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Abstract

A new approach to the P versus NP problem based on Gddel’s incompleteness theorem and forcing
is proposed. The assertion that the paradox of the unexpected hanging can be regarded as a kind
of partial extension of the liar paradox is applied. Pronouncements are formalized in the language
of extended Buss’ bounded arithmetic. The pronouncements are shown to be both consistent and
inconsistent when P=NP and an assumption hold. As a consequence, it is proved that P#NP is
reducible from another separation problem of an ideal from a Boolean algebra.
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1 Introduction

The structure of weak arithmetic systems described by S3, which is called bounded arithmetic, is closely
related to the structure of the polynomial time hierarchy. P#NP is said to be deducible from the
separation of bounded arithmetic theories. One well-known method for separating arithmetic theories
combines Godel’s incompleteness theorem and the truth definition (cf. §7.6 in [3], page 140 in [7], and
§10.5 in [8]). However, the separation of bounded arithmetic theories has not yet been proved using
such a method. This is because the truth definition of X?-formulas cannot be represented by a bounded
formula in the language of Sy (cf. [9]).

We generalize the above separation method by applying the paradoz of the unezpected hanging (4],
which is as follows. “One Saturday, the prisoner was told by the judge, ‘You will be hanged at noon
on one day next week. You will be hanged on a day you cannot predict.” The prisoner’s lawyer proved
that the hanging could not be executed by making the following argument: ‘If the day of the hanging
is Saturday, the prisoner will be able to predict it Friday afternoon because Saturday is the last day
of the next week. This contradicts the judge’s second pronouncement. Saturday is thus excluded. The
execution can only take place on a day before Saturday. In the same way, each final day can be eliminated
one by one.” ”

It is now asserted that this problem is not a paradox because the day of the hanging is not predictable
by the prisoner even if he (or she) makes full use of all the information contained in the pronouncements
(cf. [2]). The author agrees with this assertion. However, this problem can still be applied to the
separation of logical systems, given the following observation: The paradoz of the unezpected hanging
can be regarded as a kind of partial extension of the liar parador. The separation method based on
Godel’s incompleteness theorem and the truth definition can be naturally generalized by applying this
observation. If we apply this generalized method to bounded arithmetic theories, the role of the truth
definition is replaced by forcing. The M-generic maximal filter constructed by forcing on bounded
arithmetic naturally corresponds to the number meaning the day of the hanging.

If we apply this method to the P versus NP problem, it is proved that P#NP is reducible from
another separation problem of an ideal Z from a Boolean algebra B. (The precise definitions of B and Z
will be given in §6.2.) The proof sketch is described as follows. Suppose P=NP and B # Z. There is an
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extended Buss’ bounded arithmetic in which P=NP is made true by adding an axiom representing P=NP.
Furthermore, we formalize the two pronouncements in the language of this theory. First, we construct a
model of the theory, on the assumption of B # Z, such that the first pronouncement is true in it. Second,
we show that the second pronouncement is proved in the theory. (This means that the pronouncements
are consistent.) Finally, we prove that 0=1 is true in the model by developing the lawyer’s argument.
(This means that the pronouncements are inconsistent.) This is trivially a contradiction. Hence, we can
conclude that B # T implies P#NP.

2 Paradox of the unexpected hanging

The paradox of the unexpected hanging is as follows [4]:

“The prisoner was sentenced by the judge on Saturday, ‘The hanging will take place at noon on one
of the seven days of next week. But you will not know which day it is until you are so informed on the
morning of the hanging.’

The judge was known to be a man who always kept his word. The prisoner, accompanied by his
lawyer, went back to his cell. After careful consideration, the lawyer proved that the judge’s sentence
could not possibly be carried out. ‘They obviously cannot hang you next Saturday because Saturday
is the last day of the week. On Friday afternoon you would still be alive and you would know with
absolute certainty that the hanging would be on Saturday. You would know this before you were told so
on Saturday morning. That would violate the judge’s decree.’

