rather than that of their Fock expansion.
Such an operator-truncation scheme was proposed by Leonski and Tanas’ (LT) [24-27] (for
areview see [28] $)$ . Thus, the states generated by this scheme can be called the LT-truncate
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states. In order to describe essential differences between the PPB- and $\mathrm{L}\mathrm{T}$-truncated states,
we apply adiscrete Wigner function.

Wigner function is widely used in nonrelativistic quantum mechanics as an alternative to
the density matrix of quantum systems [29]. Although the original Wigner function applies
only to systems with continuous degrees of freedom, it can be generalized for finite-state sys-
tems as well [30]. Discrete Wigner function for $\mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}-\frac{1}{2}$ systems was introduced by O’Connell
and Wigner [31] and generalized for arbitrary spins by Wootters [32]. Wootters’ definition
takes the simplest form for prime-number-dimensional systems. Asimilar construction of a
discrete Wigner function for odd-dimensional systems was suggested by Cohendet et al. [33].
Anumber-phase discrete Wigner function, aspecial case of the Wootters definition, was
analyzed in detail by Vaccaro and Pegg [34]i Another definition of Wigner function (for odd
dimensions equivalent to that of Wootters) was proposed by Leonhardt [13]. The Wigner
function approach to FD systems can be developed from basic principles as was shown,
for example, by Hannay and Berry [36], Wootters [32], Leonhardt [13], Luks and Pefinova
[35], or Luis and Pefina [37]. Discrete Wigner function has successfully been applied to
quantum-state tomography of FD systems [13].

In Sect. $\mathrm{I}\mathrm{I}$ , we present formal approaches to study states and their Wigner-function
representation for finite-dimensional Hilbert spaces. In Sect. III, we discuss physical im-
plementations of truncation schemes to generate FD coherent states and present Wigner
functions of the generated states.

II. FD OPTICAL STATES AND THEIR WIGNER REPRESENTATION

Finite (say, $s+1$ ) dimensional Hilbert space, denoted by $\mathcal{H}^{(s)}$ , can be spanned by number
states $\{|0\rangle, |1\rangle, \ldots, |s\rangle\}$ fulfilling the relations of completeness, $\hat{1}_{s}=\Sigma_{n=0}^{s}|n\rangle\langle$ $n|$ , and orthog-
onality, $\langle n|m\rangle=\delta_{n,m}$ , for $n$ , $m=0$ , $\ldots$ , $s$ . Here, $\hat{1}_{s}$ denotes the $(s+1)$-dimensional identity
operator. Arbitrary quantum-0ptical pure state in the FD Hilbert space can be defined by
its Fock expansion

$| \psi\lambda s)=\sum_{n=0}^{s}b_{n}^{(s)}\mathrm{e}^{\mathrm{i}\varphi_{\hslash}}|n\rangle$ , (1)

where $b_{n}^{(s)}$ are real superposition coefficients fulfilling the normalization condition $(s)\langle\psi|\psi\lambda s)=$

$\Sigma_{n=0}^{s}[b_{n}^{(s)}]^{2}=1$ . The FD annihilation and creation operators in $H^{(s)}$ are defined by

$\hat{a}_{s}=\sum_{n=1}^{s}\sqrt{n}|n-1\rangle\langle n|, \hat{a}_{s}^{1}=\sum_{n=1}^{s}\sqrt{n}|n\rangle\langle n-1|$ . (2)

The FD and ID annihilation operators act on anumber state in the same manner. However,
the actions of the creation operators on $|n\rangle$ are different in $H^{(s)}$ and $H^{(\infty)}$ . Equation (2)
implies that $(\hat{a}_{s}^{\uparrow})^{k}|n\rangle=0$ if $n+k>s$ . By contrast, the action of the ID creation operator (in
any power) on $|n\rangle$ gives always nonzero result. The commutation relation for the annihilation
and creation operators in $H^{(s)}$ reads as

