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Abstract

We consider fiber-preserving complex dynamics on fiber bundles
whose fibers are the Riemann spheres and whose base spaces are com-
pact metric spaces. We define the semi-hyperbolicity of dynamics on
fiber bundles. We will show that if adynamics on fiber bundle is semi-
hyperbolic, then we have that the fiberwise Julia sets are k-porous and
that the dynamics has akind of weak rigidity. We also show that the
Julia set of rational semigroup(semigroup generated by rational maps
on $\overline{\mathbb{C}}$) which is semi-hyperbolic except at most finitely many points in
the Julia set and satisfies the open set condition is porous or is equal to
the closure of the open set. Note that if aset $J$ in $\overline{\mathbb{C}}$ is $k$ porous then
the upper Box dimension of the set $J$ is less than $2-c(k)$ where $c(k)$

is apositive constant depending only on $k$ . Further we get an upper
estimate of the Hausdorff dimension of the Julia set.

1Introduction

To investigate random one-dimensional complex dynamics, dynamics of semi-
groups generated by rational maps on the Riemann sphere $\overline{\mathbb{C}}$ and fiber
preserving holomorphic dynamics on fiber bundles which appear in complex
dynamics in in several dimensions, we consider the dynamics of fibered rar
tional maps, that is, fiber-preserving complex dynamical systems on fiber
bundles whose $\dot{\mathrm{f}}\mathrm{i}$bers are the Riemann spheres and whose base spaces are
general compact metric spaces. The notion of dynamics of fibered rational
maps, which was ageneralized notion of ‘dynamics of fibered polynomial
maps’ by O.Sester([Sel], [Se2], [Se3]), was introduced by M.Jonsson in [J2].
The research on dynamics of semigroups generated by rational maps on
the Riemann sphere ([HM1], [HM2], [HM3] [GR], [Bo], [Stl], [St2], [St3],
[SI], [S2], [S3], [S4], [S5] $)$ , the research of random iterations of rational
functions([FS], [BBR]) and the research on polynomial skew products on
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$\mathbb{C}^{2}([\mathrm{H}1], [\mathrm{H}2], [\mathrm{J}1])$ are directly related to this subject. For the research
of polynomial skew products (dynamics of fibered polynomials) whose base
spaces are general compact metric spaces, see O.Sester’s works [Sel], [Se2]
and [Se3]. In [Se3] he investigated the quadratic case in detail. In particular,
he developed acombinatorial theory for quadratic fibered polynomials and
constructed an abstract space of combinatorics. Moreover he showed some
readability and rigidity for an abstract combinatorics.

1.1 Notations and definitions
Definition 1.1. ([J2]) Atriplet $(\pi,\mathrm{Y},X)$ is called a $‘\overline{\mathbb{C}}$-bundle’if

1. $\mathrm{Y}$ and $X$ are compact metric spaces,

2. $\pi:\mathrm{Y}arrow X$ is acontinuous and surjective map,

3. There exists an open covering $\{U\}$ of $X$ such that for each $i$ there ex-
ists a $\mathrm{h}\mathrm{o}\mathrm{m}\infty \mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{m}\Phi$ : : $U_{\dot{1}}$ $\cross\overline{\mathbb{C}}arrow\pi^{-1}(U_{\dot{1}})$ satisfying that $i $(\{\mathrm{x}\}\cross$

$\overline{\mathbb{C}})=\pi^{-1}(x)\mathrm{m}\mathrm{d}$ $\Phi_{j}^{-1}0\Phi$: : $\{x\}$ $\cross\overline{\mathbb{C}}arrow\{x\}$ $\cross\overline{\mathbb{C}}$ is a Mobius map for
each $x\in U_{\dot{1}}$ $\cap Uj$ , under the identification $\{x\}$ $\cross\overline{\mathbb{C}}\cong\overline{\mathbb{C}}$.

Remark: By the condition 3, each fiber $\mathrm{Y}_{x}:=\pi^{-1}(x)$ has acomplex struc-
ture. We also have that given $x_{0}\in X$ we may find acontinuous family
$i_{x}$ : $\overline{\mathbb{C}}arrow \mathrm{Y}_{x}$ of homeomorphisms for $x$ close to $\mathrm{x}\mathrm{o}$ . Such a family $\{i_{x}\}$ will be
case $\mathrm{a}$ ‘local parameterization’. Since $X$ is compact, we may assume that
there exists acompact subset $M_{0}$ of the set of Mobius transformations of $\overline{\mathbb{C}}$

such that $i_{x}\circ j_{x}^{-1}\in M_{0}$ for any two local parametrizatios $\{i_{x}\}$ and $\{j_{x}\}$ . In
this paper we always assume that.

Moreover in this paper we always assume the folowing condition:
$\bullet$ there exists asmooth $(1, 1)$ form $\omega_{x}>0$ inducing ametric on $\mathrm{Y}_{x}$ and

$x$ $\vdasharrow\omega_{x}$ is continuous. That is, if $\{i_{x}\}$ is alocal parametrization,
then the pull back $i_{x}^{*}\omega_{x}$ is apositive smooth form on $\overline{\mathbb{C}}$ depending
continuously on $x$ .

Definition 1.2. Let $(\pi, \mathrm{Y}, X)$ be a $\overline{\mathbb{C}}$-bundle. Let $f:\mathrm{Y}arrow \mathrm{Y}$ and $g:Xarrow$
$X$ be continuous maps. We say that $f$ is afibered rational map over $g$ (or
arational map fibered over $g$) if

1. $\pi \mathrm{o}f=g\mathrm{o}\pi$

2. $f|_{\mathrm{Y}_{\mathrm{f}}}$ : $\mathrm{Y}_{x}arrow \mathrm{Y}_{g(x)}$ is rational map for any $x$ $\in X$.That is, $(i_{g}.)^{-1}\mathrm{o}f\mathrm{o}i_{x}$

is arational map ffom $\overline{\mathbb{C}}$ to itself for any local parametrization $i_{x}$ at
$x$ $\in X$ and $i_{g(x)}$ at $g(x)$ .

Notation: If $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is afibered rational map over $g:Xarrow X$,
then we put $f_{x}^{n}=f^{n}|\mathrm{Y}_{l}$ for any $x$ $\in X$ and $n$ $\in \mathrm{N}$. Furthermore we put
$d_{n}(x)$ $=\deg(f_{x}^{n})$ and $d(x)=d_{1}(x)$ for any $x$ $\in X$ and $n$ $\in \mathrm{N}$ .
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Definition 1.3. Let $(\pi, \mathrm{Y}, X)$ be $\mathrm{a}\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is afibered ra-
tional map over $g$ : $Xarrow X$. Then for any $x\in X$ we denote by $F_{x}(f)\langle \mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{y}$

$F_{x})$ the set of points $y\in \mathrm{Y}_{x}$ which has aneighborhood $U$ of $y$ in $\mathrm{Y}_{x}$ satis-
fying that $\{f_{x}^{n}\}_{n\in \mathrm{N}}$ is anormal family in $U$, that is, $y\in F_{x}$ if and only if
the family $Q_{x}^{n}=i_{x_{n}}^{-1}\circ f_{x}^{n}\circ i_{x}$ of rational maps on $\overline{\mathbb{C}}$ ( $x_{n}$ denotes $g^{n}(x)$ ) is
normal near $i_{x}^{-1}(y)$ :note that by remark in the definition of $\overline{\mathbb{C}}$-bundle, this
does not depend on the choices of local parametrizations at $x$ and $x_{n}$ . Still
equivalently, $F_{x}$ is the open subset of $\mathrm{Y}_{x}$ where the family $\{f_{x}^{n}\}$ of mappings
from $\mathrm{Y}_{x}$ into $\mathrm{Y}$ is local equicontinuous. We put $J_{x}(f)(\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}1\mathrm{y}J_{x})=\mathrm{Y}_{x}\backslash F_{x}$.
Furthermore, we put

$\tilde{J}(f)=\overline{\cup J_{x}x\in X}’\tilde{F}(f)=\mathrm{Y}\backslash \tilde{J}(f)$
,

and $\hat{J}_{x}(f)(\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}1\mathrm{y}\hat{J}_{x})=\tilde{J}(f)\cap \mathrm{Y}_{x}$ for each $x\in X$ .
Remark 1. There exists afibered rational map $f$ : $\mathrm{Y}arrow \mathrm{Y}$ satysfying that
$\bigcup_{x\in X}J_{x}$ is NOT compact.

