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Asubmonoid $S$ of atorsion-free abelian (additive) group is called a

grading monoid (or a $\mathrm{g}$-monoid). Throughout the paper we assume that
$S$ is non-zero.

We consider the semigroup ring $R[X;S]$ of a $\mathrm{g}$ monoid $S$ over acom-
mutative ring $R$ .

We denote the unit group {$s\in S|s+t=0$ for some $t\in S$} of $S$ by

$H=H(S)$ .
We denote the nilradical of $R$ , that is, the set of nilpotents of $R$ , by

$N=N(R)$ . If $N=0$, then $R$ is called reduced.
We denote the unit group of $R$ by $U=U(R)$ .
We denote the group of units $f= \sum a_{s}X^{s}$ of $R[X;S]$ with I $a_{s}=1$

by $V(R[X;S])$ . $H$ is canonically regarded as asubgroup of $V(R[X;S])$ .
Let $G$ be an abelian group. If $G$ has only one elements, or if $G$ has a

free basis which is not necessarily of finite number, then $G$ is called free.
Any subgroup of afree group is free.

An element $x$ of an abelian multiplicative group $G$ is called torsion, if
$x^{n}=1$ for some positive integer $n$ . The set of torsion elements of $G$ is
asubgroup of $G$ . If 1is the only torsion elements of $G$ , then $G$ is called
torsion-free.

The symbol $\otimes \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ direct product of groups.
Karpilovsky posed 21 research problems in [$\mathrm{K}$ , Chapter 7]. The Sh

problem is the following:
Let $G$ be an abelian group. Find necessary and sufficient conditions

for $R[X;G]$ under which
(1) $G$ has atorsion-free complement in $V(R[X;G])$ .
(2) $G$ has afree complement in $V(R[X;G])$ .
(3) $U(R[X;G])$ is free modulo torsion.

This is an abstract and the details will appear elsewhere
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In [M1] we posed its semigroup version as follows:

Problem. Let $S$ be a $\mathrm{g}$-monoid. Find necessary and sufficient condi-
tions for $R[X;S]$ under which

(1) $H$ has a torsion-free complement in $V(R[X;S])$ . That is, there
exists atorsion-ffee subgroup $W$ of $V(R[X;S])$ such that $V(R[X;S])=$
$H\otimes W$ .

(2) $H$ has afree complement in $V(R[X;S])$ . That is, there exists a
ffee subgroup $W$ of $V(R[X;S])$ such that $V(R[X;S])=H\otimes W$ .

(3) $U(R[X;S])$ is frae modulo torsion. That is, the residue class group
$U(R[X;S])/${$f\in U(R[X;S])|f$ is torsion} is free.

In \S 1, we review results in [Ml, Section 1], [M2, Section 6] and [M3].
$\ln$ \S 2, we give apreciser decomposition theorem for the unit group
$U(R[X;S])$ of $R[X;S]$ . And, using the decomposition $\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}$, we give
areduction for Problem.

\S 1. Review

Let $E=\{e_{\lambda}|\lambda\in\Lambda\}$ be a set of non-zero idempotents of $R$. If, for
each $\lambda_{1}$ and $\lambda_{2}$ of $\Lambda$ , there exists A3 $\in \mathrm{A}$ such that $e_{\lambda_{3}}\in Re_{\lambda_{1}}\cap Re_{\lambda_{2}}$ ,
then $E$ is called an $\mathrm{E}$-system of $R$. There exists amaximal (by inclusion)
$\mathrm{E}$-system of $R$ by Zorn’s Lemma.

Let $E$ be afixed maximal $\mathrm{E}$-system of $R$. We set
$W(R[X;S])=$ {I $a_{s}X^{s}\in V(R[X;S])|Ra_{0}$ contains an element of

$E\}$ .
$\mathrm{T}\mathrm{h}\mathrm{e},\mathrm{n}W(R[X;S])$ is asubgroup of $V(R[X;S])$ .

Proposition 1. (1) $V(R[X;S])=H\otimes W(R[X;S])$ .
(2) $U(R[X;S])=U(R)\otimes H\otimes W(R[X;S])$ .