$[\hat{a}_{s},\hat{a}_{s}^{\uparrow}]=1-(s+1)|s\rangle\langle s|$ , (3)
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which differs from the conventional boson canonical relation in $\mathcal{H}^{(\infty)}$ . Even double com-
mutators $[\hat{a}_{s}, [\hat{a}_{s},\hat{a}_{s}^{\uparrow}]]$ and $[\hat{a}_{s}^{\mathfrak{j}}, [\hat{a}_{s},\hat{a}_{s}]\dagger]$ do not vanish precluding the application of the Baker-
Hausdorff theorem. These properties of the FD annihilation and creation operators consid-
erably complicate analytical approaches to the quantum mechanics in $\mathcal{H}^{(s)}$ , including the
explicit construction of the FD harmonic oscillator states.

Instead of number-state representation, the FD Hilbert space can also be spanned the
phase states defined to be [38]:

$| \theta_{m}\rangle\equiv|\theta_{m}\rangle_{(s)}=\frac{1}{\sqrt{s+1}}\sum_{n=0}^{s}\exp(\mathrm{i}n\theta_{m})|n\rangle$ , (4)

where $\theta_{m}=\theta_{0}+\frac{2\pi}{s+1}m$ with $\theta_{0}$ being the initial reference phase and $m=0$ , $\ldots$ , $s$ . The phase
states, same as number states, form acomplete, $\hat{1}_{s}=\sum_{m=0}^{s}|\theta_{m}\rangle\langle$ $\theta_{m}|$ , and orthonormal,
$\langle\theta_{m}|\theta_{n}\rangle=\delta_{m,n}$ , basis. Thus, the FD optical states, given by (1), can alternatively be defined
by their phase-state expansion as $| \psi\rangle_{(s)}=\sum_{m=0}^{s}d_{m}^{(s)}\mathrm{e}^{\mathrm{i}\phi_{n}}|\theta_{m}\rangle$ with superposition coefficients
normalized to $\Sigma_{m=0}^{s}[d_{m}^{(s)}]^{2}=1$ . Formulas similar to Eqs. (2) and (3) were formulated for the
phase states too (for details see [15,14]).

The number-phase characteristic function in $\mathcal{H}^{(s)}$ can be defined as [13]

$C_{s}( \nu, \theta_{\mu})=\sum_{m=0}^{s}\exp(-\frac{4\pi \mathrm{i}}{s+1}\nu(m+\mu))\langle\theta_{m}|\hat{\rho}|\theta_{m+2\mu}\rangle$ (5)

in terms of the phase states (4), while the phase $\theta_{\mu}$ in l.h.s. is determined by $\theta_{0}$ and the index
$\mu$ in r.h.s. of (5). Adiscrete Fourier transform applied to $C_{s}(\nu, \theta_{\mu})$ leads to the following
discrete Wigner function (for brevity referred to as the $W$ function) for phase and number

$W_{s}(n, \theta_{m})=\frac{1}{(s+1)^{2}}\sum_{\nu=0}^{s}\sum_{\mu=0}^{s}\exp(\frac{4\pi \mathrm{i}}{s+1}(n\mu+\nu m))C_{s}(\nu, \theta_{\mu})$ (6)

or explicitly, as $[32,13]$

$W_{s}(n, \theta_{m})=\frac{1}{s+1}\sum_{\mu=0}^{s}\exp(\frac{4\pi \mathrm{i}}{s+1}n\mu)\langle\theta_{m-\mu}|\hat{\rho}|\theta_{m+\mu}\rangle$ . (7)

The Wigner function $W_{s}(n, \theta_{m})$ is periodic both in $n$ and $\theta_{m}$ :

$W_{s}(n, \theta_{m})=W_{s}(n\pm\{s+1\}, \theta_{m})=W_{s}(n, \theta_{m\pm(s+1)})=W_{s}(n, \theta_{m}\pm 2\pi)$ . (8)

