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ABSTRACT. –We study correspondences between algebraic curves defined
over the algebraic closure of $\mathbb{Q}$ or $\mathrm{F}_{p}$ .
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Introduction

The following lecture notes are based on the paper [1].

Aset $\mathrm{C}$ of (complete) algebraic curves over afield $F$ will be called dorni-
nating if for every curve $C’$ over $F$ there exists acurve $C\in \mathrm{C}$ and afinite
\’etale cover $\tilde{C}arrow C$ surjecting onto $C’$ . An algebraic curve $C$ over a $F$

will be called universal if the set $\mathrm{C}=\{C\}$ is dominating.

THEOREM 1.1 (Belyi). –Every algebraic curve $C$ defined over a num-
$ber$ field admits a surjective map onto $\mathrm{P}^{1}$ which is unramified outside
$(0, 1, \infty)$ .

In 1978 Manin pointed out that Belyi’s theorem implies the following
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PROpOSITION 1.2. $-[4]$ The set of modular curves is dominating.

There are many other dominating sets of curves, for example the set of
hyperelliptic curves or of all curves with function field $\overline{\mathrm{Q}}(z, \sqrt[\mathrm{n}]{z(1-z)})$

(for $n\in \mathrm{N}$). Of course, one is interested in finding small dominating sets.

QUESTION 1.3. –Does there exist auniversal algebraic curve over $\overline{\mathbb{Q}}$?
Does there exist anumber $n\in \mathrm{N}$ such that every curve defined over $\overline{\mathbb{Q}}$

admits asurjective map onto $\mathrm{P}^{1}$ with ramification only over $(0, 1, \infty)$ and
such that all local ramification $\mathrm{i}\mathrm{n}\mathrm{d}$.icae are $\leq n$?Is every curve of genus
$\geq 2$ universal?

The above questions are also related to the structure of the action of
the Galois group action Gal(Q/K), for $[K : \mathbb{Q}]<\infty$ , on the completion
$\hat{\pi}_{1}(C_{K})$ . Different results about this action have been obtained by Y.
Ihara, H.Nakamura and M. Matsumoto (see [8], [9]). An affirmative
answer to our conjecture (question) means that the above action of the
group Gal(Q/Q) is very similar for different hyperbolic curves over Q.

It is natural to consider the following simple model situation: instead
of $\overline{\mathbb{Q}}$ we look at $\overline{\mathrm{F}}_{p}$ (an algebraic closure of the finite field $\mathrm{F}_{p}$).

THEOREM 1.2. – Let $p\geq 5$ be a prime number and $C$ a hyperelliptic
curve over $\overline{\mathrm{F}}_{p}$ of genus $g(C)\geq 2$ . Then $C$ is universal.

Abyproduct of our work on the above questions was the discovery of
the following geometric fact, which could be interpreted as astep towards
aconverse to the universality question:

PROPOSITION 1.3. – Every hyperbolic hyperelliptic curve $C$ (over an
arbitrary algebraically closed field of characteristic $\neq 2,3$) has a finite
\’etale cover $\tilde{C}$ which surjects onto the genus 2curve $C_{0}$ given by $\sqrt[0]{z(1-z)}$.
In particular, if $C_{0}$ is universal then every hyperelliptic curve of genus
$\geq 2$ is universal.
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2. Finite characteristic constructions
Here we work over an algebraic closure $\overline{\mathrm{F}}_{p}$ of the finite field $\mathrm{F}_{p}$ (with

$p\geq 5)$ . We show that there exists at least one universal curve.

Let
$C_{0}arrow E_{0}arrow \mathrm{P}^{1}\iota_{0}\pi 0$

be asequence of double covers induced by:
$\sqrt[6]{z(z-1)}arrow\sqrt[3]{z(z-1)}arrow z$ .

