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On cellular automata

Tadakazu Sato Department of information and Computer Sciences

Faculty of Engineering Toyo University
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The polynomial representation of the parallel map makes us easy to discuss linear
cellular automata, a subclass of cellular automata, and mahy results on them have
been obtained . |

In this report, we make a list of some problems and conjectures on cellular automata
from point of linear cellular automata. For simplicity, we state the notations and
the definitions needed in the following in the case of one dimensional cell space.

Let 7 denote the set of all integers, called the set of cells. Let R denote a finite set
(a state set at each cell). A map from Z to R is called a configuration, the set of all
configuratiéns is denoted by R*.Amap f from R” to R iscalled a local map with
scope n. By acting the local map to each cell simultaneously, the parallel map f, from

R? toitself is defined as follows.

fo®) =y & [fE@)x(+1]),,x@+n-1)

In particular, when the local map f islinear, thatis, R isaring and fis

writtenas f = Za X (a ; € R), the parallel map f is defined as follows.

n
fo)=y e y)=axi+j-1)
j=1
Now define a shift map o : R — R as follows. 0'(x) =)y & y(i) = x(i + 1)
By using the shift map, we can write the linear parallel map as follows.
n
= J-1
f o Z a J o
j=1
Then replacing ¢ by an indeterminate X, we obtain a polynomial representation.
Therefore the following correspondence is considered.

fo =‘;_“,a,.af“ o FX) =ia P.ca

j=l j=1
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For xeR* and f(x)eR*, put C(X)=> x())X" and C'(X)=) f.(x)DX™.

ieZ ieZ
Then we have C'(X)=F(X)C(X). From this, we see that if G(X ) is a

polynomial representation of g_,thatis, .
g8.=2b0"" o GUX)=Ybx"

then we have f_ g & F(X)G(X).
Thus, the polynomial representation of the parallel map for linear cellular automata
makes us easy to investigate the properties of maps such as injectivity ,surjectivity

and dynamical behavior of them.

Problem 1. Find a mathematical method to characterize the general cellular

automata with two or more higher dimension.

Definition 1. Let f be a local map over R.
S is injective on R & f_ is injective on RZ.
f is surjective on R & f_ is surjective on RZ.
S isktoonemapon R & f, isktoonemapon RZ.

f has a finite order & 7k,n, f." =o*.

For linear cellular automata, the number of local maps in each class defined

above is given as a function of | R | and scope n.

Problem 2. For general cellular automata , find the each function of | R | and
scope n which denotes the number of the desired local maps.

It is well known that for linear cellular automata with two or more higher dimension,

there is no k to 1 parallel map except injective map.

Problem 3. For general cellular automata with two or more higher dimension, does k

to one parallel map always take injective one ?

For one dimensional linear cellular automata, it is well known that surjective
parallel map and k to one map are equivalent, and k takes the value in the set of

divisorsof | R | ™.
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Problem 4. For k to one parallel map of one dimensional general cellular automata,

does k take the value in the set of divisors of | R | n1 o9

Problem 5. Is it decidable that a local map f has a finite order?

( For linear cellular automata, it is decidable.)

R? is also viewed as a probability space. Let x € R?. Consider a sequence of
configurations such as x , f_ (x), f, (X)), ee , f ()" oo

A sufficient condition for a parallel map to be ergodic is already known.

Problem 6. Is it decidable whether a parallel map f, is ergodic or not?

( For linear cellular automata, it is decidable.)

Definition2. Let f = Za ;%X; bealocal map over Z . We say that f has a group

structure if the following statement holds.
The power set of f denoted by < f > forms a group under
the operation * defined below and any local map belongs to < >

neZ}l, f2=f*f=zajzxj

is injective, where < f >= { f”

Therefore parallel maps are classified in the following.

. oup — structure
injectivity

surjectivity non — group — structure

parallel map _ _
non — injectivity

non — surjectivity

Fig.1 Classification of parallel maps

The group structure appears in the process of finding its reversible linear cellular
automaton and the problem of finding its inverse automaton can be reduced to that of
finding its inverse element of the group. Furthermore it is known that such groups

regardless of their scopes are isomorphic to each other.
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Problem 7. What is the algabraic properties of cellular automata with

group structure?
The parallel maps of cellular automata has the following relation as shown in Fig.2.

/. isinjective < f_ isreversible
U

[, is surjective
Fig.2 Richardson’s relation

This relation holds only when the state set of each cell is finite. And if we put a infinite
set as the state one, then above relation does not always hold even for linear cellular
automata. Thus it arises a problem that what conditions for the ring are needed in

order to always hold Richardson’s relation.

Definition3 Let R be a ring. When the parallel map £, defined by a local map f
over R is always satisfied the following condition, we say R a cellular ring.
And if the parallel map for linear cellular automata over R is always satisfied, then

We say R alinear cellular ring. Clearly the former is included in latter by definition.
f. isinjective © f. isreversible

The examples of linear cellular ring as known by now are found for 0-dimensional

rings only.

Problem 8. Is it valid that a commutative ring R is a linear cellular ring
ifand only ifdim R =07?

Problem 9. Decide whether a cellular ring is equivalent to a linear cellular one

or not.

Problem 10. Can you see the outline of general cellular automata from the
properties of linear cellular automata over Z,_?
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