Thus, it is represented graphically on torus $[18,14]$ . The Wigner function for any FD pure
state of the form (1) can be expressed as follows [34]

$W_{s}(n, \theta_{m})=\frac{1}{s+1}\{\sum_{k=0}^{M}b_{k}^{(s)}b_{M-k}^{(s)}\exp[\mathrm{i}(2k-M)\theta_{m}+\varphi_{M-k}-\varphi_{k}]$

$+ \sum_{k=M+1}^{s}b_{k}^{(s)}b_{M-k+s+1}^{(s)}\exp[\mathrm{i}(2k-\Lambda f -s-1)\theta_{m}+\varphi_{M-k+s+1}-\varphi_{k}]\}$ (9)

in terms of the decomposition coefficients $b_{k}^{(s)}$ and $M\equiv 2n\mathrm{m}\mathrm{o}\mathrm{d} (s+1)$ . The physical inter-
pretation of the Wigner functions is based on the fact that the marginal sum of their value
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over ageneralized line gives the probability of finding the system in agiven state $[32,13]$ .
In the ID Hilbert space, where the $W$ function arguments are continuous (quadratures $X$

and $\mathrm{Y}$ ), amarginal integral along any straight line $aX+b\mathrm{Y}+c=0$ is nonnegative and
can be considered to be the probability. Asimilar situation arises in the FD case; we can
define lines as sets of discrete points $(n, \theta_{m})$ , or equivalently $(n, m)$ , for which the relation
$(an+bm+c)\mathrm{m}\mathrm{o}\mathrm{d}N=0$ holds (here, $a$ , $b$ , $c$ are integers). Again, sums of the discrete $W$

function values on such sets are nonnegative. The mod $(s+1)$ relations are essential and
are connected to some periodic properties of the discrete $W$ function –the maximum value
of each argument ($m$ or $n$ ) is topologically followed by its minimum (zero in our case). This
means that the discrete $W$ function is defined on atorus (or more precisely on adiscrete set
of points of atorus). The “lines” are then points of closed toroidal spirals or, in aspecial
case, points of acircle. The periodic property is quite natural for the phase index $m$ , but
may seem strange for the photon number $n$ . Because of the discreteness of the arguments,
the $W$ function graph should be ahistogram. However, tw0-dimensional projections of such
th$\mathrm{r}\mathrm{e}\mathrm{e}$-dimensional histograms could be very confusing. Therefore, for better legibility of the
graphs, we have decided to depict them topographically. The darker is aregion, the higher
is the value of the $W$ function it represents. Moreover, negative values of the $W$ function
are marked by crosses. As mentioned above, the most natural way of presenting the dis-
state $W$ function graphs is to construct them on toruses. Afew simple examples of the
toroidal discrete Wigner functions are given in [14]. Unfortunately, this graphical represen-
tation is seldom transparent enough for its interpretation. In what follows we shall work
with tw0-dimensional graphs. Here, one should keep in mind that some consequences of the
periodicity in $n$ and $m$ can appear: for instance, some peaks can be located partially at the
outer boundary at $n\approx s$ (or $m\approx s$) and can “continue” near the center $n\approx \mathrm{O}$ (or $n\mathrm{i}\approx 0$).

III. GENERATION OF FD COHERENT STATES BY QUANTUM SCISSORS

Glauber coherent states in infinite-dimensional Hilbert space can be defined in various
equivalent ways $[10,7]$ , e.g., by the action of the displacement operator on vacuum state:

$|\alpha\rangle=\exp(\alpha\text{\^{a}}^{} -\alpha^{*}\hat{a})|0\rangle$ , (10)

where the annihilation and creation operators are, respectively,

\^a= $\sum_{n=1}^{\infty}\sqrt{n}|n-1\rangle$ $\langle n|, \text{\^{a}}^{\uparrow}=\sum_{n=1}^{\infty}\sqrt{n}|n\rangle\langle n-1|$ . (11)