‘Saturday, then, is positively ruled out. This leaves Friday as the last day they can hang you. But
they cannot hang you on Friday because by Thursday afternoon only two days would remain: Friday
and Saturday. Since Saturday is not a possible day, the hanging would have to be on Friday. Your
knowledge of that fact would violate the judge’s decree again. So Friday is out. This leaves Thursday as
the last possible day. But Thursday is out because if you're alive Wednesday afternoon, you’ll know that
Thursday is to be the day.’ '

‘In exactly the same way you can rule out Wednesday, Tuesday and Monday. That leaves only
tomorrow. But they cannot hang you tomorrow because you know it today.’

In brief, the judge’s decree seems to be self-refuting. There is nothing logically contradictory in the
two pronouncements that make up his decree; nevertheless, it can not be carried out in practice.”

When Garner published the details of this paradox in an article titled “Mathematical Games” in
Scientific American [4], there was a great public response. We will first rearrange the pronouncements
from the viewpoint of application and make some assertions about the paradox. These interpretations
do not relate to the work by Gardner.

The pronouncements are rearranged as follows:

e First pronouncement
The hanging will take place on one of the seven days of next week.
e Second pronouncement
The day of the hanging cannot be predicted by the prisoner.

The paradox of the unexpected hanging consists of two contradictory assertions:

e Judge’s assertion
The pronouncements are consistent.
e Lawyer’s assertion

The pronouncements are inconsistent.



128

Most people do not perceive an incompatibility between the pronouncements. Since the paradox
of the unexpected hanging is said to be a problem of time, this imperception reflects our unconscious
recognition of time. Results of an inference made now should be taken as a historical fact when making
an inference in the future. When an inference made now is based on the results of an inference made
in the future, the premise of the inference made now is changed to match the results of the inference
made now. Thus, the inference including a time element may contain inconsistency if the inference is
not restricted. This restriction can be represented by choosing the prisoner’s ability to infer as a weak
system. The lawyer uses a tacit understanding of the prisoner’s ability to infer in his proof.

Conversely, this paradox can be used to show that the prisoner’s ability to infer is weak. To show this,
we first prove that the judge’s assertion is right and then that the lawyer’s assertion is right based on the
assumption that the prisoner’s ability to infer is sufficiently strong. More simply, if both the judge’s and
lawyer’s assertions are proved based on the assumption that the prisoner’s ability to infer is sufficiently
strong, we can conclude that the prisoner’s ability to infer is weak. With this method, we can intuitively
prove that an inference including the notion of time is properly weaker than a standard one.

Furthermore, we can describe this paradox as follows:

Assertion. The structure of the inference-deducing inconsistency used by the lawyer in the paradox of
the unexpected hanging is essentially the same as the structure of the inference deducing inconsistency in
the liar paradox. The lawyer’s inference consists of seven iterations of the inference in the liar paradox.
The paradox of the unexpected hanging can be regarded as a kind of partial extension of the liar paradox
in this sense.

Ezplanation. The inferences used in the liar paradox and the paradox of the unexpected hanging are
compared. We first describe the one found in the liar paradox.

¢ <= Y is false”
<= “@ is true” is negative.

The upper arrow is the definition of ¢. The lower arrow is the rewriting according to the definition of
“false.” The inference-deducing inconsistency from the positive assertion of ¢ is as follows.

Begin
1. ¢ (assumption)
2. “¢ is true.” (immediately implied by 1)
3. If “¢ is true,” then ¢ is negative. (by the definition of ¢)
4. ¢ is negative. (from 2 and 3)
This contradicts 1.
End

To describe the paradox of the unexpected hanging, we first introduce the symbols used in the inference.
The prisoner’s ability to infer is denoted by T, a logical system. The day of the hanging is labeled
0,1,---,6. The first day is labeled 0 and called the 0-th day. ¢(z) is the formula used to determine the
day of the hanging. On the afternoon of the (z — 1)-th day, the prisoner knows that the hanging has not
been executed before the z-th day. Hence, the prisoner’s ability to infer on the afternoon of the (z — 1)-th
day, denoted by Ty, can be represented by T + {(Vy < z)-¢(y)}

The first pronouncement can be represented as follows:
(3z < 7)¢(x).