We give some notations and definitions on dynamics of rational semi-
groups,

For aRiemann surface $S$ , let End(S) denote the set of all holomor-
phic endomorphisms of $S$ . It is asemigroup with the semigroup oper\^a

tion being composition of maps. Arational semigroup is asubsemigroup of
$\mathrm{E}\mathrm{n}\mathrm{d}(\overline{\mathbb{C}})$ without any constant elements. We say that arational semigroup
$G$ is apolynomial semigroup if each element of $G$ is apolynomial. The re-
searches on dynamics of rational semigroups were started by A.Hinkkanen
and GJ.Martin ([HM1]), who were interested in the role of dynamics of
polynomial semigroups in the research of various one-complex-dimensional
moduli spaces for discrete groups, and F.Ren’s group([GR]).

Definition 1.4. Let $G$ be arational semigroup. We set

$F(G)=$ { $z\in\overline{\mathbb{C}}|G$ is normal in aneighborhood of $z$}, $J(G)=\overline{\mathbb{C}}\backslash F(G)$ .
$F(G)$ is called the Fatou set for $G$ and $J(G)$ is called the Julia set for $G$ .
The backward orbit $G^{-1}(z)$ of $z$ and the set of exceptional points $E(G)$ are
defined by: $G^{-1}(z)= \bigcup_{g\in G}g^{-1}(z)$ and $E(G)=\{z\in\overline{\mathbb{C}}|\# G^{-1}(z)\leq 2\}$ . For
any subset A $\mathrm{o}\mathrm{f}\overline{\mathbb{C}}$ , we set $G^{-1}(A)= \bigcup_{g\in}cg^{-1}(A)$ . We denote by $\langle h_{1}, h_{2}, \ldots\rangle$

the rational semigroup generated by the family $\{h:\}$ .
Lemma 1.5 ([S4]). Let $G$ be a rational semigroup and assume $G$ is gen-
erated by a precompact subset Aof End(C). Then

$J(G)=\cup f^{-1}(J(G))=\cup h^{-1}(J(G))f\in\Lambda h\in\overline{\Lambda}$
.

In particular if Ais compact then we have $J(G)= \bigcup_{f\in\Lambda}f^{-1}(J(G))$ .
We call this property the backward self-similarity of the Julia set
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Remark 2. By the backward self-similarity, the research on the Julia sets
of rational semigroups may be considered as akind of generalization of the
research on self-similar sets constructed by some similitudes ffom $\mathbb{C}$ to itself,
which can be regarded as the Julia sets of some rational semigroups. It is
easily seen that the Sierpinski gasket is the Julia set of arational semigroup
$G=\langle h_{1},h_{2}, h_{3}\rangle$ where $h_{i}(z)=2(z-p:)+p_{\dot{1}},i=1,2,3$ with $p_{1}p_{2}p_{3}$ being a
regular triangle.

Example 1.6. 1. ([S4].) Let $h_{1}$ , $\ldots$ , $h_{m}$ be non-constant rational maps.
Let $\Sigma_{m}=\{1, \ldots,m\}^{\mathrm{N}}$ be the space of one-sided infinite sequences of
$m$ symbols and $g$ : $\Sigma_{m}arrow\Sigma_{m}$ be the shift map: that is, $g$ is defined
by $g((w_{1},w_{2}, \ldots))=(w2,w_{3}, \ldots)$ . Let $X$ be acompact subset of $\Sigma_{m}$

such that $g(X)\subset X$. Let $\mathrm{Y}=X\cross\overline{\mathbb{C}}$ and $\pi$ : $\mathrm{Y}arrow X$ be the natural
projection. Then $(\pi, \mathrm{Y}, X)$ is a $\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be amap
defined by: $f((w, y))=(g(w), h_{w_{1}}(y))$ . Then $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is afibered
rational map over $g:Xarrow X$.
In the above if $X=\Sigma_{m}$ then we say that $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is the fibered
rational map associated with the generator system $\{h_{1}, \ldots h_{m}\}$

of the rational semigroup $G=\langle h_{1}$ , $\ldots$ , $h_{m}$) . Then by Proposition 3.2
in [S5](See also \S 8:N0te in [S7]) we have

$\pi_{\overline{\mathbb{C}}}(\tilde{J}(f))=J(G)$ ,

where $\pi_{\overline{\mathbb{C}}}$ : $\mathrm{Y}arrow\overline{\mathbb{C}}$ is the projection. See [S4] for more details.
2. Let $\mathrm{Y}$ be a ruled surffice over a Riemann sur face $X$ :that is, $\mathrm{Y}$ is

asmooth projective variety of complex dimension 2which is also a
holomorphic $P^{1}(\mathbb{C})$-bundle over $X$. Every $\mathrm{Y}_{x}$ has aunique conformal
structure and apositive form $\omega_{x}=\omega|\gamma_{ae}$ , where $\omega$ is the K\"ahler form
on Y. Let $\pi:\mathrm{Y}arrow X$ be the projection. Then $(\pi, \mathrm{Y}, X)$ is a $\overline{\mathbb{C}}\mathrm{b}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{l}\mathrm{e}$ .
Dabija [D] showed that (almost) every holomorphic selfmap $f$ of $\mathrm{Y}$ is
afibered rational map over aholomorphic map $g:Xarrow X$.

3. Let $p(x)\in \mathbb{C}[x]$ be a polynomial with degree at least two and $\mathrm{q}(\mathrm{x},$ $\in$

$\mathbb{C}[x,y]$ apolynomial of the form: $q(x,y)=y^{n}+a_{1}(x)y^{n-1}+\cdots$ . Let
$f$ : $\mathbb{C}^{2}arrow \mathbb{C}^{2}$ be amap defined by

$f((x,y))=(p(x), q(x,y))$ .
This is called apolynomial skew product in $\mathbb{C}^{2}$ . Dynamics of maps of
this form were investigated by S.-M.Heinemann in [H1] and [H2] and
by M.Jonsson in [J1].
Let $X$ be acompact subset of $\overline{\mathbb{C}}$ such that $p(X)\subset X$. (e.g. the Julia
set of $p.$ ) Let $(\pi, \mathrm{Y}=X\cross\overline{\mathbb{C}}, X)$ be a trivial $\overline{\mathbb{C}}$-bundle. Then the map
$\tilde{f}:\mathrm{Y}arrow \mathrm{Y}$ defined by $\tilde{f}((x,y))=(p(x),q(x,y))$ is afibered rational
map over $p:Xarrow X$.
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Notation :

$\bullet$ Let $Z_{1}$ and $Z_{2}$ be two topological spaces and $g$ : $Z_{1}arrow Z_{2}$ be amap.
For any subset $A$ of Z2, we denote by $c(g, A)$ the set of $\mathrm{a}\mathbb{I}$ connected
components of $g^{-1}(A)$ .

$\bullet$ for any $y\in\overline{\mathbb{C}}$ and $\delta$ $>0$ , we put $B(y, \delta)=\{y’\in\overline{\mathbb{C}}|d(y,y’)<\delta\}$ ,
where $d$ is the spherical metric. Similarly, for any $y\in \mathbb{C}$ and $\delta>0$ we
put $D(y, \delta)=\{y’\in \mathbb{C}||y-y’|<\delta\}$ .