By applying the Baker-Hausdorff identity to (10), one obtains the well-known equivalent
definition

$| \alpha\rangle=\exp(-\frac{1}{2}|\alpha|^{2})\sum_{n=0}^{\infty}\frac{\alpha^{n}}{\sqrt{n!}}|n\rangle$ (12)

based on explicit Fock expansion. However, in FD Hilbert space, definitions (10) and (12)
are by no means equivalent. In the following, we show that the truncation of the sum in
(12) leads to the PPB-truncated coherent states, while the truncation of annihilation and
creation operators in (10) corresponds to the $\mathrm{L}\mathrm{T}$-truncated coherent states
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(a) (b)

$|n>$ $|\alpha>$

FIG. 1. Schemes of two kinds of quantum scissors according to (a) Pegg, Phillips, and Barnett
(PPB) and (b) Leonski and Tanci (LT). Key: $|\alpha\rangle$ –input coherent states; $|\alpha\rangle$

$(s)$ –PPB-truncated
coherent states; $|\alpha’\rangle_{(s)}-\mathrm{L}\mathrm{T}$-truncated coherent states; $|n\rangle$ and $|s-n\rangle$ –input photon-number
states; if $s=1$ than $n=0$ or 1, and if $s=2$ than $n=1;D_{2}$ , $D_{3}-\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{n}$-counting detectors; $\mathrm{B}\mathrm{S}1$ , BS2
-beam splitters; PGM –parametric gain medium.

FIG. 2. Scheme of experimental realization of the PPB quantum scissors corresponding to Fig.
1(a). Key: PL -pulsed laser; FD -frequency doubler; PDC-parametric down conversion crystal;
VA –variable attenuator; A–aperture; $\mathrm{f}$ -narrow band filter; CCL –coincidence counter and
logic; $\mathrm{B}\mathrm{S}$ , $\mathrm{B}\mathrm{S}1$ , and BS2 –beam splitters; and $D_{1}$ , $D_{2}$ , and $D_{3}-\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{n}$-counting detectors;
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A. QUANTUM SCISSORS OF PEGG, PHILLIPS AND BARNETT

The optical truncation scheme (quantum scissors) of Pegg, Phillips and Barnett [20] was
originally proposed for preparing superposition of vacuum and one-photon state by trun-
cating acoherent light, but can readily be applied to generate superposition of vacuum,
one-photon and tw0-photon states (truncation uP to $s=2$) as discussed by Koniorczyk et
al. [21]. The PPB-scissors, if applied recurrently, can also be used for truncation up to arbi-
trary value of $s$ as proposed by Villas-Boas et $al$ $[23]$ . It is worth noting that the resources
and optical elements of the scheme increase very much with the increase of the dimension of
the output state. Thus, one can generate the output states truncated to an arbitrary value
of $s$ , but with the additional cost [23].

In the simplest case for $s=1$ , the beam splitter BS1 in the PPB scheme, presented in Fig.
1(a), is fed by one-photon in one input port whereas the second port is left at vacuum. One
of the output ports of this beam splitter is fed to the second beam splitter where it is mixed
with the coherent light. The output modes of the second beam splitter are detected and the
condition in which one photon is detected in one of the modes and none in the other mode
corresponds to the conditional preparation of vacuum and one-photon states at the output
of the first beam splitter. In arecent study [39], we have proposed an experimental scheme
for the practical realization of the QSD scheme for state truncation taking into account the
realistic description of single-photon-state generation and photon counting detectors. As
was analyzed in $[39,40]$ , the original Pegg-Phillips-Barnett quantum scissors, shown in Fig.
1(a), can be implemented experimentally in asetup described schematically in Fig. 2. This
scheme is based on the ideas developed Rarity et $al$ in [41]. It consists of aparametric down
conversion crystal as the single-photon source, conventional photon counters for conditional
measurement and 50:50 beam splitters for generation of entangled photon number states
(BS1) and for the mixing of coherent state with the entangled state (BS2).