The second pronouncement can be represented as follows:
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For all z such that z is less than 7,

#(x) = “¢(z) is not predictable by T,."
< “¢(x) is predictable by T, is negative.

The inference used by the lawyer is naturally described as follows:

Begin
z :=6.
1. 3y < z)o(y) (the first pronouncement)
2. “¢(z) is predictable by T5.” (immediately implied by 1)
3. If “¢(x) is predictable by T3,” then ¢(z) is negative. (by the second pronouncement)
4. ¢(z) is negative. (from 2 and 3)
If z = 0, then 4 contradicts 1, else (Jy < z — 1)@(y) is obtained.
z:=z—1and gotol.
End

Comparing these inferences, the assertion is easily graspéd. “¢ is true” in the liar paradox corresponds
to “¢(z) is predictable by T,,” in the paradox of the unexpected hanging. O

A special framework, like temporal logic, is not needed to formalize this paradox. However, the
notion of predictability must be expressed. Since it is natural to express this notion by provability, a
strong theory in which meta-notions can be represented should be used to formalize this paradox. Peano
arithmetic is one such theory. However, the pronouncements will be inconsistent if expressed naturally
in Peano arithmetic because Peano arithmetic is too strong for formalizing them. bounded arithmetic is
better because it is neither too weak nor too strong.

3 Relation to the classical separation method

Our separation method using the paradox of the unexpected hanging looks quite new. However, it is
related to the well-known classical method (cf. §7.6 in [3]). We will now explain the relation between
our proof and the one for IX; # I, because our plan for proving the main theorem corresponds to the
structure of the proof of I¥; # I%,.

The proof consists of two statements.

1. IEQ (o Con(IZl)
2. I, i/ Con(I%,y)

Intuitively, IT; and I, are separated by Con(IX;). In other words, both consistency and inconsistency
of IL; + {~Con(I%,)} are proved based on the assumption IE; = IZ;. Inconsistency is proved by
showing that there is no model of IS + {~Con(IX;)}, and the truth definition of ¥;-formulas plays
an important role in the proof. Consistency is proved by Godel’s incompleteness theorem; this proof is
based on the liar paradox.

In our main proof, we will use T, which will be defined in the next section, instead of I%; (= I%,).
Both consistency and inconsistency of 7'+ {the two formalized pronouncements} will be proved. Here, T'
is roughly defined as the theory Sy + {P=NP}. Inconsistency is proved by the lawyer’s argument, based
on an extension of the argument of the liar paradox. Consistency is proved by showing that there is a
model of T + {the two formalized pronouncements}, that can be proved by forcing. Our method thus
twistingly corresponds to the proof of I¥; # I¥s.
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4 Relation to P versus NP problem

We have explained why the paradox of the unexpected hanging is related to separation of logical systems.
We will now intuitively explain why it is related to the P versus NP problem.

As a concrete example of NP-complete problems, we consider the clique problem (cf. page 47 in [5]).
Given a graph (V, E) and a positive integer J < |V|, let Vo, V4,---, V., be an enumeration of subsets of
V' (vertex). Then, the clique problem consists of n + 1 subproblems. For each i < m, it is easily checked
whether V; is a clique and J < |V{|, so each subproblem is in P. In other words, the clique problem is
a set of many subproblems such that each of them is in P. It is believed that there is no polynomial
time computable function calculating a true one from n + 1 subproblems (i.e. P#NP). This means that
there is no algorithm much better than checking them one by one. If P=NP, there is a polynomial time
computable function such that it calculates a true one from n + 1 subproblems.