$\bullet$ Let $(\pi, \mathrm{Y},X)$ be a $\overline{\mathbb{C}}$-bundle. For any $y\in \mathrm{Y}$ and $r>0$ we set

$\tilde{B}(y,r)=\{y’\in \mathrm{Y}_{\pi(y)}|d_{\pi(y)}(y’,y)<r\}$ ,

where for each $x\in X$ we denote by $d_{x}$ the metric on $\mathrm{Y}_{x}$ induced by
the form $\omega_{x}$ .

Now we define the semi-hyperbolicity of fibered rational maps.

Definition 1.7. (semi-hyperbolicity on fibered rational maps) Let
$(\pi, \mathrm{Y}, X)$ be a $\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be afibered rational map over
$g$ : $Xarrow X$. Let $N\in \mathrm{N}$ . We denote by $SH_{N}(f)$ the set of points $z\in \mathrm{Y}$

satisfying that there exists apositive number $\delta$, aneighborhood $U$ of $\pi(z)$

and alocal parametrization $\{i_{x}\}$ in $U$ such that for any $x\in U$, any $n\in \mathrm{N}$,
any $x_{n}\in g^{-1}(x)$ and any $V\in c(i_{x}(B(i_{\pi(z)}^{-1}(z), \delta)),$ $f_{x}^{n})$ , we have

$\deg(f_{x}^{n} : Varrow i_{x}(B(i_{\pi(z)}^{-1}(z), \delta)))\leq N$.

We set
$UH(f)=\mathrm{Y}\backslash \cup SH_{N}(f)N\in \mathrm{N}^{\cdot}$

Apoint $z\in SH_{N}(f)$ is called asemi-hyperbolic point of degree $N$. We say
that $f$ is semi-hyperbolic (along fibers) if $\tilde{J}(f)\subset\bigcup_{N\in \mathrm{N}}SHN(f)$ . This is
equivalent to $\tilde{J}(f)\subset SH_{N}(f)$ for some $N\in \mathrm{N}$ .

Similarly we define the semi-hyperbolicity on rational semigroups.

Definition 1.8. (semi-hyperbolicity on rational semigroups) Let $G$

be arational semigroup and $N$ apositive integer. We denote by $SH_{N}(G)$

the set of points $z\in\overline{\mathbb{C}}$ satisfying that there exists apositive number $\delta$ such
that for any $g\in G$ and any $V\in c(B(z, \delta)$ , $g)$ , we have

$\deg(g : Varrow B(z, \delta))\leq N$ .

Further we set $UH(G)= \overline{\mathbb{C}}\backslash (\bigcup_{N\in \mathrm{N}}SH_{N}(G))$ . Apoint 26 $SH_{N}(G)$ is
called asemi-hyperbolic point of degree $N$. We say that $G$ is semi-hyperbolic
if$—J(G) \subset\bigcup_{N\in \mathrm{N}}SH_{N}(G)$ . This is equivalent to $J(G)\subset SH_{N}(G)$ for some
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xample 1.9.
$X$. We set

1. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be arational map fibered over $g$ : $Xarrow$

$P(f)=\cup\cup f_{x}^{n}$ (
$n\in \mathrm{N}x\in X$

critical points of $f_{x}$ ).

This is called the fiber post critical set of fibered rational map $f$. If
$f$ : $\mathrm{Y}arrow \mathrm{Y}$ is hyperbolic along fiberes: that is, $P(f)\subset \mathrm{p}(\mathrm{f})$ , then $f$

is semi-hyperbolic along fiberes with the constant $N=1$ .
2. In Corollary 6.7 of [Se3] O.Sester showed that any ‘non-reccurent

quadratic fibered polynomials’ with connected fiberwise filled-in Ju-
lia sets are semi-hyperbolic.

3. Let $\{h_{1}, \ldots, h_{m}\}$ be non-constant rational functions on $\overline{\mathbb{C}}$ . Let $f$ : $\mathrm{Y}arrow$

$\mathrm{Y}$ be the fibered rational map in Example 1.6.1. By easy arguments
we can show that $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is semi-hyperbolic along fiberes if and
only if $G$ is semi-hyperbolic.
In [S4], if $G$ is afinitely generated rational semigroup, then asufficient
condition to be semi-hyperbolic for apoint $z\in J(G)$ was given, which
gives ageneralization of $\mathrm{R}.\mathrm{M}\mathrm{a}\tilde{\mathrm{n}}\acute{\mathrm{e}}$ ’s work([Ma]). Further in [S4], the
following statement was shown: Assume that there exists an element
of $G$ with the degree at least two, that each element of Aut $\overline{\mathbb{C}}\cap \mathrm{G}(\mathrm{i}\mathrm{f}$

this is not empty) is loxodromic and that $J(G)\neq\overline{\mathbb{C}}$. Then $G$ is semi-
hyperbolic if and only if all of the following conditions are satisfied.
(a) for each $z\in J(G)$ there exists aneighborhood $U$ of $z$ in $\overline{\mathbb{C}}$ such

that for any sequence $(g_{n})\subset G$ , any domain $V$ in $\overline{\mathbb{C}}$ and any
point ( $\in U$, we have that the sequence $(g_{n})$ does NOT converge
to $\zeta$ locally uniformly on $V$

(b) for each $j=1$ , $\ldots$ , $m$ each $c\in C(f_{j})\cap J(G)$ satisfies
$d(c, (G\cup\{id\})(f_{j}(c))).>0$

From this fact it was shown in [S4] that if we assume that there exists
an element of $G$ with the degree at least two, that each element of
Aut $\overline{\mathbb{C}}\cap G$(if this is not empty) is loxodromic, that there is no super
attracting fixed point of any element of $G$ in $J(G)$ and $F(G)\neq\emptyset$ ,
then $G$ is semi-hyperbolic.
By this theorem we know that $G=(z^{2}+2, z^{2}-2)$ is semi-hyperbolic.
This is NOT hyperbolic. See [S4].

We need some technical conditions.
finition 1.10 (Condition(Cl)). Let $(\pi, \mathrm{Y},X)$ be a $\overline{\mathbb{C}}\mathrm{b}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{l}\mathrm{e}$ . Let $f$ :
$arrow \mathrm{Y}$ be arational fibered over $g$ : $Xarrow X$. We say that $f$ satisfies the
idition (C1) if there exists afamily $\{D_{x}\}_{x\in X}$ of topological disks with

$\subset$ $\mathrm{Y}_{x}$ , $x\in X$ such that the following conditions are satisfied
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1. for each x $\in X$ there exists apoint $z_{x}\in \mathrm{Y}_{x}$ and apositive number $r_{x}$

such that $D_{x}=\tilde{B}(z_{x}, r_{x})$ ,

2. $\overline{\bigcup_{x\in X}\bigcup_{n\geq 0}f_{x}^{n}(D_{x})}\subset\tilde{F}(f)$ ,

3. for any $x\in X$, we have that $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(f_{x}^{(n)}(D_{x}))arrow 0$ , as $narrow\infty$ , and

4. $\inf_{x\in X}r_{x}>0$ .

Definition 1.11 (Condition(C2)). Let $(\pi, \mathrm{Y}, X)$ be a $\overline{\mathbb{C}}$-bundle. Let $f$ :
$\mathrm{Y}arrow \mathrm{Y}$ be afibered rational map over $g:Xarrow X$. We say that $f$ satisfies
the condition (C2) if for each $x_{0}\in X$ there exists an open neighborhood $O$

of $x_{0}$ and afamily $\{D_{x}\}_{x\in O}$ of topological disks with $D_{x}\subset \mathrm{Y}_{x}$ , $x\in O$ such
that the folowing conditions are satisfied:

1. for each $x\in O$ there exists apoint $z_{x}\in \mathrm{Y}_{x}$ and apositive number $r_{x}$

such that $D_{x}=\tilde{B}(z_{x}, r_{x})$ ,

2. $\overline{\bigcup_{x\in O}\bigcup_{n\geq 0}f_{x}^{n}(D_{x})}\subset\tilde{F}(f)$ ,

3. for any $x\in O$ , we have that $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(f_{x}^{(n)}(D_{x}))arrow 0$ , as $narrow\infty$ , and

4. $x\mapsto\succ D_{x}$ is continuous in $O$ .

