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1 Introduction
In this paper, we discuss on the design ofDNA sequences for DNA computing([Ad194$]$ ).
DNA strand design is one of the most important problems in order to obtain
successful results of biological experiments. Furthermore, it is also important
not only in DNA computing technology but in other biotechnologies such as the
design of DNA chips.

Most of previous works introduced some variants of Hamming distance be-
tween sequences, and proposed methods to minimize the similarity between se-
quences based on that measure([GND97]). Typical and well known approaches
contain combinatorial word design, random generation, and genetic algorithms,
etc ([BKSOO][DGR98][FLT97]). Recently, [AK02] proposed an interesting design
method, called template method, for DNA word design.

This paper contain some results to further extend the template method. We
propose to use multiple templates instead of single template in order to increase
the number of DNA sequences to be designed. Further, we will report some
theoretical properties of templates.

2Template Method
In this paper, we focus mainly on the set of words over the alphabet either
$\Sigma_{dna}=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ or $\Sigma_{01}=\{0,1\}$ . The words over $\Sigma_{01}$ are used by the
template method ([AK02]) for designing DNA sequences over $\Sigma_{dna}$ .

Let $x=x_{1}\cdots$ $x_{n}$ be aword on the alphabet $\Sigma$ with $x:\in\Sigma$ $(i=1, \ldots, n)$ . By
$<x$ $>$ , we denote the proper subword of $x$ of length $n-2$ . In case of $n$ $<2$ ,
$<x>\mathrm{i}\mathrm{s}$ defined to be the empty word A. The reverse of $x$ , denoted by $x^{R}$ , is
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the word $x=x_{n}\cdots x_{1}$ . If $\Sigma=\Sigma_{dna}$ , the complement of $x$ , denoted by $\overline{x}$ , is the
word obtained by replacing each Ain $x$ by $\mathrm{T}$ and vice versa, and by replacing
each $\mathrm{C}$ in $x$ by $\mathrm{G}$ and vice versa. In case of $\Sigma=\Sigma_{01}$ , $\overline{x}$ is the word obtained by
replacing each 0in $x$ by 1and vice versa.

Let $y=y_{1}\cdots$ $y_{m}$ be aword on the alphabet $\Sigma$ with $y_{}\in\Sigma$ $(i=1, \ldots, m)$ . In
case of $n=m$, the Hamming distance $H(x, y)$ between $x$ and $y$ is the number
of indices $i$ such that $x:\neq y$ . For afinite set $S$ of words of the same length,
$H(S)$ is the minimum Hamming distance among all pairs of distinct elements
in $S$ .

In case of $n\leq m$ , we define:

$H_{M}(x, y)= \min$ { $H(x,$ J) |t is asubword of y of length n}.
In case of $n$ $>m$ , $HM\{x,$ $y$) is defined to be $n$ .

The template method is proposed to find aset of DNA sequences satisfying
the following constraints. Let us consider the case when we are designing aset
$S$ of words over $\Sigma_{dna}$ of the same length.

1. Hamming distance–For any pair of distinct words x, y in S, $\#(\mathrm{x},$y)
should be at least agiven integer d.

2. Hamming distance with reverse-complement –For any pair of
(possibly the same) words $x$ , $y$ in $S$ , $H(x,\overline{y}^{R})$ should be at least agiven
integer $d$ .

3. Hamming distance between concatenated words –For any (pos-
sibly the same) words $x$ , $y$ , $z$ in $S$ , $H_{M}(x, <yz>)$ , $H_{M}(x, <\overline{y}^{R}\overline{z}^{R}>)$ ,
$Hu(x, <y\overline{z}^{R}>)$ , and $Hu(x, <\overline{y}^{R}z>)$ should be at least agiven integer
$d$ .

4. GC content–The number of occurrences of $G$ , $C$ in aword $x$ is called
GC content of $x$ . Then, this constraint requires every word in $S$ should
have the same GC content. GC content is an important indicator of the
melting temperature of short oligonucleotides.

We define:

$R(S)$ $=$ $\min\{H\mathrm{n}\mathrm{r}(x,\overline{y}^{R})$ , Hm $(\mathrm{x}, <yz>)$ , Hm $(\mathrm{x}, <\overline{y}^{R}\overline{z}^{R}>)$ ,
$H_{M}(x, <y\overline{z}^{R}>)$ , $H_{M}(x, <\overline{y}^{R}z>)|x$ , $y$ , $z\in S\}$ ,

$||S||$ $=$ $\min\{H(S), R(S)\}$ .

Then, the problem above can be formulated as follows:

Problem 1For agiven positive integer d and n, design aset S of n words over
$\Sigma_{dna}.$. such that $||S||\geq d$ and GC content of each word in S is the same to each
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In order to solve this problem, the template method ([AK02]) uses aDNA
sequence representation by apair of binary words. Let us consider two hom0-
morphisms $\phi$ , $\psi$ : $\Sigma_{dna}^{*}arrow\Sigma_{01}$ such that $\phi(G)=\phi(C)=1$ , $\phi(A)=\phi(T)=0$

and $\psi(A)=\psi(G)=1$ , $\psi(C)=\psi(T)=0$ . For aword $w$ over $\Sigma_{dna}$ , the binary
represention of $w$ is defined to be $(\phi(w), \psi(w))$ , where $\phi(w)$ and $\psi(w)$ are called
$\mathrm{G}\mathrm{C}$-component and $\mathrm{A}\mathrm{G}$-component of $w$ , respectively 1. Note that the binary

representation of $\overline{w}^{R}$ is $(\phi(w)^{R}, \overline{\psi(w)}^{R})$ .
The idea of template method is summarized as follows. In the template

method, $\mathrm{G}\mathrm{C}$-component of every word in $S$ is fixed, and its unique GC-component
is called $\mathrm{G}\mathrm{C}$ template of $S2$ . The $\mathrm{G}\mathrm{C}$ template of $S$ is carefully chosen so that
$R(S)\geq d$ holds for agiven $d$ . On the other hand, $\mathrm{A}\mathrm{G}$-component of every word
in $S$ is designed so that $H(S)\geq d$ holds, for which we can use the theory of
error correcting codes. Furthermore, since the $\mathrm{G}\mathrm{C}$-component of every word in
$S$ is fixed, the constraint of GC content is also satisfied.