Notions in the paradox of the unexpected hanging can be expressed by using notions of computational
theory. For example, the prisoner’s ability to infer is expressed by a Turing machine, predictability is
expressed by non-deterministic polynomial time computability, and so on. “Is the day of the hanging
predictable by the prisoner’s ability to infer? can then be considered as a problem of computational
complexity. Here, the length of the input is a log of the maximum time to execute, because pronounce-
ments can be coded by words whose length is bounded by a polynomial length of a log of the maximum
time to execute. On the other hand, the proof by the lawyer can be expressed by an instantaneous
description (ID). However, the length of the ID is exponentially longer than the input length, because
he eliminates candidates of the hanging one by one. Since we now regard predictability as polynomial
time computability, that hanging will occur on the first day is perhaps unpredictable by the prisoner.
(Because the prisoner needs an exponential length ID to prove that the hanging is the first day.) However,
if P=NP, there may be a polynomial time computable function such that it calculates the day of the
hanging, like the case of the clique problem.

5 Expressing notions in the paradox of the unexpected hanging

We show definitions how we express the notions used in the paradox of the unexpected hanging in bounded
arithmetic.

5.1 Prisoner’s ability to infer

The prisoner’s ability to infer is expressed by a computational system such as a Turing machine. In
this paper, the prisoner’s ability to infer is expressed by a theory T of bounded arithmetic defined by
extending theory S;. Let S; be a theory such that the language of S, has all symbols in the language
of Sy plus all symbols introduced in §2.4-§2.5 of [3] plus symbols for representing P=NP later, and the
axioms of S has all axioms of S, plus all axioms defining symbols introduced in §2.4-§2.5 of [3]. The
language of T is completely the same as that of S;. 7 has all the axioms in S2. The only difference
between T and S, is that T' contains axioms representing P=NP. This approach was also used by Takeuti
[11].

Definition 1 (The definition of (3z < t(a))A(z,a)) (3z < t(a))A(z,a) is an NP-complete_formula
w.r.t. Sz such that t is a term and A(a;,a3) i3 a sharply bounded formula in the language of S;. That
is, for any X}-formula A(a) in the language of S, there is a polynomial time computable function fa(a)
such that

52 F A(a) ¢ (3z < t(f(a)))A(z, fa(a))-

Remark. We selected one NP-complete formula (3z < t(a))A(z, a) and used it consistently in the
following argument. T is constructed by adding a new axiom for it, so T' depends on the choice of this
NP-complete formula. The main theorem will hold independently of its selection. The reader who wants
to avoid confusion due to this ambiguity can choose a concrete formula; (3z < t(a))A(z,a), for example,
is defined as a formalization of the class of clique problems. However, we do not know of any concrete
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form of f(a) that can be used in our next definition. O

Definition 2 (Definition of f) Since P=NP, there is a polynomial time computable function f that
satisfies

(3z < t(a))A(z,a) « f(a) < t(a) A A(f(a), a)-

We selected such a function, £(a), and use it consistently in this paper.

Now we define T'.

Definition 3 (Definition of T) The language of T is the same as the language of So. T has all the
azioms of Sa. Additionally, T has the following new azioms:

z < t(a), A(z,a) - f(a) < t(a), and

z < t(a), A(z,a) — A(f(a),a).
Furthermore, T has defining azioms to calculate the value of £ (x) for each value of x: these arioms are
introduced using limited iteration (§1.1 in [3]).
5.2 Judge

The judge is expressed by the ‘universe’ in which the prisoner thinks about the day of the hanging. It is
naturally expressed by a model of T'. However, it is not necessarily a standard model. In this paper, a
non-standard arithmetic model M[G] constructed by forcing will be selected as the judge.

5.3 Maximum time to execute

The maximum time to execute is naturally expressed by a number in the model. In this paper, it is a
non-standard number, denoted by n. Each day of the hanging is labeled by numbers 0,1,2,--- ,n. The
first day is labeled 0, and the last day is n.

5.4 The day of the hanging

The day of the hanging is determined by the number z (< n) such that #(x) is true in the model. It is
available that ¢(z) is true for more than two values of z. (Though this means that the hanging will be
executed more than two times.) In this paper, ¢(a) is defined as a II;-formula meaning “The prisoner
cannot predict a hanging on the (a — 1)-th day” as follows.