Let $C$ be an arbitrary curve with ageneric covering $\sigma$ : $Carrow \mathrm{P}^{1}$ such
that its branch locus does not contain $(0, 1, \infty)$ . Consider the diagram

$\sigma|carrow C_{1}arrow C_{2}$

$\mathrm{P}$

$1arrow E\varphi\downarrow$
$\{$

$1^{0}$

$E_{0}arrow C_{0}$

The local ramification indices of the map $C_{1}=C\mathrm{x}_{\mathrm{P}^{1}}E_{0}arrow \mathrm{P}^{1}$ are $\leq 2$ .
Since all $\overline{\mathrm{F}}_{p}$-points of the elliptic curve $E_{0}$ are torsion points there exists
asuitable multiplication map $\varphi$ mapping all ramification points of $C_{1}$

over $E_{0}$ to 0. Taking the composition of $C_{1}arrow E_{0}$ with this map we
get asurjection $C_{1}arrow E_{0}$ , ramified only over the zero point in $E_{0}$ and
such that all local ramification indices are at most 2. Any irreducible
component of $C_{2}:=C_{0}\cross_{E_{0}}C_{1}$ satisfies the conclusion of Theorem 1.4.

REMARK 2.1. –The natural idea to employ group actions (e.g., mul-
tiplication by $n$ , factorizing by the-additive group or actions of $\mathrm{S}\mathrm{L}_{2}(\mathrm{F}_{q}))$
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to “collect” ramification points of coverings has appeared in various con-
texts. For arecent application (using $\mathrm{G}_{m}$ ) to aproof of apositive char-
acteristic analogue of Belyi’s theorem see [12].

LEMMA 2.2. – Let $C$ be a smooth complete curve and $E$ a curve of
genus 1. There exist a curve $C_{1}$ and a diagram

$Carrow C_{1}arrow E\eta\iota_{1}$ ,

with surjective $\tau_{1}$ , $\iota_{1}$ such that all ramification points of $\iota_{1}$ lie over a single
point of $E$ and all of its local ramification indices are equal to 2.

Proof –Choose ageneric map a: $Carrow \mathrm{P}^{1}$ and double cover $\pi$ : $Earrow$

$\mathrm{P}^{1}$ such that the branch loci Bran(a) and Bran(Tr) on $\mathrm{P}^{1}$ are disjoint. The
product $C_{1}:=C\cross_{\mathrm{P}^{1}}E$ is an irreducible curve which is adouble cover of $C$

and which surjects onto $E$ with local ramification indices $\leq 2$ . As above
we find an unramified cover $\varphi$ : $Earrow E$ such that the composition
$\varphi 0\iota_{1}$ : $C_{1}arrow E$ is ramified only over one point in $E$ and the local
ramification indices are still equal to 2. 0

COROLLARY 2.3. –Assume that an unramified covering $\tilde{C}$ of $C$ sur-
jects onto an elliptic curve $E$ and that there exists a point $q\in E$ such
that all local ramification indices of $\tilde{C}arrow E$ over $q$ are divisible by 2.
Then $C$ is universal.

COROLLARY 2.4 (Theorem 1.4). –Every hyperelliptic curve $C$ over
$\overline{\mathrm{F}}_{p}$ (with $p\geq 5$) of genus $\geq 2$ is universal.

proof.–Consider the standard projection a: $Carrow \mathrm{P}^{1}$ (of degree 2).
Let $\pi$ : $Earrow \mathrm{P}^{1}$ be adouble cover such that Bran(Tr) is contained
in Bran(a). Then the product $\tilde{C}=C\cross_{\mathrm{P}^{1}}E$ is an unramified double
cover of $C$ . Moreover, $\tilde{C}$ is adouble cover of $E$ with ramification at
most over the preimages in $E$ of the points in Bran(a) Bran(a). Apply
Corollary 2.3. $\square$
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In finite characteristic, there are many other (classes of) universal
curves. For example, cyclic coverings with ramification in 3points, hy-
perbolic modular curves, etc. Thus it seems plausible to formulate the
following

CONJECTURE 2.5. –Any smooth complete curve $C$ of genus $g(C)\geq 2$

defined over $\overline{\mathrm{F}}_{p}$ (for $p\geq 2$) is universal.