Example 1.12. 1. Let $\{h_{1}, \ldots h_{m}\}$ be non-constant rational functions
on $\overline{\mathbb{C}}$ with $\deg(h_{1})\geq 2$ . Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be the fibered rational map as-
sociated with the generator system $\{h_{1}, \ldots, h_{m}\}$ of rational semigroup
$G=\langle h_{1}, \ldots, h_{m}\rangle$ , which is described in Example 1.6.1. Suppose that
$f$ is semi-hyperbolic along fibers and that $\pi_{\overline{\mathbb{C}}}(\tilde{J}(f))=J(G)$ is not
equal to the Riemann sphere. Then we have that $f$ satisfies the con-
dition (C2). Actually, there exists an attracting fixed point $a$ of some
element of $G$ in $F(G)$ . Since $G$ is semi-hyperbolic, we have that setting
$D_{x}=D(a, \epsilon)$ for each $x\in\Sigma_{m}$ where $\epsilon$ is apositive number, $f$ satis-
fies the condition (C2) with the family of disks $(D_{x})_{x\in\Sigma_{m}}$ . For more
details, see Theorem 1.35 and Remark 5in [S4].

2. Let $(\pi, \mathrm{Y}=X\cross\overline{\mathbb{C}}, X)$ be atrivial $\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a
fibered rational map over $g$ : $Xarrow X$ satisfying that $f_{x}$ is apolynomial
mapping of degree at least two for each $x\in X$ . Then setting $D_{x}=D$

where $D$ is asmal neighborhood of infinity for each $x\in X$ , the
fibered rational map $f$ satisfies the condition (C2) with the family of
disks $(D_{x})_{x\in X}$ .

We give the definition of ‘conical’ set in the Julia set.

Definition 1.13. (conical set for fibered rational maps) Let $(\pi, \mathrm{Y}, X)$

be a $\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be afibered rational map over $g:Xarrow X$.
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Let N $\in \mathrm{N}$ and r $>0$ . We denote by $\tilde{J}_{cm}(f,$N,r) the set of points z $\in\tilde{J}(f)$

satisfying that for any $\epsilon>0$ , there exists apositive integer n such that
the element U $\in c(\tilde{B}(f^{n}(z),$r), $f^{n}|\mathrm{Y}_{\pi(z)})$ containing z satisfies the following
conditions:

1. diam $U<\epsilon$ ,

2. $U$ is simply connected, and

3. $\deg(f^{n} : Uarrow\tilde{B}(f^{n}(z),r))\leq N$.
We set $\tilde{J}_{cm}(f,N)=\bigcup_{t>0}\tilde{J}_{\mathrm{c}m}(f,N,r)$ and $\tilde{J}_{\mathrm{c}m}(f)=\bigcup_{N\in \mathrm{N}}\tilde{J}_{\mathrm{c}m}(f, N)$.
Definition 1.14. (conical set for rational semigroups) Let $G$ be ara-
tional semigroup. Let $N\in \mathrm{N}$ and $r$ $>0$ . We denote by $J_{em}(G,N,r)$ the
set of points $z\in J(G)$ satisfying that for any $\epsilon>0$ , there exists an ele
ment $g\in G$ such that $g(z)\in J(G)$ and the element $U\in c(B(g(z),’), g)$

containing $z$ satisfies the following conditions:

1. diam $U<\epsilon$ ,

2. $U$ is simply connected, and

3. $\deg(g:Uarrow B(g(z), ’))\leq N$.
We set $J_{cm}(G, N)= \bigcup_{r>0}J_{eon}(G, N,r)$ and $J_{\omega n}(G)= \bigcup_{N\in \mathrm{N}}J_{eon}(G,N)$ .
Definition 1.15. (good points for fibered rational maps) Let $(\pi, \mathrm{Y},X)$

be a $\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be afibered rational map over $g$ : $Xarrow X$.
We set

$\tilde{J}_{good}(f)=\{z\in\tilde{J}(f)|\lim_{narrow}\sup_{\infty}d(f^{n}(z), UH(f))>0\}$.

Definition 1.16. (good points for finitely generated rational semi-
groups) Let ($h_{1}$ , $\ldots$ , $h_{m}\rangle$ be arational semigroup. Let $f$ : $\Sigma_{m}\cross\overline{\mathbb{C}}arrow$

$\Sigma_{m}\cross\overline{\mathbb{C}}$ be the fibered rational map associated with the generator system
$\{h_{1}, \ldots, h_{m}\}$ . Then we set $J_{gM}(G)=\pi_{\overline{\mathbb{C}}}(\tilde{J}_{good}(f))$ . Note that this defi-
nition does not depend on the choice of any generator system of $G$ which
consists of finitely many elements.

2Results on Fibered Rational Maps
In this section we state some results on dynamics of fibered rational maps
which are deduced by semi-hyperbolicity, except Theorem 2.6. The proofs
are given in \S 4.

Theorem 2.1. (measure zero) Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow$

$\mathrm{Y}$ be a fibered rational map over $g$ : $Xarrow X$. Suppose all of the follow $ing$

conditions:
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1. f satisfies the condition (Cl),

2. for each $x\in X$ , the boudary of $\hat{J}_{x}(f)\cap UH(f)$ in $\mathrm{Y}_{x}$ does not separate
points in $\mathrm{Y}_{x}$ ,

3. $\tilde{J}(f)\backslash \bigcup_{n\in N}f^{-n}(UH(f))\subset\tilde{J}_{good}(f)$ and

4. for each $z\in\tilde{J}(f)\cap UH(f)$ and each open neighborhood $V$ of $z$ in $\mathrm{Y}_{\pi(z)}$

we have that the diameter of $f_{\pi(z)}^{n}(V)$ does not tend to zero as $narrow\infty$ .

Then $\tilde{J}(f)=\bigcup_{x\in X}J_{x}$ and for each $x\in X$ , the 2-dimensional Lebesgue
measure of $J_{x} \backslash \bigcup_{n\in N}f^{-n}(UH(f))$ is equal to zero.

Definition 2.2. Let $(\mathrm{Y}, d)$ be ametric space. Let $k$ be aconstant with
$0<k<1$ . Let $J$ be asubset of Y. We say that $J$ is $k$-porous if for any $x\in J$

and any positive number $r$ there exist aball in $\{y\in \mathrm{Y}|d(y, x)<r\}\backslash J$

with the radius at least $kr$.
Remark 3. If $\mathrm{Y}$ is the Euclidean space $\mathbb{R}^{n}$ and $d$ is the Euclidean metric,
the Box dimension of any $k$-porous bouded set $J$ in $\mathbb{R}^{n}$ is less than $n-c(k, n)$ ,
where $c(k, n)$ is apositive constant which depends only on $k$ and $n([\mathrm{P}\mathrm{R}])$ .
Theorem 2.3. (porosity) Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$ bundle Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be $a$

fibered rational map over $g:Xarrow X$. Suppose that $f$ satisfies the condition
(Cl) and that $f$ is semi-hyperbolic. Then there exists a constant $k$ with
$0<k<1$ such that $J_{x}$ is $k$ -porous in $\mathrm{Y}_{x}$ for each $x\in X$ . In particular, there
exists a constant $0\leq c<2$ such that for each $x\in X$ ,

$\dim_{H}(J_{x})\leq\dim_{B}(J_{x})\leq c$ ,

where $\dim_{H}$ denotes the Hausdorff dimension and $\dim_{B}$ denotes the Box
dimension with respect to the metric on $\mathrm{Y}_{x}$ induced by $\omega_{x}(\omega_{x}$ is the form in
the remark in Definition 1.1).