In order to find a $\mathrm{G}\mathrm{C}$ template of $S$ such that $R(S)\geq d$ , it is useful to
introduce the followig notation for abinary word $x$ :

$||x||$ $=$ $\min\{H(x, x^{R})$ , $H_{M}(x, <xx>)$ , $H_{M}(x, <x^{R}x^{R}>)$ ,
$H_{M}(x, <xx^{R}>)$ , $H_{M}(x, <x^{R}x>)\}$ .

Then, for finding a $\mathrm{G}\mathrm{C}$ template of $S$ such that $R(S)\geq d$ , it suffices to find a
binary word (GC-template$\rangle$ $x$ such that $||x||\geq d$ . In [AK02], some theoretical
analysis on the $\mathrm{G}\mathrm{C}$-templates was presented. Furthermore, for the length $l\leq 30$ ,
all of the best $\mathrm{G}\mathrm{C}$-templates are searched exhaustively, and presented at the
appendix.

3Using Multiple Templates
In this section, we will discuss on the effectiveness of using multiple templates.
Let $T$ be afinite set of binary words of length $n$ to be used as templates. Then,
we define:

$R’(T)$ $=$ $\min\{H(x, y^{R})$ , $H_{M}(x, <yz>)$ , $H_{M}(x, <y^{R}z^{R}>)$ ,
$H_{M}(x, <yz^{R}>)$ , $H_{M}(x, <y^{R}z>)|x$ , $y$ , $z\in T\}$ ,

$||T||$ $=$ $\min\{H(T), R’(T)\}$ .

It is straightforward to see the following facts:

Fact 1For any set T of binary words such that $||T||\geq d$ and any set S of
words over $\Sigma_{dna}$ using T as aset of $\mathrm{G}\mathrm{C}$-templates, $R(S)\geq d$ holds.

1In [AK02], the bitwise negation of $\phi(w)$ is called atemplate of $w$ , and $\psi(w)$ is called a
code of $w$ .

$2\mathrm{I}\mathrm{n}$ [AK02], the bitwise negation of $\mathrm{G}\mathrm{C}$-template is just called as template
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In Table 1we summarize the obtained results on the maximum $||T||$ values
of multiple templates, where the number of words of $T$ is 2. The integers in
the round brackets are the number of $T$ that gives the maximum $||T||$ values.
In the representation $[x, y]$ , $x$ and $y$ are lower and upper bounds, respectively.
The suffix $g$ represents that this lower bound was obtained by applying genetic
algorithms.

Table 1: Maximum $||T||$ values of multiple Templates T of size 2

In case of $l=18$ , we can, for instance, choose as aset of $\mathrm{A}\mathrm{G}$-components, a
code of length 18, Hamming distance at least 6, and constant weight 9, which
consists of 304 code words(Table I-B in [BSS90]). Therefore, we can design
608 DNA sequences. In case of $l=24$ , we can, for instance, choose as aset
of $\mathrm{A}\mathrm{G}$-components, acode of length 24, Hamming distance at least 8, and
constant weight 12, which consists of 2576 code words(Table I-C in [BSS90]),
which produces 5152 DNA sequences. Although we should further check by
biological experiments whether $\frac{l}{3}$ mismathes are enough or not, these examples
demonstrate the potential effectiveness of multiple templates method for not all
but some selected lengths.

4Some Properties of Templates
In this section, we give atheoretical analysis on the properties of GC-templates.

Let us consider the behavior of the following function:

$\mu(l)$ $=_{def}$
$\max\{\frac{||x||}{l}|x\in\Sigma^{l}\}$ .

By the same discussion as in Lemma 2.5 of [AK02], we can derive the fol-
lowing theorem.

Theorem 1For any $l$ , $\mu(l)\leq\frac{1}{2}$ holds.

Furthermore, we can show the following main theorem.

Theorem 2For infinitely many $l$ ’s, $\mu(l)\geq\frac{11}{30}$ holds.
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5Conclusions
This paper presented some results to further extend the template method. We
proposed to use multiple templates method, which was shown to have potential
abiity to increase the number of DNA sequences to be designed. Finally, we
derived some theoretical properties of templates.

However we have the following problems to be studied in the future works.
At first, the validity of the proposed template method should be checked by bi-
ological experiments. In particular, it should be checked whether $\frac{1}{3}$ mismatches
of length $l$ sequences is enough or not. Although some properties of templates
are presented in the current paper, most of the important properties have not
been revealed yet. In particular, the reason why the best templates of length
1might have approximately $\frac{l}{3}$ mismatches is not clear. Finally, the proposed
method does not guarantee the optimality in the number of sequences to be de-
signed, or in the number of mismaches between sequences. Further theoretical
analysis should be done in amore general framework.
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