3. Geometric constructions
Let $(E, q_{0})$ be an elliptic curve, $q_{1}$ atorsion point of order two on $E$

and $\pi$ : $Earrow \mathrm{P}^{1}$ the quotient with respect to the involution induced
by $q_{1}$ . Let $n$ be an odd positive integer and $\varphi_{n,E}$ : $\mathrm{P}_{2}^{1}arrow \mathrm{P}_{1}^{1}$ the map
induced by

$Earrow \mathrm{P}_{2}^{1}\pi$

$\phi_{n}\{$ $\mathrm{I}^{\varphi n,E}$

$E{}_{\vec{\pi}}\mathrm{P}_{1}^{1}$ .
Any quadruple $r=\{r_{1}, \ldots, r_{4}\}$ of four distinct points in $\varphi_{n,E}^{-1}(\pi(q_{0}))$ de-
fines agenus 1curve $E_{f}$ (the double cover of $\mathrm{P}^{1}$ ramified in these four
points).

PROpOSITION 3.1. – Let $\iota$ : $Carrow E$ be a finite cover such that all local
ramification indices over $q_{0}$ are even. Then there exists an unramified
cover $\tau_{f}$ : $C_{f}arrow C$ dominating $E_{f}$ and having only even local ramification
indices over some point in $E_{f}$ .

Proof. –Assume that $n\geq 3$ and consider the following diagra
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$Carrow C_{2}arrow C_{r}\tau_{2}\tau$
,

$\iota\downarrow$
$\downarrow\iota_{2}$ $\downarrow 4$

$Earrow E\varphi_{n}$
$E_{f}$

$\pi_{\mathrm{P}_{1}^{1}arrow \mathrm{P}_{2}^{1}}\downarrow\downarrow\pi\phi_{n,B}$ $\mathrm{P}_{2}^{1}\downarrow\pi_{r}$

,

where $E_{f}$ is double cover of $\mathrm{P}_{2}^{1}$ ramified in any quadruple of points in the
preimage $\phi_{1\iota,E}^{-1}(\pi(q_{0}))$ and $C_{f}$ is any irreducible component of $C_{2}\cross_{\mathrm{P}_{2}^{1}}E_{r}$ .
Any point $q,$ $\in E_{f}$ such that $q_{r}$ is not contained in the ramification locus
of $\pi_{f}$ (that is, its image in $\mathrm{P}_{2}^{1}$ is distinct from $\mathrm{r}\mathrm{i}$ , $\ldots$ , $r_{4}$) has the claimed
property. 0

REMARK 3.2. –Iterating this procedure (and adding isogenies) we
obtain many elliptic curves $E’$ which are dominated by curves having an
unramified cover onto $E$ .

DEFINITION 3.3. –We ill say that $E’\leq E$ if there exists a diagram

$E’arrow {}^{t}\mathrm{p}1arrow E\pi$

such that
$-\pi’$ is a double cover
-for all $p\in\pi^{-1}$ (Bran(d))\subset Ethe local ramification indices $are\leq 2j$

$-for$ all $p,p’\in\pi^{-1}$ (Br\^aTr7) $)$ the cycle $(p-p’)$ is torsion in the
Jacobian of $E$ .

REMARK 3.4. –It would be interesting to know if for any two elliptic
curves $E’$ and $E$ over $\overline{\mathbb{Q}}$ there exists acycle

$E’=E_{1}\leq E_{2}\leq\cdots\leq E_{\mathfrak{n}}=E$

$\mathrm{c}\mathrm{o}\mathrm{n}_{1}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ them. Of course, isogenous curves are connected by such a
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We will now show that any elliptic curve over any algebraically closed
field of characteristic zero can be connected in this way to $E_{0}$ .

Consider the family of elliptic curves on $\mathrm{P}^{2}$ given by

$E_{\lambda}$ : $x^{3}+y^{3}+z^{3}+\lambda xyz=0$ .