Theorem 2.4. (a rigidity) Let $(\pi,\mathrm{Y}, X)$ and $(\tilde{\pi},\tilde{\mathrm{Y}},\tilde{X})$ be two $\overline{\mathbb{C}}$-bundles.
Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a fibered rational map over $g:Xarrow X$ and $\tilde{f}:\tilde{\mathrm{Y}}:arrow\tilde{\mathrm{Y}}a$

fibered rational map over $\tilde{g}$ : $\tilde{X}arrow\tilde{X}$ . Let $u:\mathrm{Y}arrow\tilde{\mathrm{Y}}$ be a homeomorphism
which is a bundle conjugacy between $f$ and $\tilde{f}:i.e$ . $u$ satisfies that $\tilde{\pi}ou=v\circ\pi$

for some homeomorphism $v$ : $Xarrow X$ and $\tilde{f}\circ u=u\circ f$ . Suppose that $f$

is semi-hyperbolic along fiberes and satisfies the condition (C1). For each
$w\in X$ , let $u_{w}$ : $\mathrm{Y}_{w}arrow\tilde{\mathrm{Y}}_{v(w)}$ be the restriction of $u$ . Let $x\in X$ be a point.

Then if $u_{x}$ is $K$-quasiconformal on $F_{x}$ , for each $a\in\overline{\bigcup_{n\in}\mathrm{z}\{g^{n}(x)\}}$ we have
that $u_{a}$ : $\mathrm{Y}_{a}arrow\tilde{\mathrm{Y}}_{v(a)}$ is $K$ -quasiconformal on the whole $\mathrm{Y}_{a}$ .
Definition 2.5. Let $C$ be apositive number. Let $K$ be aclosed subset of

$\overline{\mathbb{C}}$ . We say that $K$ is $C$-uniformly perfect if for any doubly connected domain
$A$ in $\overline{\mathbb{C}}$ satisfying that $A$ separates $K$ i.e. both two connected components
of $\overline{\mathbb{C}}\backslash A$ have non-empty intersections with $K$, $\mathrm{m}\mathrm{o}\mathrm{d} A$ (the modulus of $A$ .
For the definition, see $[\mathrm{L}\mathrm{V}])\mathrm{i}\mathrm{s}$ less than $C$.
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Remark 4. Uniform perfectness implies many good properties $([\mathrm{B}\mathrm{P}],[\mathrm{P}\mathrm{o}],[\mathrm{S}_{1}$

This term was introduced in [Po]. In [Su], there is asurvey on uniform per-
fectness.

Theorem 2.6. (uniform perfectness Let $(\pi,\mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-buundle. Let
$f:\mathrm{Y}arrow \mathrm{Y}$ be a fibered rational map over $g:Xarrow X$ satisfying that $d(x)\geq 2$

for any $x\in X$ . Then we have the following.

1. There exists a positive constant $C$ such that for any $x\in X$, toe have
that $J_{x}$ and $\hat{J}_{x}$ are $C$-unifomly perfect

2. Suppose further $f(\tilde{F}(f))\subset\tilde{F}(f)$ (for example, assume that $g$ : $Xarrow X$

is an open map). If a point $z\in \mathrm{Y}$ satisfies that $f_{\pi(z)}^{n}(z)=z$ and
$(f_{\pi(z)}^{n})’(z)=0$ for some $n\in \mathrm{N}$ and $z\in\hat{J}_{\pi(z)}$ , then $z$ belongs to the
interior of $\hat{J}_{\pi(z)}$ with respect to the topology of $\mathrm{Y}_{\pi(z)}$ .

3Results on Rational Semigroups
In this section we state some results on dynamics of semigroups generated
by rational functions on the Riemann sphere. The proofs are given in \S 4.

Definition 3.1. Let $G=\langle h_{1}, h_{2}, \ldots, h_{m}\rangle$ be afinitely generated rational
semigroup. Let $U$ be an open set in C. We say that $G$ satisfies the open
set condition with $U$ with respect to the generator systems $\{h_{1},h_{2}, \ldots, h_{m}\}$

if for each $j=1$ , $\ldots$ , $m$ , $h_{j}^{-1}(U)\subset U$ and $\{h_{j}^{-1}(U)\}j=1,\ldots,m$ are mutually
disjoint.

Theorem 3.2. (porosity) Let $G=\langle h_{1}, \ldots, h_{m}\rangle$ be a rational semigroup
with an element of degree at least two. Suppose all of the following condi-
tions;

1. $G$ satisfies the open set condition with an open set $U$ with respect to
the generator system $\{f_{1}, \ldots, f_{m}\}$ ,

Z. $\#(UH(G)\cap J(G))<\infty$ and

3. $UH(G)\cap J(G)\subset U$.
Then we have that $J(G)=\overline{U}$ or that $J(G)$ is porous so the Box

dimension of $J(G)$ is strictly less than 2). Moreover, the fibered rational map
$f$ : $\Sigma_{m}\cross\overline{\mathbb{C}}arrow\Sigma_{m}\cross\overline{\mathbb{C}}$ associated with the generator system $\{h_{1}, \ldots, h_{m}\}$

satisfies that
$\tilde{J}(f)=\bigcup_{x\in\Sigma_{m}}J_{x}$

.
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Definition 3.3. Let G be arational semigroup and $\delta$ anon-negative num-
ber. We say that aBorel probability measure $\mu$ on $\overline{\mathbb{C}}$ is $\delta$-subconformal if
for each g $\in G$ and for each Borel measurable set $A$

$\mu(g(A))\leq\int_{A}||g’(z)||^{\delta}d\mu$,

where we denote by $||\cdot$ $||$ the norm of the derivative with respect to the
spherical metric. For each $x\in\overline{\mathbb{C}}$ and each real number $s$ we set

$S(s, x)= \sum_{g\in G}\sum_{g(y)=x}||g’(y)||^{-s}$

counting multiplicities and

$S(x)= \inf\{s|S(s, x)<\infty\}$ .
If there is not $s$ such that $S(s, x)<\infty$ , then we set $S(x)=\mathrm{o}\mathrm{o}.\mathrm{A}1\mathrm{s}\mathrm{o}$ we set

so (G) $= \inf\{S(x)\}$ , $\mathrm{s}(\mathrm{G})=\inf${ $\delta|\exists\mu$ : $\delta$-subconformal measure}
We have an estimate on so(G) when $G$ satisfies the open set condition.

Proposition 3.4. Let $G=\langle h_{1}, \ldots h_{m}\rangle$ be a rational semigroup. When
$m=1$ , toe assume that $h_{1}$ is neither identity nor an elliptic M\"obius transfor-
mation. Suppose $G$ satisfies the open set condition with an open set $U$ with
respect to the genercstor system $\{h_{1}, \ldots, h_{m}\}$ . Suppose also that $J(G)\neq\overline{U}$ .
Then there exists an open set $V$ included in $U\cap F(G)$ such that for almost
$x\in V$ with respect to the 2-dimensional Lebesgue measure, we have

$S(2, x)<\infty$ .
In particular, so $(G)\leq 2$ .
Theorem 3.5. (Hausdorff dimension) Let $G=\langle h_{1}, \ldots h_{m}\rangle$ be a rational
semigroup. Under the same assumption as that of Theorem 3.2, we have that

$\dim_{H}(J(G))\leq s(G)\leq \mathrm{s}\mathrm{o}(\mathrm{G})$

where $\dim_{H}$ denotes the Hausdorff dimension with respect to the spherical
metric in C.