Let fo be the function defined by

foa) %F T((Fzo < a1) *x (Sub(a, a1, "o ) * M) 7);
ie.

fo : N—N
ih(a1)™ = "((3zo < a1)¥(20)) ™
We define 9(a1,a2) as

Plar,02) ' (Vo) -Prfr(er, FSub(fo(az),"a™, ),
where @ = (a1,a2). We then set § cef T(a1,az2)”, and define

#(a1) % (a1, £).
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Consequently, ¢(a;) is a II;-formula in the language of S,.

Then, S} proves

¢(0) © (Yw)-Prfr(w,"(3z < 0)¢(z)")
¢(1) & (Yw)=Prfr(w,"(3z < 1)¢(z)")
$(2) & (Yw)=Prfr(w,"(3z < 2)¢(z)")

Trivially, ¢(0) is equivalent to the consistency statement of 7. It can be said that the formula ¢(a) is
an extension of the Gédel sentence. Intuitively, ¢(a) is a formalization of “The prisoner cannot predict a
hanging on the (a — 1)-th day.”

5.5 Predictability

Defining predictability is very important when we express notions in the paradox of the unexpected
hanging in a formal system. Predictability will be expressed by bounded provability in this paper.

By the well-known method (cf. [3]), the notion “w is the Gédel number of a proof in T of a sequent
whose Gddel number is v” is formalized in the language of bounded arithmetic. This formula will be
denoted by Prfr(w,v).

As we express predictability by bounded provability, we have to determine a term that bounds lengths
of proofs: in other words, the ‘horizon’ of the prisoner’s thought. For any term #(a), there is a number
K2 such that ¢(a) is bounded by (£+ 2)(a+2)4---t(a + 22. (14— 2f(a+2)4---f(a+ 22 is abbreviated

——

K2 K2
as §*(a + 2). We determine k; as a very large number, as follows.

Definition 4 (Definitions of K2) K2 is a number such that
T+ A(@) — Thmp(§**(aq + 2), FSub("A(3)","a", &),
where @ = (a1,a2,a4) and A(a1,az,a4) is any % -formula,
(a1 < Vz < a3) Thmr(aq, FSub(n, "(z, a2)", (z, az))).
(n is a Godel number of a formula.)

The existence of k, is guaranteed from the theorem by Buss [3], since we assume P=NP. In contrast,
the existence of &3 is not guaranteed if P#NP. Intuitively, §*3(a + 2) is an exponent of |a| since P+#£NP.
Let 7(a) be a term §*3 (a +2). We define 7-provability as predictability.

5.6 Preliminary description of pronouncements

We define ¢(a;) to mean that ‘The hanging takes place on the a;-th day.’ For example, ¢(0) means
that ‘The hanging takes place on the first day.’ Let az be a free variable denoting the maximum time to
execution. The first and second pronouncements depend on ¢ and az, so they are denoted by J;(¢,az)
and J;(¢, az). More precise ones are given in Lemmas 2 and 3.

Additionally, p(a;) is defined as (3zg < a;)@(zo), i.e.

p(a1) € (3zo < a1)é(zo0).

The first pronouncement is then naturally denoted by ¢(az). However, we make a further claim about
the recognition by the prisoner. This claim is represented by “There is a short proof of the first pro-
nouncement.” This is represented by a X%-formula %(a) defined by

P(az) € Thmz(o(az), FSub("p(a2)™, a7, a)),
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where o(az) is (a2 + 2)f(a2 + 2).
The first pronouncement is then defined as

Ji(¢,a2) : p(a2) AP(az)-

Next, we present a preliminary formalization of the second pronouncement. The prisoner’s ability to
infer before he hears the pronouncements is defined as 7. The prisoner on the afternoon of the (a1 —1)-
th day knows that the hanging did not occur before the a;-th day. Therefore, it can be represented by