In general, the state $|\alpha\lambda s$ ) generated by the PPB truncation of the input coherent state,
given by (12), can be given by

$| \alpha\lambda s)=N_{s}\sum_{n=0}^{s}\frac{\alpha^{n}}{\sqrt{n!}}|n\rangle$ (13)

normalized by

$N_{s}=( \sum_{n=0}^{s}\frac{|\alpha|^{2n}}{n!})^{-1/2}=\{(-1)^{s}\mathrm{L}_{s}^{-s-1}(|\alpha|^{2})\}^{-1/2}$ , (14)

where $\mathrm{L}_{s}^{n}(x)$ is the generalized Laguerre polynomial. The case for $s=1$ was described in
$[20,39]$ , for $s=2$ in [21] and for any $s$ in [23]. Equation (13) is just the Fock expansion (12)
of the conventional $\mathrm{I}\mathrm{D}$ CS truncated at the $s\mathrm{t}\mathrm{h}$ term and properly normalized. By definition,
the PPB-truncated CS goes over into the Glauber CS in the limit of $sarrow\infty$ . Properties of
the states were analyzed by Kuang et al. [16] and Opatrny et $al$ $[18]$ . In order to calculate
the Wigner function, we substitute Eq. (13) into Eq. (9), arriving at

$W_{s}(n, \theta_{m})=\frac{N_{s}^{2}}{s+1}(\sum_{k=0}^{M}\frac{|\alpha|^{M}}{\sqrt{k!(M-k)!}}\exp[\mathrm{i}(2k-M)(\theta_{m}-\varphi)]$

$+ \sum_{k=M+1}^{s}\frac{|\alpha|^{M+s+1}}{\sqrt{k!(M-k+s+1)!}})$ , (15)
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FIG. 3. Wigner function in 3-dimensional $(s=2)$ Hilbert space for the PPB-truncated (first
row) and $\mathrm{L}\mathrm{T}$-truncated(2nd row) coherent states for different values of displacement parameter $\alpha$

chosen as fractions or multiples of the period $T\equiv T_{2}=2\pi/\sqrt{3}$ . Brighter regions correspond to
lower values of Wigner function, while the negative regions are marked additionally by crosses.

FIG. 4. Wigner function in 21-dimensional $(s=20)$ Hilbert space for the PPB-truncated c0-

herent states for different values of displacement $\alpha$ being fractions or multiples of the quasiperiod
$T\equiv T_{20}\approx 9.2$ .

where $M=2n\mathrm{m}\mathrm{o}\mathrm{d} (s+1)$ . It is worth noting that this approach is similar to the VaccarO-
Pegg formalism [34] of the Wigner function. Different shapes of the Wigner functions for
various $\alpha$ are computed for $s=2$ in Fig. 3and $s=20$ in Fig. 4. With $|\alpha|$ increasing from
zero, the peak-antipeak transition occurs from $n=s$ to $n=0$ around the value $|\alpha|^{2}\approx s/2$

(corresponding to $|\alpha|\approx T_{s}/3$ in Fig. 4). However, if $|\alpha|^{2}\gg s/2$ , the situation is inverse:
We observe two peaks for $n>s/2$ and apeak-antipeak structure for $n\leq s/2$ (for instance,
$|\alpha|\approx 2T_{s}/3$ in Fig. 4). In the case when $|\alpha|^{2}\approx s$ (Fig. 4for $|\alpha|\approx T_{s}/2$ ), the $W$

function has amore general shape. With increasing $|\alpha|$ the tw0-peak structure shifts to
larger values of $n$ , while the peak-antipeak structure gradually vanishes at $n\leq s/2$ (Fig. 4
for $|\alpha|=2T_{s}/3$ , $\ldots$ , $5T_{s}$ ). The shape is still comparatively simple. But by further increasing
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$|\alpha|\gg T_{s}$ , the Wigner function has avery simple structure representing the number state
|s\rangle . Even for $|\alpha|=25\mathrm{T}\mathrm{S}$ , as presented in Fig. 4, the peak-antipeak structure at tt $\leq s/2$

vanishes almost completely. In the limit of $|\alpha|^{2}/sarrow\infty$ , the truncated CS approaches the
number state |s\rangle .