Example 3.6. Let $h_{1}(z)=z^{2}+2$ , $h_{2}(z)=z^{2}-2$ and $U=\{|z|<2.\}$ .
Then we have $h_{1}^{-1}(U)\cup h_{2}^{-1}(U)\subset U$ and $h_{1}^{-1}(U)\cap h_{2}^{-1}(U)=\emptyset$. Let $h_{3}$ be a
polynomial which is conjugate to $h_{4}^{n}$ by an affine map $\alpha$ , where $h_{4}(z)=z^{2}+ \frac{1}{4}$

and $n\in \mathrm{N}$ is anumber large enough. Taking $\alpha$ appropriately, we have
$J(h_{3})\subset U\backslash (h_{1}^{-1}(\overline{U})\cup h_{2}^{-1}(\overline{U}))$ . Taking $n$ large enough, we have $h_{3}^{-1}(U)\subset$

$U\backslash (h_{1}^{-1}(\overline{U})\cup h_{2}^{-1}(\overline{U}))$. Then $G=\langle h_{1}, h_{2}, h_{3}\rangle$ satisfies the conditions in the
assumption of Theorem 3.2. In this case $UH(G)\cap J(G)$ is the parabolic fixed
point of h$. By Theorem 3.2, we get that $J(G)$ is porous and in particular,
the Box dimension is strictly less than 2.
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4 Tools and Proofs
4.1 Tools

To show theorems in \S 2 and \S 3, we need the followings. For the research
on semi-hyperbolicity of usual dynamics of rational functions, see [CJY] and
[Ma].

Notations.

1. Let $X$ be acompact set in $\overline{\mathbb{C}}$ and $z$ be apoint in $\overline{\mathbb{C}}\backslash X$ . Then we set

Dist $(X, z)= \max d(y, z)/\mathrm{m}\dot{\mathrm{m}}d(y, z)y\in Xy\in X^{\cdot}$

2. For two positive numbers $A$ and $B$ , $A_{\wedge}\vee B$ means $K^{-1}\leq A/B\leq K$

for some constant $K$ independent of $A$ and $B$ .
Lemma 4.1 ([CJY]). (distortion lemma for proper maps) For any
positive integer $N$ and real number $r$ with $0<r$ $<1$ , there eists a constant
$C=C(N, r)$ such that if $f$ : $D(0,1)arrow D(0,1)$ is a proper holomorphic map
with $\deg(f)=N$ $and/(0)=0$, then

$D(f(z_{0}), C)\subset f(D(z_{0},r))\subset D(f(z_{0}),r)$

for any $z0\in D(0,1)$ . Here we can take $C=C(N,r)$ independent of $f$.
The folowing is ageneralized distortion lemma for proper maps.

Lemma 4.2 $([\mathrm{S}4],[\mathrm{S}6])$ . Let $V$ be a domain in $\overline{\mathbb{C}}$, $K$ a continuum in $\overline{\mathbb{C}}$

with diamsK $=a$. Assume $V\subset\overline{\mathbb{C}}\backslash K$. Let $f$ : $Varrow D(0,1)$ be a proper
holomorphic map of degree N. Then there exists a constant $r(N,a)$ depending
only on $N$ and $a$ such that for each $r$ with $0<r$ $\leq r(N,a)$ , there exists $a$

constant $C=C(N, r)$ depending only on $N$ and $r$ satisfying that for each
connected component $U$ of $f^{-1}(D(0,r))$ ,

$d:am_{S}U\leq C$,

where we denote by diams the spherical diameter. Also we have $C(N, r)$ $arrow 0$

as $r$ $arrow 0$ .
The folowing lemma is aslightly modified version of Lemma 2.15 in [S4].

Lemma 4.3 ([S4]). Let $(\pi, \mathrm{Y},X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be $a$

fibered rational map over $g$ : $Xarrow X$. Assume $f$ satisfies the condition
(Cl). Assume $z_{0}\in SH_{N}(f)$ for some $N\in \mathrm{N}$. $b$ Then there uish a positive
number $\delta_{0}$ such that for each 6with $0<\delta<\delta \mathrm{p}$ there $n\cdot s\hslash$ a neighborhood
$U$ of $x0:=\pi(z\mathrm{o})$ in $X$ satisfying that for each $n\in \mathrm{N}$, each $x\in U$ and each
$x_{n}\in p^{-n}(x)$ , we have that each element of $c(i_{x}i_{x_{0}}^{-1}\tilde{B}(z_{0}, \delta),$

$f_{x_{n}}^{n})$ is simply
connected
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The following theorem says about what happens if there exists anon-
constant limit function on acomponent of afiber-Fatou set. This is the key
to state other results.

Theorem 4.4 ([S4]). (Key theorem I) Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle. Let
$f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a fibered rational map over $g$ : $Xarrow X$. Assume $f$ satisfies
the condition (Cl). Let $z\in \mathrm{Y}$ be a point with $z\in F_{\pi(z)}$ . Let $(i_{x})$ be a local
parametrization. Let $U$ be a connected open neighborhood of $i_{\pi(z)}^{-1}(z)$ in C.
Suppose that there exists a sequence (nj) of $\mathrm{N}$ such that $Rj:=i_{\pi f^{n_{j}}(z)}^{-1}\circ$

$f_{\pi(z)}^{n_{j}}\circ i_{\pi(z)}$ converges to a non-constant map $\phi$ uniformly on $U$ as $jarrow\infty$ .
fibrther suppose $f_{\pi(z)}^{n_{\mathrm{j}}}(z)$ converges to a point $z0\in \mathrm{Y}$. Let $S_{\dot{l},j}=f_{g^{n}\cdot\pi(z)}^{n_{\mathrm{j}}-n}.\cdot$.for
$1\leq i\leq j$ . We set

$V= \{a\in \mathrm{Y}_{\pi(z_{0})}|\exists\epsilon>0, \lim\sup \sup d(S_{\dot{\iota},j}\circ\varphi(\xi), \xi)=0\}$ ,
$:arrow\infty j>i\xi\in\tilde{B}(a,\epsilon)$

where $\varphi$ is a map from $\mathrm{Y}_{\pi(z_{0})}$ onto $\mathrm{Y}_{g^{n}:\pi(z)}$ defined by the local parametriza-
tion around $\pi(z_{0})$ . Then $V$ is a non-empty open proper subset of $\mathrm{Y}_{\pi(z\mathrm{o})}$ and
we have that

$\partial V\subset\hat{J}_{\pi(z\mathrm{o})}(f)\cap UH(f)$ .

Corollary 4.5. Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a fibered
rational map over $g$ : $Xarrow X$. Assume $f$ satisfies the condition (Cl). As-
sume also that for each $x\in X$ , the boundary of $\hat{J}_{x}(f)\cap UH(f)$ in $\mathrm{Y}_{x}$ does
not separate points in Yx. Then for each $z\in \mathrm{Y}$ with $z\in F_{\pi(z)}$ , we have that
$diamf_{\pi(z)}^{n}(W)arrow 0$ as $narrow\infty$ for each open connected neighborhood $W$ of $z$

in $\mathrm{Y}_{\pi(z)}$ and that $d(f_{\pi(z)}^{n}(z), UH(f))arrow 0$ as $narrow\infty$ .

4.2 Proofs of results on fibered rational maps

We start with the following.

Proposition 4.6. Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a fibered
rational map over $g$ : $Xarrow X$. Suppose that $\hat{J}_{x}$ has no interior points for
each $x\in X$ . Then the two dimensional Lebesgue measure of $\tilde{J}_{\omega n}(f)\cap J_{x}$ is
equal to zero for each $x\in X$ .