T+ {(Vz < a1)~¢(z)}.
“The hanging on the a;-th day cannot be predicted by the prisoner’ is intuitively represented by

There is no short proof of ¢(a;) in T + {(Vz < a1)-¢(x)}.
This is almost the same as
There is no short proof of p(a; +1) in T

by deduction theorem. Let 7(az) be 2 (ag + 2), where k; is the number defined in Definition 4. This
term is the length bound on the proofs available to the prisoner. ‘The hanging on the a;-th day cannot
be predicted by the prisoner’ can then be represented by '

~Thmr(r(az), FSub("p(a; +1)7,"a17, a1)).

The lawyer interprets the second pronouncement to mean that “If the prisoner can predict the day of
execution, the hanging cannot take place on that day.” Pronouncement J2(@, az) is thus denoted by

Jo(¢,a2) : (Thmr(r(az), FSub("p(ar +1)7,7a17,a1)) = ~é(a1)) for all a1 < az.

6 Main theorem

Main Theorem. B # T implies P#NP.

The precise definitions of B and Z will be given in §6.2. The outline of the proof of our main theorem
is described as follows. More detailed explanations will be given in §6.1-§6.4

Outline of proof. Suppose P=NP and B # Z. Our purpose is to show a contradiction.

(6.1 T+ {®(n+ 1)} + ezp is consistent.) We show that there is a countable non-standard model, named
N, of T+ {®(n+1)} + exp. N will be used as the ground model of forcing. The existence of N is proved
by Corollary 8.14 in [14]. A non-standard number n € N, which means the maximum time to execution
minus one, will also be selected in this subsection. :

(6.2 T + {¢(n + 1)} + {B(n + 1)} is consistent.) A non-standard model, M [G], of T will be constructed
by forcing, which is the same method as [12]. M[G] |= B(n + 1) since the forcing extension on bounded
arithmetic preserves the basic properties of the ground model. On the other hand, M Gl B p(rn+1)
is made true since a non-standard number a such that M[G] = ¢(a) is added by forcing. Here, the
condition B # T is necessary for constructing the model M[G].

Then, we obtain M[G] =T + J1(¢,n + 1).

(6.3 T + Ji(¢,n + 1) + Jo(¢,n + 1) is consistent.) The second pronouncement Jo(¢,n + 1) is proved in
T. This means M[G] =T + Ji(¢,n + 1) + Jo(¢,n + 1).
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(6.4 T+ Ji(¢,n+1) + Jo(¢,n +1) is inconsistent.) We show that T + J (¢yn+ 1)+ J2(¢,n + 1) implies
inconsistency.

Since M[G] is a model of T, we have M[G] |= 0 = 1. This is a contradiction. (End of outline)

6.1 T+ {®(n+1)}+ ezp is consistent.

Lemma 1 There is a countable non-standard model N of T + exp and a non-standard number n € N
such that

N Ep(n+1),
where n + 1 = 2™ for some ng € N.

We select a countable non-standard model N and a non-standard number n € N , and use them
consistently in this paper.

6.2 T+ {p(n+1)}+{p(n+1)} is consistent.
Definition 5 (Definition of M) M is defined as the initial segment of N:

M {z € NJ| there ezists some nfj- - - in such that z < nf---n}.

Then, M is a model of T'. Obviously,
MEBn+1).

M is determined according to the non-standard element n € N.

ng is defined as |n|. Let B be the same as the Boolean algebra defined in [12]. A new number, a
(< n+1), which is probably not included in M, is added to model M by forcing. Intuitively, this number
corresponds to the day of the hanging. Only the a; = n+ 1(= 2™) case will be considered in the following
argument.

¢, is defined by

$u(a1) € (Vo < I (n + 1)~Prfp(w, FSub("p(a1)7, "a,7, ay)).

The second-order bounded formula corresponding to ¢, () is denoted by the same symbol, ¢, (X )s
where X is a subset of {ili < ng}. Since any polynomial time computable function is represented by a
circuit, ¢, (X) can be translated into a Boolean circuit.