For each Athe set $E_{\lambda}[3]$ of 3-torsion points of $E_{\lambda}$ is precisely

$\mathrm{T}:=\{(1.\cdot.. 0\cdot...1)(0\cdot 1\cdot 1)(1\cdot 1.0)’,$

,

$(1.\cdot..0.\cdot$.$-.\zeta)(0\cdot 1\cdot-\zeta)(1.-\zeta.0)’,$

,
$(1\cdot...0.\cdot.-.\zeta^{2})(0.1\cdot-\zeta^{2})(1\cdot-\zeta^{2}\cdot 0)’$, $\}$ ,

(here $\zeta$ is aprimitive cubic root of 1). The projection

$\pi$ : $\mathrm{P}^{2}$ $arrow$
$\mathrm{P}^{1}$

$(x:y:z)$ $-t$ $(x+z : y)$

respects the involution $xarrow z$ on $\mathrm{P}^{2}$ . Denote by $\pi_{\lambda}$ the restriction of $\pi$

to $E_{\lambda}$ . Clearly, $\pi_{\lambda}$ exhibits each $E_{\lambda}$ as adouble cover of $\mathrm{P}^{1}$ and $\pi_{\lambda}$ has
only simple double points for all A. Moreover,

$\pi(\mathrm{T})=\{(0:1), (1 :-\zeta), (1 :-\zeta^{2}), (1:-1), (1 : 0)\}$

and for all Athere exists a(non-empty) set $S_{\lambda}\subset \mathrm{B}\mathrm{r}\mathrm{a}\mathrm{n}(\pi_{\lambda})\subset \mathrm{P}^{1}$ such
that $\pi_{\lambda}^{-1}(S_{\lambda})\subset \mathrm{T}$. Let $\pi_{0}’$ : $E_{0}’arrow \mathrm{P}^{1}$ be adouble cover ramified in 4
points in $\pi(\mathrm{T})$ .

LEMMA 3.5. –Let $\iota$ : $Carrow E_{\lambda}$ be a double cover such that over at least
one point in Bran(t) the local ramification indices are even. Then there
exists an unramified cover $\tilde{C}arrow C$ and a surjective morphism $\tilde{\iota}$ : $\tilde{C}arrow E_{0}’$

such that over at least one point in Bran(t) $\subset E_{0}’$ all local ramification
indices of $\tilde{\iota}$ are even.

Proof. –Consider the diagram
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$E_{\lambda}arrow {}_{\iota}C_{1}$

$\varphi s\downarrow E_{\lambda}arrow C\downarrow$

$\pi_{\lambda\downarrow}$

$\mathrm{P}^{1}$

Then $C_{1}arrow \mathrm{P}^{1}$ has even local ramification indices over all points in
$\pi(\mathrm{T})$ . It follows that

$\tilde{C}:=C_{1}\mathrm{x}_{\mathrm{P}^{1}}E_{0}’arrow E_{0}’$

has even local ramification indices over the preimages of the fifth point
in $\pi(\mathrm{T})$ , as claimed. $\square$

NOTATIONS 3.6. – Let $\mathrm{C}$ be the class of curves such that there exists
an elliptic curve $E$, asurjective map $\iota$ : $Carrow E$ and apoint $q\in \mathrm{B}\mathrm{r}\mathrm{a}\mathrm{n}(\iota)$

such that all local ramification indices in $\iota^{-1}(q)$ are even.

EXAMPLE 3.7. –Any hyperelliptic curve of genus $\geq 2$ belongs to C.
More generally, $\mathrm{C}$ contains any curve $C$ admitting amap $Carrow \mathrm{P}^{1}$ with
even local ramification indices over at least 5points in $\mathrm{P}^{1}$ .

PROPOSITION 3.8. – For any $C\in \mathrm{C}$ there exists an unramified cover
$\tilde{C}arrow C$ surjecting onto $C_{0}$ (with $C_{0}arrow \mathrm{P}^{1}$ given by $\sqrt[t]{z(1-z)}$).