For the proof of Proposition 1(2), let $f= \sum a_{s}X^{s}$ be aunit of $R[X;S]$ .
Then $u=\mathrm{I}$ $a_{s}$ is a unit of $R$, and $(1/u)f\in V(R[X;S])$ . It follows that
$U(R[X;S])=U(R)\otimes V(R[X;S])$ . Then (1) completes the proof
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Proposition 1(1) shows that $\mathrm{I}\mathrm{T}^{\ovalbox{\tt\small REJECT}}(R[X\ovalbox{\tt\small REJECT} S^{\ovalbox{\tt\small REJECT}}])$ does not depend on the max-

imal $\mathrm{E}$-system of R up to isomorphisms.
We set M $\ovalbox{\tt\small REJECT}$ $M(7^{1}?)\ovalbox{\tt\small REJECT}$ {reE N|rrx $\ovalbox{\tt\small REJECT}$ 0 for some positive integer n}.

Theorem 1(An answer to Problem (1)). The following conditions are
equivalent :

(1) $H$ has atorsion-free complement in $V(R[X;S])$ .
(2) $V(R[X;S])$ is torsion-free.
(3) $W(R[X;S])$ is torsion-free.
(4) $M=0$ .

Set $R’=R/M$ . For each maximal $\mathrm{E}$-system $E’$ of $R’$ , we may define
$W(R’[X;S])$ .

Theorem 2(A reduction of Problem (3) to Problem (2)). The follow-

ing conditions are equivalent:
(1) $U(R[X;S])$ is free modulo torsion.
(2) $U(R)$ is free modulo torsion, and $V(R’[X;S])$ is free.
(3) $U(R)$ is free modulo torsion, and both $H$ and $W(R’[X;S])$ are free.
(4) $U(R)$ is ffee modulo torsion, $H$ is free, and $H$ has afree complement

in $V(R’[X;S])$ .

If $R$ has only afinite number of idempotents, then $R$ is called almost
indecomposable. If 0and 1are only the idempotents of $R$ , then $R$ is
called indecomposable. If $R$ is not indecomposable, then $R$ is called
decomposable.

Proposition 2(A reduction of Problem for almost indecomposable
rings to indecomposable rings). Let $\mathrm{e}\mathrm{i}$ , $\cdots$ , $e_{n}$ be non-zero idempotents
of $R$ such that $e_{1}+\cdots+e_{n}=1$ and $e_{i}e_{j}=0$ for $i\neq j$ , where $n\geq 2$ .

Then,
(1) $H$ has affee complement in $V(R[X;S])$ , if and only if $H$ is free

and, for each $i$ , $H$ has afree complement in $V(Re_{i}[X;S])$ .
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(2) $U(R[X;S])$ is free modulo torsion, if and only if, for each $i$ , $U(Re:[X$ ;
$S])$ is free modulo torsion.

(3) $U(R[X;S])$ is afinitely generated free abelian group modulo tor-
sion, if and only if, for each $i$ , $U(Re:[X;S])$ is afinitely generated free
abelian group modulo torsion.

Theorem 3. (1) $H$ has afinitely generated free complement in $V(R[X$;
$S])$ , if aztd only if $R$ is reduced and either $R$ is indecomposable or $H=0$.

(2) $U(R[X;S])$ is afinitely generated free abelian group modulo tor-
sion, if and only if $U(R)$ is afinitely generated free abelian group modulo
torsion, $H$ is afinitely generated free abelian group, $N=M$, and either
$R$ is indecomposable or $H=0$.

Theorem 4(An answer to Problem for reduced rings). Let $R$ be
reduced. Then,

(1) $H$ has atorsion-ffee, complement in $V(R[X;S])$ .
(2) $H$ has afree complement in $V(R[X;S])$ if and only if $H$ is free.
(3) $U(R[X;S])$ is free modulo torsion, if and only if $U(R)$ is frae modulo

torsion and $H$ is free.

\S 2. Results

Let E $=\{e_{\lambda}|\lambda\in\Lambda\}$ be afixed maximal $\mathrm{E}$-system of R. Then E $\ni 1$ .
The characteristic of R is denoted by $ch(R)$ .

Proposition 3. (1) Assume that $N\neq 0$ , and assume that $H$ has a
free complement in $V(R[X;S])$ . Then $ch(R)=0$ , and $M=0$.

(2) Assume that $N\neq 0$ and $ch(R)>0$ . Then $U(R[X;S])$ is free
modulo torsion, if and only if $U(R)$ is ffee modulo torsion and $H$ is free.