Let C, be this Boolean circuit. In it, each input terminal is labeled as a variable or a constant (0 or
1). Without loss of generality, we can assume that C, has no input variable terminals and one output
terminal, because |X| is always bounded by ng. Input variables will be denoted by zo,x1,--- yTpgl1-
Nodes except for input terminals are called gates. They are labeled A, V, or . The gates of C, can be
coded by a computable function because ¢, () consists of polynomial time computable functions.

If we let X be a subset of {ili < no}, we can regard X as an input by setting z; = 1if i € X and
z; =0if i ¢ X for any ¢ < ng. The value of the output when X is input into C, is denoted by C,(X).

Xg is defined as a function from {i|i < ng} to B

Xg:im z;.
We define ig(X) as
ic(X) = {z <y|X(z) € G}.
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The value of the output when X is input into C, is denoted by C,(Xg); a (< n+ 1) is defined as the
number corresponding to Xg, i.e.

(The j-th bit of @) =1 iff j €ig(Xc)-

We transform C, into a conjunctive normal form, ¥,, in N. C, cannot be transformed into ¢, in M
because many clauses appear in 9,.. Let

"/)V = /\ '¢7u,1' (1)
ie2kv
dvi = \ @V V z,
jeCV:" jeéu,i
where each 1,,; (i € 2°7) is called a clause. {Zo, - ,Zn,—1} are atomic Boolean variables, and z; and Z;

correspond to Bit(j,z) = 1 and Bit(j,z) = 0, respectively. 2K+ is the set of indexes of clauses. Cy,; and

C,; are subsets of {j|j < no}. We assume C, ;N C,,; = 0, because otherwise Vijec,.%iVVjec, . T =1,
meaning it can be eliminated from the decomposition (1) of 4,. However, C,:UC,;={jli <no} does
not generally hold.

We introduce the ideal Z that will be used for the forcing.

Definition 6 (Definitions of Z) Z is defined as the Myp-complete ideal generated from
(=, :lv € N,i € 2%} (2)

in B, where 1, ; is the clause defined in (1).
More precisely, b € T iff there is a function ~y : ¢ = B such that

1. c € My,
2. there is a finite subset {—%,k &, - ,—!w,,; i } of (2) such that
k' Ik

~P,p e VooV e 2 (k) in B
17 K’ Ik
for allk < c, and
3.b< Vk<c 7(k)
Obviously, T C B. I cannot be defined in M.

It is proved that for any » € N and for any i € 2K {b € B|b < v,,;} is definable and dense over Z. There
does not exist an M-generic maximal filter over Z without the condition B # Z, because it should be
contained in B\ T. '

Definition 7 G is an M-generic mazimal filter over T. M[G) is defined in the same way as in [12].

The existence of G is guaranteed by the assumption B # Z. Then, M[G] is a model of T and M [Glisa
bounded extension of M by [12] since P=NP is assumed.

Lemma 2 M[G] E ¢(n+ 1) A@(n + 1)

6.3 T+ Ji(¢,n+ 1)+ Jo(¢,n+ 1) is consistent.

The formalization of the second pronouncement is proved by theory T'. It is strictly described as follows.

Lemma 3 There is a finite number, ko, such that for each value of k2 > Ko, 5'% proves
a1 < ag, Thmp(7(az), FSub(Tp(ar + 1)7,"a17,a1)) = —¢(a1),

where T(ag) = ﬂ"g(az +2). Furthermore, there is a polynomial function of kg such that for each value of
kg there is a proof for the above sequent, whose length is bounded by a polynomial function of k2.

Then, we can conclude M[G] = T + Ji(¢,n+ 1) + Jo(¢,n + 1).
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Abstract

A new approach to the P versus NP problem based on Gédel’s incompleteness theorem and forcing
is proposed. The assertion that the paradox of the unexpected hanging can be regarded as a kind
of partial extension of the liar paradox is applied. Pronouncements are formalized in the language
of extended Buss’ bounded arithmetic. The pronouncements are shown to be both consistent and
inconsistent when P=NP and an assumption hold. As a consequence, it is proved that P#NP is
reducible from another separation problem of an ideal from a Boolean algebra.