Proof. Fix $N\in \mathrm{N}$ . Suppose that there exists apoint $x\in X$ such that
$\tilde{J}_{cm}(f, N)\cap J_{x}$ (this is an open set in $J_{x}$ ) has positive measure. Then there ex-
ists aLebesgue density point $y\in\tilde{J}_{\omega n}(f, N)\cap J_{x}$ . Let $y_{m}=f_{x}^{m}(y)$ and $x_{m}=$

$g^{m}(x)$ for any $m\in \mathrm{N}$ . Let $\delta>0$ be anumber such that $y\in\tilde{J}_{cm}(f, N, \delta)$ . Let
$U_{m}$ , $U_{m}’$ be the elements of $c(\tilde{B}(y_{m}, \delta/2)$ , $f_{x}^{m})$ , $c(\tilde{B}(y_{m}, \delta),$ $f_{x}^{m})$ containing
$y$ respectively. Since $y\in\tilde{J}_{cm}(f, N, \delta)$ , there exists asubsequence (n) in $\mathrm{N}$

with $narrow\infty$ such that $U_{n}’$ is simply connected, $\deg(f_{x}^{n} : U_{n}’arrow\tilde{B}(y_{n}, \delta))\leq N$
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for each $n$ and $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}U_{n}’arrow 0$ as $narrow\infty$ . By Corollary 1.9 in [S4] for any local
parametrization $i_{x}$ ,

$\lim_{narrow\infty}\frac{m(i_{\overline{x}}^{1}(U_{n}\cap J_{x}))}{m(i_{\overline{x}}^{1}(U_{n}))}=1$ , (1)

where $m$ denotes the spherical measure of C. Using an argument in the proof
of Theorem 4.4 in [S4], from (1) we can show that

$\lim_{narrow\infty}\frac{m(1_{x_{n}}^{-1}(\tilde{B}(y_{n},\delta/2)\cap F_{x_{n}}))}{m(i_{\overline{x}_{n}}^{1}(\tilde{B}(y_{n},\delta/2)))}=0$ , (2)

where $iXn$ denotes alocal parametrization. There exists asubsequence (nj)
of (n), apoint $y_{\infty}\in \mathrm{Y}$ and apoint $x_{\infty}\in X$ such that $y_{n_{j}}arrow y_{\infty}$ and
$x_{n_{\mathrm{j}}}arrow x_{\infty}$ as $jarrow\infty$ . By (2) we have that $\tilde{B}(y_{\infty}, \delta/2)\subset\hat{J}_{x_{\infty}}$ . On the other
hand, by the assumption we have that for any $a\in X$, $\hat{J}_{a}$ has no interior
point. This is acontradiction.

$\square$

Proposition 4.7. Let $(\pi, \mathrm{Y},X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a fibered
rational map over $g:Xarrow X$. Suppose $f$ satisfies the condition (Cl). Then

we have the following.

1.
$J_{g\infty d}(f)\cap\cup J_{x}\subset\tilde{J}_{cm}(f)x\in X^{\cdot}$

2. If we assume further that for each $x\in X$, the boundary of $\hat{J}_{x}(f)\cap$

$UH(f)$ in $\mathrm{Y}_{x}$ does not separate points in $\mathrm{Y}_{x}$ , then

$J_{good}(f)\subset\tilde{J}_{em}(f)\cap\cup J_{x}x\in X^{\cdot}$

Proof First we $\mathrm{w}\mathrm{i}\mathrm{U}$ show the &st statement. Let $z \in\bigcup_{x\in X}J_{x}$ be a
point satisfying that $\lim\sup_{narrow\infty}d(f^{n}(z), \mathrm{U}\mathrm{H}(\mathrm{f})>0$. For each $m\in \mathrm{N}$

let $z_{m}=f^{m}(z)$ and $x_{m}=\pi f^{m}(z)$ . For each $m\in \mathrm{N}$ and each $r>0$ let
$U_{m}(r)$ , $U_{m}’(r)$ be the elements of $c(\tilde{B}(z_{m}, \mathrm{J}/2)$

$f_{\pi(z)}^{m})$ , $c(\tilde{B}(z_{m},r),$
$f_{\pi(z)}^{m})$ con

taking $z$ respectively. There exists apositive number $\delta$, positive integer
$N$ and asequence (n) in $\mathrm{N}$ such that $\deg(f_{\pi(z)}^{n} : U_{n}’(\delta)arrow\tilde{B}(z_{n}, \delta))\leq N$ .
By Lemma 4.3, taking 6smal enough we can assume that $U_{n}’(\delta)$ is simply
connected.

Suppose that diam $(U_{n}(\delta))$ does not tend to zero as $narrow\infty$ in (n). Then
by distortion lemma for proper maps there exists asubsequence $(n_{j})$ of (n)
with $n_{j}arrow\infty$ and apositive number $r$ such that $U_{n_{j}}(\delta)\supset\tilde{B}(z, r)$ for each
$j$. Hence

$f^{n_{\mathrm{j}}}(\tilde{B}(z,r))\subset\tilde{B}(f_{n_{\mathrm{j}}}(z), \delta)$ (3)
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for each $j$ . By condition (C1), if we take $\delta$ small enough (3) contradicts to

that $z \in\bigcup_{x\in X}J_{x}$ . Hence we get that diam $U_{n}(\delta)arrow 0$ as $narrow\infty$ in (n).

Hence we get that $z\in\tilde{J}_{\omega n}(f)$ .
The second statement follows from Corollary 4.5 and the first statement.

$\square$

Corollary 4.8. Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a fibered
rational rnap over $g$ : $Xarrow X$. Suppose that $\tilde{J}(f)=\bigcup_{x\in X}J_{x}$ and that $f$

satisfies the condition (Cl). Then for each $x\in X$ we have that

$d(f_{x}^{n}(y), UH(f))arrow 0$ , as $narrow\infty$ ,

for almost every $y\in J_{x}$ with respect to the Lebesgue measure in $\mathrm{Y}_{x}$ .

Proof. By condition (C1) $\hat{J}_{x}=J_{x}$ has no interior points for each $x\in X$ .
$\mathrm{B}\mathrm{y}\square$

Proposition 4.6 and Proposition 4.7, we get the statement.

Proof. of Theorem 2.1. Suppose that there exists apoint $z\in\tilde{J}(f)$ satisfy-

ing that $z\in F_{\pi(z)}$ . By Corollary 4.5, For each open connected neighborhood
$W$ of $z$ in $F_{\pi(z)}$ we have diam $f^{n}(W)arrow 0$ and $d(f^{n}(z), UH(f))arrow 0$ as $narrow$

$\infty$ . But by condition 3and 4in the assumption of our theorem, it causes a
contradiction. Hence we have shown that $\tilde{J}(f)=\bigcup_{x\in X}J_{x}$ . By Corollary 4.8
we get that the 2-dimensional Lebesgue measure of $J_{x} \backslash \bigcup_{n\in \mathrm{N}}f^{-n}(UH(f))$

is equal to zero. $\square$

Proof. of Theorem 2.3. For any $y’ \in\bigcup_{x\in X}J_{x}$
and $r>0$ , we set

$h(y’, r)= \sup\{s|\exists y’’\in J_{\pi(y’)},\tilde{B}(y’’, s)\subset F_{\pi(y’)}\}$

and $h(r)= \inf\{h(y’, r)|y’\in\bigcup_{x\in X}J_{x}\}$ . By Theorem 2.1, we have $\tilde{J}(f)=$

$\bigcup_{x\in X}J_{x}$
. By the condition (C1) we have $\mathrm{i}\mathrm{n}\mathrm{t}J_{x}=\emptyset$ for any $x\in X$. Hence we

get that $h(r)>0$ for any $r>0$ .
Since $f$ is semi-hyperbolic and satisfies the condition (C1), by Lemma 4.3

we have that there exists apositive number $\delta_{1}$ and anumber $N\in \mathrm{N}$ such
that for any $y’\in\tilde{J}(f)$ , $0<\delta\leq\delta_{1}$ , $n\in \mathrm{N}$ and any component $V$ of
$(f^{n})^{-1}(\tilde{B}(y’, 2\delta))$ , $V$ is simply connected and $\deg(f^{n} : Varrow\tilde{B}(y’, 2\delta))\leq N$.

