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The polynomial representation of the parallel $\grave{\mathrm{m}}$ap makes us easy to discuss linear

cellular automata, asubclass of cellular automata, and many results on them have

been obtained .
In this report, we make alist of some problems and conjectures on cellular automata

from point linear cellular automata. For simplicity, we state the notations and

the definitions needed in the following in the case of one dimensional cell space.

Let $\mathrm{Z}$ denote the set of all integers, called the set of cells. Let $\mathrm{R}$ denote afinite set

(a state set at each cell). Amap from $\mathrm{Z}$ to $\mathrm{R}$ is called aconfiguration, the set of all

configuratidns is denoted by $R^{Z}$ . Amap $f$ from $R^{n}$ to $R$ is called alocal map with

scope $\mathrm{n}$ . By acting the local map to each cell simultaneously, the parallel map $f_{\infty}$ from

$R^{Z}$ to itself is defined as follows.

$f_{\infty}(x)=y$ $\Leftrightarrow$ $f(x(i),x(i+1),$ $\cdots$ , $x(i+n-1))$

In particular, when the local map $f$ is linear, that is, $R$ is aring and $f$ is

written as $f= \sum a_{j}x_{j}$ $(a_{j}\in R)$ , the parallel map $f_{\infty}$ is defined as follows.

$f_{\infty}(x)=y$ $\Leftrightarrow$ $y(i)= \sum_{j-1}^{n}a_{j}x(i+j-1)$

Now define ashift map $\sigma:R^{Z}arrow R^{Z}$ as follows. $\sigma(x)=y$ $\Leftrightarrow$ $y(i)=x(i+1)$

By using the shift map, we can write the linear parallel map as follows.

$f_{\infty}= \sum_{j=1}^{n}a_{j}\sigma^{j-1}$

Then replacing $\sigma$ by an indeterminate $\mathrm{X}$ , we obtain apolynomial representation.

Therefore the folowing correspondence is considered

$f_{\infty}= \sum_{j=1}^{n}a_{j}\sigma^{j-1}$
$rightarrow$ $F(X)= \sum_{j=1}^{n}a_{j}X^{j-1}$
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For $x\in R^{Z}$ and $\mathrm{C}(\mathrm{x})\in R^{z}$ put $C(X)= \sum_{i\epsilon Z}x(i)X^{-i}$ and $C’(X)= \sum_{i\epsilon Z}f_{\infty}(x)(i)X^{-i}$

Then we have $C’(X)=F(X)C(X)$ . From this, we see that if $G(X)$ is a
polynomial representation of $g_{\infty}$ , that is ,

$g_{\infty}= \sum b_{\mathit{1}}\sigma^{j-1}$ $rightarrow$ $G(X)= \sum b_{j}X^{j-1}$

then we have $f_{\infty}g_{\infty}rightarrow \mathrm{F}(\mathrm{X})\mathrm{C}(\mathrm{X})$ .
Thus, the polynomial representation of the parallel map for linear cellular automata
makes us easy to investigate the properties ofmaps such as $\mathrm{i}\mathrm{n}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{t}\mathrm{y},\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{t}\mathrm{y}$

and dynamical behavior of them.

Problem 1. Find amathematical method to characterize the general cellular
automata with two or more higher dimension.

Definition 1. Let $f$ be alocal map over $R$ .
$f$ is injective on $R$ $\Leftrightarrow$

$f_{\infty}$ is injective on $R^{Z}$

$f$ is surjective on $R$ $\Leftrightarrow$
$f_{\infty}$ is surjective on $R^{Z}$

$f$ is $\mathrm{k}$ to one map on $R$ $\Leftrightarrow$
$f_{\infty}$ is $\mathrm{k}$ to one map on $R^{Z}$

$f$ has afinite order $\Leftrightarrow$ $\exists k$, $n,f_{\infty}^{n}=\sigma^{k}$

For linear cellular automata, the number of local maps in each class defined
above is given as afunction of 1 $R|$ and scope $\mathrm{n}$ .