Keywords
P versus NP, Computational complexity, Forcing,
Géodel’s incompleteness theorem, Bounded arithmetic, Paradox

1 Introduction

The structure of weak arithmetic systems described by S3, which is called bounded arithmetic, is closely
related to the structure of the polynomial time hierarchy. P#£NP is said to be deducible from the
separation of bounded arithmetic theories. One well-known method for separating arithmetic theories
combines Gddel’s incompleteness theorem and the truth definition (cf. §7.6 in (3], page 140 in [7], and
§10.5 in [8]). However, the separation of bounded arithmetic theories has not yet been proved using
such a method. This is because the truth definition of Tb-formulas cannot be represented by a bounded
formula in the language of Sz (cf. [9]).

We generalize the above separation method by applying the paradoz of the unezpected hanging [4},
which is as follows. “One Saturday, the prisoner was told by the judge, “You will be hanged at noon
on one day next week. You will be hanged on a day you cannot predict.” The prisoner’s lawyer proved
that the hanging could not be executed by making the following argument: ‘If the day of the hanging
is Saturday, the prisoner will be able to predict it Friday afternoon because Saturday is the last day
of the next week. This contradicts the judge’s second pronouncement. Saturday is thus excluded. The
execution can only take place on a day before Saturday. In the same way, each final day can be eliminated
one by one.” ”

It is now asserted that this problem is not a paradox because the day of the hanging is not predictable
by the prisoner even if he (or she) makes full use of all the information contained in the pronouncements
(cf. [2]). The author agrees with this assertion. However, this problem can still be applied to the
separation of logical systems, given the following observation: The paradoz of the unezpected hanging
can be regarded as a kind of partial extension of the liar paradoz. The separation method based on
Godel’s incompleteness theorem and the truth definition can be naturally generalized by applying this
observation. If we apply this generalized method to bounded arithmetic theories, the role of the truth
definition is replaced by forcing. The M-generic maximal filter constructed by forcing on bounded
arithmetic naturally corresponds to the number meaning the day of the hanging.

If we apply this method to the P versus NP problem, it is proved that P#NP is reducible from
another separation problem of an ideal Z from a Boolean algebra B. (The precise definitions of B and 7
will be given in §6.2.) The proof sketch is described as follows. Suppose P=NP and B # Z. There is an

*This work was done while the author belonged to NTT East Corporation.
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6.4 T+ Ji(p,n+1)+ Jo(é,n+ 1) is inconsistent.

Inconsistency of the pronouncements cannot be deduced by coding the lawyer’s logic because an extremely
long proof would be needed. The longer the maximum time to execution, the exponentially larger the
proof. There is not a term capable of bounding such a series of proofs. The assumption NP=co-NP
makes it possible to deduce inconsistency using a short proof.

Lemma 4 T proves

a1 < az,¢(az2),P(az) = ¢(a).

Proof of Main Theorem. Suppose P=NP and B # Z. Lemmas 1 — 4 are thus true. If we set a; = 0
in the assertion of Lemma 4,

T+ ¢(as),P(az) = (3z < 0)¢(z), ()

since ¢(0) = (3z < 0)¢(z) by the definition of p. Let M[G] be the model defined in Definition 7. Then,
M]|G] is a model of T', so (3) implies

M[G] = o(n+1) AB(n + 1) - (3z < 0)¢(z)

if we set a2 = n + 1. We have already proved M[G] = ¢(n + 1) AB(n + 1) in Lemma 2. Hence,
M[G] k= (3z < 0)¢(z). This implies M[G] = (3z)(z < 0). However, M[G] = (Vz)(z > 0) by the third
axiom of BASIC (3]. Hence, M[G] |= 0 = 1. This is a contradiction. O
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