B. QUANTUM SCISSORS OF $\mathrm{L}\mathrm{E}\mathrm{O}\acute{\mathrm{N}}$SKI AND TANAS

The optical truncation scheme of $\mathrm{L}\mathrm{e}\mathrm{o}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}$ and Tanas’ [24] was originally proposed for the
generation of single-photon states, and then modified to describe $n$-photon state generation
[25] and optical truncation $[26,27]$ . The scheme in Fig. $1(\mathrm{b})$ describes asystem, which can
be governed by the following interaction Hamiltonian (A $=1$ )

$\hat{H}=\hat{H}_{\mathrm{K}\mathrm{e}\mathrm{r}\mathrm{r}}+\hat{H}_{\mathrm{P}\mathrm{G}\mathrm{M}}$ , (16)

where

$\hat{H}_{\mathrm{K}\mathrm{e}\mathrm{r}\mathrm{r}}=\frac{\chi^{(s)}}{s+1}(\hat{a}^{\mathrm{t}})^{(s+1)}\hat{a}^{(s+1)}$,

$\hat{H}_{\mathrm{P}\mathrm{G}\mathrm{M}}$

$= \epsilon(\text{\^{a}}^{} +\hat{a})\sum_{m}\delta(\mathrm{t}.-mT_{\mathrm{k}\mathrm{i}\mathrm{c}\mathrm{k}})$ . (17)

Here, $\hat{H}_{\mathrm{K}\mathrm{e}\mathrm{r}\mathrm{r}}$ is the $(s+1)$-photon Kerr Hamiltonian [42] giving rise to optical bistability with
$\chi^{(s)}$ denoting the nonlinearity constant; $\hat{H}_{\mathrm{P}\mathrm{G}\mathrm{M}}$ describes the parametric gain medium pumped
by an external classical pulsed field modelled as atrain of delta functions; $\epsilon$ is the strength of
the interaction with the external field; $T_{\mathrm{k}\mathrm{i}\mathrm{c}\mathrm{k}}$ is the period of free evolution between each pump
pulse (kick), and \^a\dagger and \^a are bosonic creation and annihilation operators, respectively. All
operators appearing in Eq. (16) are defined in the ID Hilbert space. As was shown in Refs.
$[26,27]$ by omitting terms of the order $\mathcal{O}(\epsilon^{2})$ , the state generated in the model (16) is of the
form

$|\alpha’\lambda s)=\exp(\alpha\hat{a}_{s}^{1}-\alpha^{*}\hat{a}_{s})|0\rangle$ , (18)

where $\hat{a}_{s}$ and $\hat{a}_{s}^{\uparrow}$ are, respectively, the FD annihilation and creation operators defined by
(2). The states (18) generated in the Leonski-Tanas scheme, referred to as the LT-truncated
coherent states, are obtained by truncation of operators $\hat{a}_{s}$ and $\hat{a}_{s}^{\uparrow}$ . Their physical properties
in relation to the Pegg-Barnett phase formalism [38] were analyzed in Refs. [15,17,18]. To
show the differences between the PPB- and $\mathrm{L}\mathrm{T}$-truncated states, we present the explicit Fock
expansion of (18) in the form [17]