Problem 2. For general celular automata , find the each function of I $R|$ and
scope $\mathrm{n}$ which denotes the number of the desired local maps.

It is well known that for linear celular automata with two or more higher dimension,

there is no $\mathrm{k}$ to 1parallel map except injective map.

Problem 3. For general cellular automata with two or more higher dimension, does $\mathrm{k}$

to one parallel map always take injective one $\nabla$

For one dimensional linear cellular automata, it is well known that surjective
parallel map and $\mathrm{k}$ to one map are equivalent, and $\mathrm{k}$ takes the value in the set of

divisors of 1 $R|$ n-l

60



Problem 4. For k to one parallel map of one dimensional general cellular automata,

does $\mathrm{k}$ take the value in the set of divisors of $|R|$
n-l ?

Problem 5. Is it decidable that alocal map $f$ has afinite order?

(For linear cellular automata, it is decidable.)

$R^{Z}$ is also viewed as aprobability space. Let $\mathrm{x}\in R^{Z}$ Consider asequence of

configurations such as $x$ $f_{\infty}(x),f_{\infty}(x)^{2}$ , $\cdots$ , $f_{\infty}(x)^{n}$ , $\cdots$ .

Asufficient condition for aparallel map to be ergodic is already known.

Problem 6. Is it decidable whether aparallel map $f_{\infty}$ is ergodic or not?

(For linear cellular automata, it is decidable.)

DefinitiOn2. Let $f= \sum a_{j}x_{j}$ be alocal map $\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}Z_{m}$ . We say that $f$ has agroup

structure if the following statement holds.

The power set of $f$ denoted by $<f>\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{s}$ agroup under

the operation $defined below and any local map belongs to $<f>$

is injective, where $<f>=\{f^{n}|n\in Z$ I $f^{2}=f*f= \sum a_{j}^{2}x_{j}$

Therefore parallel maps are classified in the following.

parallel map $\{$

$surjectivity\{_{non-injectivity}^{injectivity\{\begin{array}{l}group-structurenon-group-structure\end{array}}$

non surjectivity

Fig.l Classification of parallel maps

The group structure appears in the process of finding its reversible linear cellular

automaton and the problem of finding its inverse automaton can be reduced to that of

finding its inverse element of the group. Furthermore it is known that such groups

regardless of their scopes are isomorphic to each other
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Problem 7. What is the algabraic properties of cellular automata with
group structure?

The parallel maps of celular automata has the following relation as shown in Fig.2.

$f_{\infty}$ is injective 9 $f_{\infty}$ is reversible
$\Downarrow$

$f_{\infty}$ is surjective

Fig. 2 $\mathrm{R}\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{s}\mathrm{o}\mathrm{n}’\mathrm{s}$ relation

This relation holds only when the state set of each cell is finite. And ifwe put ainfinite
set as the state one, then above relation does not always hold even for linear cellular
automata. Thus it arises aproblem that what conditions for the ring are needed in
order to always hold Richardson’s relation.

$\underline{\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}3}$ Let $R$ be aring. When the parallel map $f_{\infty}$ defined by alocal map $f$

over $R$ is always satisfied the following condition, we say $R$ acellular ring.
And if the parallel map for linear celular automata over $R$ is always satisfied, then
We say $R$ alinear cellular ring. Clearly the former is included in latter by definition.

$f_{\infty}$ is injective 9 $f_{\infty}$ is reversible

The examples linear cellular ring as known by now are found for O’dimensional
rings only.

Problem 8. Is it valid that acommutative ring $R$ is alinear cellular ring
if and only if $\dim R=0$ ?

Problem 9. Decide whether acellular ring is equivalent to alinear cellular one
or not.

Problem 10. Can you see the outline of general cellular automata ffom the
properties of linear cellular automata over $Z_{m}$ ?
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