(1) follows from Theorem 1, and the necessity of (2) follows from $\mathrm{T}\mathrm{h}\triangleright$

orem 2.
For the sufficiency of (2), let $R’=R/M$. Then $H$ is reduced. By

Theorem 4, $H$ has affee complement in $V(R’[X;S])$ . By Theorem 2,
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$U(R[X;S])$ is free modulo torsion.

Proposition 4. (1) Assume that $N\neq 0$ and $R\supset \mathrm{Q}$ , where $\mathrm{Q}$ is the

field of rational numbers. Then $H$ does not have afree complement in

$V(R[X;S])$ .
(2) Assume that $N\neq 0$ and $R\supset \mathrm{Q}$ . Then $U(R[X;S])$ is not free

modulo torsion.

For the proof of (1), take anon-zero element $x_{0}\in R$ such that $x_{0}^{2}=0$ ,

and take anon-zero element $s_{0}\in S$ . Set $W_{1}=\{1+\alpha x_{0}-\alpha x_{0}X^{s_{\mathrm{O}}}|\alpha\in$

$\mathrm{Q}\}$ . Then $W_{1}$ is asubgroup of $W(R[X;S])$ , and is isomorphic onto the

additive group Q. If $W(R[X;S])$ is free, and hence $W_{1}$ is free, then $\mathrm{Q}$ is

free; acontradiction.
(2) Then $M=0$, and hence $R’=R$. By (1), $H$ does not have a

free complement in $V(R[X;S])$ . By Theorem 2, $U(R[X;S])$ is not free

modulo torsion.

Proposition 5. $U(R[X;S])$ is free modulo torsion if and only if

$U(R’[X;S])$ is free modulo torsion.

For the proof, let $U$ be the unit group of $R$ , and let $T$ be the set of

torsion elements of $U$ . Let $U’$ be the unit group of $R’=R/M$ , and let $T’$

be the set of torsion elements of $U’$ . We can show that $U’=\{\overline{u}|u\in U\}$ ,

and $T’=\{\overline{t}|\mathrm{t}\in T\}$ . Moreover, we can show that $U/T\cong U’/T’$ . Then

the proof follows from Theorem 2.

Proposition 5reduces Problrem (3) to the case where M $=0$ .

Lemma 1. Let $E=$ {e2 $|\lambda\in\Lambda$ } be afixed maximal $\mathrm{E}$-system of
$R$ . Let $W_{\Lambda}=\mathrm{W}(\mathrm{R}[\mathrm{X};S])$ be the subgroup of $W(R[X;S])$ generated
by its subset { $e_{\lambda}+e_{\lambda}’X^{\alpha}|\lambda\in\Lambda$ , a $\in H$}, where $e_{\lambda}’=1-e_{\lambda}$ . Let
$W_{N}=W_{N}(R[X;S])=$ {$\Sigma a_{s}X^{s}\in W(R[X;S])|Ra_{0}$ contains 1}. Then
$W(R[X;S])=W_{\Lambda}(R[X;S])\otimes W_{N}(R[X;S])$ .
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To show that $W_{\Lambda}\cap W_{N}--1$ , assume that $W_{\Lambda} \cap W_{N}\ni f=\prod_{1}^{n}(e:1+$

$e_{i2}X^{a}:)=1+x_{0}+x_{1}X^{s_{1}}+\cdots+x_{m}X^{s_{m}}$ , where $e:1\in E,e_{\dot{l}2}=1-e_{\dot{\iota}1},\alpha:\in$

$H$, and $0\neq x:\in N$ for $i\geq 1.1\mathrm{f}m=0$ , then $f=1$ . If $m\geq 1$ , and
if $(i_{1}, \cdots, i_{n})\neq(j_{1}, \cdots,j_{n})$ , then $e_{1:_{1}}e_{2}.\cdot\cdots e_{n*}2^{\cdot}$ and $e_{1j_{1}}e_{2j_{2}}\cdots$ $e_{nj_{n}}$ are
orthogonal. It follows that $x_{1}$ is an idempotent; acontradiction.

Let $f=\epsilon_{0}+\epsilon_{1}X^{a_{1}}+\cdots+\epsilon_{n}X^{a_{n}}+x_{1}X^{s_{1}}+\cdots+x_{m}X^{s_{m}}$ be an element
of $W(R[X;S])$ , where $\epsilon$:is non-zero idempotent, $\alpha:\in H,x:\in N$ . We
can show that $f\in W_{\Lambda}\otimes W_{N}$ by induction on $n$ .