$| \alpha’\mathrm{k}s)=\sum_{n=0}^{s}\mathrm{e}^{\mathrm{i}n\varphi}b_{n}^{(s)}|n\rangle$ , (19)

where

$b_{n}^{(s)}= \frac{s!}{s+1}\frac{(-\mathrm{i})^{n}}{\sqrt{n!}}\sum_{k=0}^{s}\mathrm{e}^{\mathrm{i}x_{k}|\alpha|}\frac{\mathrm{H}\mathrm{e}_{n}(x_{k})}{\mathrm{H}\mathrm{e}_{s}^{2}(x_{k})}$ . (20)

Here, $x_{k}\equiv x_{k}^{(s+1)}$ are the roots, $\mathrm{H}\mathrm{e}_{s+1}(x_{k})=0$ , of the Hermite polynomial $\mathrm{H}\mathrm{e}_{n}(x)\equiv$

$2^{-n/2}\mathrm{H}_{n}(x/\sqrt{2})$ . In the special case for $s$ $=$ 1, the $\mathrm{L}\mathrm{T}$-truncated CS reduces to
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FIG. 5. Same as in Fig. 4, but for the $\mathrm{L}\mathrm{T}$-truncated coherent states.

$|\alpha’\rangle_{(1)}=\cos|\alpha||0\rangle+\mathrm{e}^{\mathrm{i}\varphi}\sin|\alpha||1\rangle$ . It is seen that $|\alpha’\rangle$(1) is periodic in $\alpha$ . The LT-truncated
CS goes over into the conventional CS in the limit of $sarrow\infty$ . As was shown in [17], $|\alpha’\rangle_{(s)}$

are periodic in $|\alpha|$ for $s=1,2$ and approximately periodic (referred to as the quasiperiodic)
for higher values of $s$ . This property can be well described by analyzing Wigner functions
for the $\mathrm{L}\mathrm{T}$-truncated $\mathrm{C}\mathrm{S}$ .

On insertion of the coefficients (19) into the general formula (9), we get the Wigner
function for $|\alpha\rangle_{(s)}$ in the form

$W_{s}(n, \theta_{m})=\sum_{k=M+1}^{s}\frac{\exp[\mathrm{i}(2k-M-s-1)(\theta_{m}-\varphi+\pi/2)]}{[k!(M-k+s+1)!]^{1/2}}G_{1k}$

$+ \sum_{k=0}^{M}\frac{\exp[\mathrm{i}(2k-M)(\theta_{m}-\varphi+\pi/2)]}{[k!(M-k)!]^{1/2}}G_{0k}$, (21)

where

$G_{\eta k}= \frac{(s!)^{2}}{(s+1)^{3}}\sum_{p=0}^{s}\sum_{q=0}^{s}\exp[\mathrm{i}(x_{q}-x_{p})|\alpha|]\frac{\mathrm{H}\mathrm{e}_{k}(x_{p})\mathrm{H}\mathrm{e}_{M-k+\eta(s+1)}(x_{q})}{[\mathrm{H}\mathrm{e}_{s}(x_{p})\mathrm{H}\mathrm{e}_{s}(x_{q})]^{2}}$ (22)

with $\eta=0,1$ . The periodicity of $|\alpha’\rangle$(2) is clearly seen in the Wigner function given in the
2nd row of Fig. 3for $|\alpha|=0$ , $T_{2},5T_{2}$ , where $T_{2}=2\pi/\sqrt{3}$ . Let us analyze in greater detail
the Wigner functions presented in Fig. 5for $s=20$ . We observe the following behavior:
The shape of the respective graph is quasiperiodic in the parameter $|\alpha|$ with quasiperiod
$T_{20}\approx 9.2$ . We find that for small $|\alpha|$ the shape is essentially the same as that described in
Fig. 4for the PPB-truncated CS –for $n\leq s/2$ (compare Figs. 4and 5for $|\alpha|=T_{s}/6$), there
are two peaks of opposite phases, whereas for $n>s/2$ we observe apeak and an antipeak.
Note, the peaks at the borders are artificially split up in our Cartesian representation of the
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Wigner function. The peaks or antipeaks are located at such positions that on summing the
$W$ function with constant $n$ (or $\theta_{m}$ ) over $\theta_{m}$ (or $n$), we get the probability distribution of $n$