Proof. –Look at the diagram

$C_{1}arrow C_{2}--\tau_{2}\pi\tau_{4}\pi C_{2}arrow C_{3}arrow C_{4}arrow C_{5}$

$\iota_{1}\downarrow$ $\iota_{2\downarrow}$ $\sigma_{2\downarrow}$ $\iota \mathrm{s}\downarrow$ $\iota_{4\downarrow}$ $\downarrow$

$E_{\varphi_{3}\pi 0\varphi s}arrow E{}_{\vec{\pi}}\mathrm{P}^{1}arrow E_{0}arrow E_{0}arrow {}_{\iota 0}C_{0}$ .
Here

$-C_{1}:=C\in \mathrm{C}$ with $\iota_{1}$ : $C_{1}arrow E=E_{\lambda}$ as in 3.6;
$-C_{2}$ is an irreducible component of the fiber product $C_{1}\cross_{E}E$;
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$-\sigma_{2}=\pi 0\iota_{2}$ ;
$-C_{3}:=C_{2}\mathrm{x}_{\mathrm{P}^{1}}E_{0;}$

$-C_{4}$ is an irreducible component of $C_{3}\mathrm{x}_{E_{0}}E_{0}$ ;
$-C_{5}:=C_{4}\mathrm{x}_{E_{0}}C_{0}$ .

Observe that for $q\in \mathrm{B}\mathrm{r}\mathrm{a}\mathrm{n}(\pi_{0})$ the local ramification indices in the preim-
age $(\iota_{2}\circ\pi)^{-1}(q)$ are all even. Therefore, 73 is unramified and $\iota_{3}$ has even
local ramification indices over (the preimage of) $q_{5}\in\{\pi(\mathrm{T})\backslash \mathrm{B}\mathrm{r}\mathrm{a}\mathrm{n}(\pi_{0})\}$

(the 5th point). The map $\iota_{4}$ is ramified over the preimages $(\pi_{0}\circ\varphi_{3})^{-1}(q_{5})$ ,
with even local ramification indices, which implies that 75 is unramified.
Finally, $C_{5}$ has adominant map onto $C_{0}$ and is unramified over $C_{4}$ (and
consequently, $C_{1}$ ). $\square$

REMARK 3.9. –As one of the corollaries we obtain that for any (hyper-
bolic) hyperelliptic curve $C$ the group $\hat{\pi}_{1}(C_{K})$ , together with the action
of $\mathrm{G}\mathrm{a}1(\overline{\mathbb{Q}}/K)$ , has $7\mathrm{T}\mathrm{i}(\mathrm{C}\mathrm{O})$ , with $\mathrm{G}\mathrm{a}1(\overline{\mathbb{Q}}/K)$-action, as aquotient (for some
finite extension $[K : \mathbb{Q}]<\infty)$ . Thus we can universally estimate from
below the action of $\mathrm{G}\mathrm{a}1(\overline{\mathbb{Q}}/K)$ on $\hat{\pi}_{1}(C_{K})$ , for any hyperellipic curve $C$ .

REMARK 3.10. –The above construction also shows that for every hy-
perelliptic curve $C$ there exists achain of abelian \’etale covers with groups

$\mathbb{Z}/2$ , $\mathbb{Z}/3\oplus \mathbb{Z}/3$ , $\mathbb{Z}/2$ , $\mathbb{Z}/2$

(of total degree 72) such that the resulting curve $\tilde{C}$ admits adegree 4
surjective map onto $C_{0}$ . In particular, Mordell’s conjecture (Faltings’
theorem) for $C$ follows from Mordell’s conjecture for $C_{0}$ . Implementing
this construction over the rings of integers one can find effective bounds
on the number (and height) of $K$-rational points on $C$ in terms the
number (and height) of $K$’-rational points in Co, where $K’$ is afinite
extension of $K$ , determined by the geometry of $C$ over the integers $0_{K}$ .

The fact that there is some interaction between the arithmetic of dif-
ferent curves has been noted previously. Moret-Bailly and Szpiro showed
(see [12], [10]) that the proof of an effective Mordell conjecture for one
(hyperbolic) curve (for example, $C_{0}$ ) implies the ABC-conjecture which
in turn implies an effective Mordell conjecture for all (hyp.e$\mathrm{r}\mathrm{b}$. olic) curves
(Elkies [5]). Here effective means an explicit bound on the height of a
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K-rational point on the curve for all number fields $K$. Again, Belyi’s
theorem is used in an essential way.
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