Lemma 2. Let $\mathrm{W}_{H}=W_{H}(R[X;S])=\{\Sigma a_{a}X^{a}\in W_{N}(R[X;S])|\alpha\in$

$H\}$ , and $\mathrm{W}_{m}=W_{m}(R[X;S])=\{\Sigma a_{s}X^{s}\in W_{N}|s$ is 0 or a non-unit of
$S\}$ . Then $\mathrm{W}_{N}=W_{H}\otimes W_{m}$ .

For the proof, let $f\in W_{N}$ . $f$ may be written as $f=\Sigma a:X^{a}:+\Sigma b_{j}X^{s}j$ ,
where $\alpha:\in H$ and $s_{j}$ is anon-unit of $S$ . Set $f_{1}=\Sigma a:X^{\alpha_{*}}$

. and $f_{2}=$

$\Sigma bX^{s_{j}}j$ . Then $f_{1}$ is aunit of $R[X;S]$ . Set $g_{1}= \sum c_{k}X^{t_{k}}=1+f_{1}^{-1}f_{2},u_{1}=$

$\sum a_{i},v_{1}=\sum c_{k}$ . Then $u_{1}v_{1}=1,f=(v_{1}f_{1})(u_{1}g_{1}),v_{1}f_{1}\in W_{H}$ and
$u_{1}g_{1}\in W_{m}$ .

Theorem 5. (1) $W(R[X;S])=W_{\Lambda}(R[X;S])\otimes W_{H}(R[X;S])\otimes W_{m}(R$

$[X;S])$ .
(2) $\mathrm{W}_{\Lambda}(R[X;S])=1$ , if and only if either $R$ is indaeomposable or

$H=0$.
(3) $\mathrm{W}_{H}=W_{m}=1$ , if and only if $\mathrm{W}_{N}=1$ , if and only if $R$ is reduced.
(4) Both $\mathrm{W}_{H}=1$ and $\mathrm{W}_{m}\neq 1$ , if and only if both $N\neq 0$ and $H=0$.
(5) Both $\mathrm{W}_{H}\neq$ $1$ and $\mathrm{W}_{m}=1$ , if and only if both $N\neq 0$ and $H=S$.

Lemma 3. Assume that $R$ is decomposablble. Then $W_{\Lambda}(R[X;S])$ is
free if and only if $H$ is free.

For the proof, let $E=$ {e2 $|\lambda\in\Lambda$} be amaximal $\mathrm{E}$-system of $R$ with
$e_{0}=1$ . Let $e=e_{\lambda}$ with A $\neq 0$ . Then $W_{1}=\{e+e’X^{a}|\alpha\in H\}$ is a
subgroup of W&, and $W_{1}\cong H$ . If $W_{\Lambda}$ is free, then $W_{1}$ is free, and hence
$H$ is free.
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The converse follows from [M3, \S 2, Proposition 1].

Proposition 6. Let $S_{1}=(S-H)\cup\{0\}$ . Then $W(R[X;S])$ is free, if

and only if both $W(R[X;H])$ and $W(R[X;S_{1}])$ are free.

For the proof, denote $V(S)=V(R[X;S])$ , $W_{\Lambda}(S)=W_{\Lambda}(R[X;S])$ , and

etc. We have;
$V(S)=H\otimes W_{\Lambda}(S)\otimes W_{H}(S)\otimes W_{m}(S)$ .
$V(H)=H\otimes W_{\Lambda}(H)\otimes W_{H}(H)$ .
$V(S_{1})=W_{\Lambda}(S_{1})\otimes W_{m}(S_{1})$ .
$W_{H}(S)\cong W_{H}(H)$ .
$W_{m}(S)\cong W_{m}(S_{1})$ .
The proof follows from the above formulas.

Proposition 6shows that Problem (2) reduces to the case where either

every elements of $S$ is unit, or every element of $S$ is non-unit except zero.
Proposition 6implies the following,

Proposition 7. Let $S_{1}=(S-H)\cup\{0\}$ . Then $U(R[X;S])$ is free

modulo torsion, if and only if both $U(R[X;H])$ and $U(R[X;S_{1}])$ are free

modulo torsion.

Proposition 7shows that Problem (3) reduces to the case where either
every elements of S is unit, or every element of S is non-unit except zero.
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