(or $\theta_{m}$ , respectively). Then, with increasing $|\alpha|$ , interesting oscillations in photon number
appear. Their culmination is at $|\alpha|=T_{s}/2$ , where only even photon numbers are present.
For this value of $\alpha$ , the $\mathrm{L}\mathrm{T}$-truncated coherent state approaches an even $\mathrm{C}\mathrm{S}$ , namely, the case
of aSchr\"odinger cat state. By further enlarging $|\alpha|$ , the $W$ function returns to its previous
shapes through the transition regime (for $|\alpha|\approx 2T_{s}/3$ ) to the case of the inner tw0-peak
and outer peak-antipeak structure, similar to the VaccarO-Pegg results. For $|\alpha|\approx 5T_{s}/6$ ,
the $W$ function is very similar to that for $|\alpha|\approx T_{s}/6$ , but with opposite phase. Finally, for
$|\alpha|=T_{s}$ , we arrive at an almost vacuum state. By further increasing $|\alpha|$ , these shapes of the
$W$ function graph reappeared for several quasiperiods $T_{s}$ . Similar behavior can be observed
also for other values of $s$ . The mathematical explanation of the quasiperiodicity together
with the formulas for the quasiperiod $T_{s}$ were given in [18].

It is worth noting that all the states (except for vacuum) in Figs. 3-5 are purely quan-
tum as finite superpositions of photon-number states. Their discrete Wigner functions can
be negative (as marked by crosses in figures) for some values of photon numbers $n$ and
phases $\theta_{m}$ . Nevertheless, as for the standard continuous Wigner function, there can be
highly-nonclassical states described by the completely positive discrete Wigner functions.
For example, the $W$ functions for the PPB-truncated states in Figs. 3-4 are entirely posi-
tive, in particular, at $\alpha=5T_{s}$ which corresponds to the approximate $s$-photon Fock states.
(They become the exact $s$-photon Fock states in the limit of $|\alpha|arrow\infty.$ )

IV. CONCLUSIONS

We contrasted two different formal approaches to define quantum optical states. by ex-
ample of coherent states, in finite-dimensional Hilbert spaces. We discussed physical im-
plementations of the quantum scissors for generation of the FD coherent states via optical
truncation: (i) the scheme of Pegg, Phillips and Barnett [20] realized by projection syn-
th is in linear-0ptical system and (ii) the scheme of $\mathrm{L}\mathrm{e}\mathrm{o}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}$ and Tanci $[24,26]$ based on a
kicked dynamics of nonlinear-0ptical system. The distinct properties of the PPB and LT
truncated coherent states were compared with the help of the discrete Wigner function. We
have demonstrated that the PPB coherent states truncated at the $s$ photon state $|s\rangle$ are
aperiodic in the amplitude $|\alpha|$ of the input coherent state, and they tend to $|s\rangle$ in the limit
of $|\alpha|arrow\infty$ . By contrast, the $|\alpha|$ -limit of the LT truncated coherent states is undetermined,
since the states are periodic or quasiperiodic in $|\alpha|$ for finite $s$ . The physical reason of this
(quasi)periodicity for the states generated by the LT scheme and aperiodicity of those for
the PPB scheme is related to (non)linearity of the systems. The PPB scheme is based on
linear-0ptical elements thus cannot lead to states periodic in $|\alpha|$ . However, the LT scheme
utilizes the nonlinear-0ptical elements thus can generate periodic or quasiperiodic states in
$|\alpha|$ . Finally, we note the LT and PPB coherent states approach the same standard coherent
states in the limit of $s$ for any finite value of amplitude of the input field
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