Let $y\in\tilde{J}(f)$ and $r>0$ .We set $B_{n}=f^{n}(\tilde{B}(y,r))$ and $y_{n}=f^{n}(y)$ for each
$n\in \mathrm{N}$ . Since $y\in J_{\pi(y)}$ , we have that there exists the smallest positive integer
$n_{0}$ such that diam $B_{n\mathrm{o}+1}>\delta_{1}$ . Then there exists aconstant $l_{0}$ such that
$l_{0}\delta_{2}<\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}B_{n0}$ . By Corollary 2.3 in [Y], there exists aconstant $K$ depending
only on $N$ and aball $\tilde{B}(y_{n0}, r_{0})\subset B_{n0}$ with $r_{\mathrm{Q}}\geq \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}B_{n0}/K\geq\underline{l}_{0}K\mathrm{p}\delta$ , such

that the component of $(f^{n0})^{-1}(\tilde{B}(y_{n_{0}},r\mathrm{o}))$ containing $y$ is asubset of $\tilde{B}(y,r)$ .
There exists aball $\tilde{B}(y_{l}’, \frac{2}{3}h(r_{0}))$ included in $\tilde{B}(y_{n0},r_{0})\cap F_{\pi(y_{n_{0}})}$ .
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Let $D_{0}$ be acomponent of $(f^{n0})^{-1}( \tilde{B}(y’, \frac{1}{2}h(r_{0})))$ contained in $\tilde{B}(y,r)$ .
We have that $D_{0}\subset F_{\pi(y)}$ . Let $y’\in D_{0}\cap(f^{n_{0}})^{-1}(y’)$ be apoint. Then by
Corollary 1.8 and 1.9 in [S4], Dist $(\partial D_{0},y’’)\leq M$ for some $M$ depending
only on $N$ and diam $D_{0\wedge}\vee r$ . Hence there exists aconstant $0<k<1$ which
does not depend on $y$ and $r$ such that $\mathrm{B}(\mathrm{y}", kr)$ $\subset D_{0}\subset F_{\pi(y)}$ .

$\square$

4.3 Proofs of results on rational semigroups
Notation Throughout this subsection, for agenerator system $\{h_{1}, \ldots h_{m}\}$

let $f$ : $\Sigma_{m}\cross\overline{\mathbb{C}}arrow\Sigma_{m}\cross\overline{\mathbb{C}}$ be the fibered rational map over the shift map
$\sigma$ : $\Sigma_{m}arrow\Sigma_{m}$ , where $\Sigma_{m}=\{1, \ldots, m\}^{\mathrm{N}}$, associated with the generator
system $\{h_{1}, \ldots, h_{m}\}$ . We set $q_{x}^{(n)}(y)=\pi_{\overline{\mathbb{C}}}(f_{x}^{n}(y))$ for any $(x,y)\in\Sigma_{m}\cross\overline{\mathbb{C}}$.
Lemma 4.9. Let $E$ be a finite subset of $\overline{\mathbb{C}}$. Let ($h_{1}$ , $\ldots$ , $h_{m}\rangle$ be a rational
semigroup. Then for any number $M>0$ there exists a positive integer $n_{0}$

such that for any $(n,x, y)\in \mathrm{N}\cross\Sigma_{m}\cross E$ with $n\geq n_{0}$ which satisfies all of
the following conditions:

1. $q_{x}^{(j)}(y)\in E$ for $j=0$, $\ldots$ , $n$

2. $(q_{x}^{(n)})’(y)\neq 0$ and

3. for any $i\in \mathrm{r}\mathrm{n}$ and $j\in \mathrm{N}$ with $i+j\leq n$, if $q_{\sigma(x)}^{(j)}.\cdot$ $(qi()(y))=q_{x}^{(\dot{1})}(y)$

then $|(q_{\sigma(x)}^{(j)}\dot{.})’(q_{x}^{(\dot{1})}(y))|>1$ ,

we have that $|(q_{x}^{(n)})’(y)|>M$.
Pmof. This lemma can be shown by induction on $\# E$ using the same method
as that in Lemma 1.32 in [S4]. $\square$

Lemma 4.10. Let $(h_{1}, \ldots, h_{m})$ be a finetely generated rational semigroup.
Suppose $\#(UH(G)\cap J(G))<\infty$ and $UH(G)\cap J(G)\neq\emptyset$ . Then for each
$z\in UH(G)\cap J(G)$ there exists an element $g\in G$ , an element $h\in G$ and $a$

$p_{\mathit{0}\dot{l}}ntw\in UH(G)\cap J(G)$ such that $h(w)=z$, $g(w)=w$ and $|g’(w)|\leq 1$ .
Proof. Suppose that there exists apoint $z\in UH(G)\cap J(G)$ for which there
exists no $(g, h, w)$ in the conclusion of our lemma. Then by Lemma 4.9 and
the Koebe distortion theorem, we can easily see that for arbitrarily small
$\epsilon>0$ there exists apositive number 6and apositive constant $N$ such that
if apoint $w_{0}\in UH(G)\cap J(G)$ and an element $g0\in G$ satisfy $g\mathrm{o}(w_{0})=z$

then the diameter of the component $V$ of $g_{0}^{-1}(B(z, \delta))$ containing $w_{0}$ is less
than $\epsilon$ and $\deg(g_{0} : Varrow B(z, \delta))\leq N$ . Then taking $\epsilon$ small enough, since $G$

is finitely generated and $\#(UH(G)\cap J(G))<\infty$ we can easily deduce that
there exists apositive constant $N’$ such that for any element $g_{1}\in G$ and
any component $W$ of $g_{1}^{-1}(V)$ , we have that $\deg(g_{1} : Warrow V)\leq N’$ . This
implies that $z\in SH_{N+N’}(G)$ and this contradicts to that $z\in UH(G)$ . Cl
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Lemma 4.11. Under the assumpstion of Theorem 3.2, there exists a disk
D in $F(G)$ such that

1. $\overline{\bigcup_{g\in G}g(D)}\subset F(G)$ and

2. diam $q_{x}^{(n)}(D)arrow 0$ as $narrow\infty$ unifomly on $x\in\Sigma_{m}$

In particular, the fibered rational map $f$ satisfies the condition (C2).

Proof. Let $h\in Ci$ be an element of degree at least two. Since $\emptyset\neq\overline{\mathbb{C}}\backslash \overline{U}\subset$

$F(G)$ and $UH(G)\cap J(G)\subset U$, we have that there exists an attracting
periodic point $z_{0}$ in $F(G)\backslash \mathrm{U}$. Since $UH(G)\cap J(\underline{G)\subset U}$again, it follows
that there exists adisk $D$ around $z\circ$ such that $\bigcup_{g\in G}g(D)\subset F(G)$ . By
Lemma 1.30 in [S4], the statement of our lemma follows. $\square$

Lemma 4.12. Under the assumption of Theorem 3.2, if $UH(G)\cap J(G)\neq\emptyset$

then for each point $z\in UH(G)\cap J(G)$ there exists the unique element $h\in G$

satisfying that $h^{n}(z)=z$ for each $n\in \mathrm{N}$ . Further we have that $z$ is a parabolic

fixed point of $h$ .

Proof. By Lemma 4.10 and the open set condition, there exists the unique
element $h\in G$ with $h^{n}(z)=z$ for each $n\in \mathrm{N}$. Further we must have
$|h’(z)|\leq 1$ .

If $\deg(h)=1$ , then by Lemma 4.11 it follows that $z$ is arepelling fixed
point of $h$ . This is acontradiction. If $\deg(h)\geq 2$ , then since we are assuming
that $\#(UH(G)\cap J(G))<\infty$ we have that $z$ is an attracting or parabolic
fixed point of $h$ . Suppose $z$ is an attracting fixed point of $h$ . Then there
exists an open neighborhood $V$ of $z$ in $U$ such that $h(V)\subset V$. Let $x\in\Sigma_{m}$

be the point such that $h_{x_{n}}\circ\cdots\circ h_{x_{1}}=h$ for each $n$ , where $x=(x_{1},x_{2}, \ldots)$ .
Then by the open set condition for any $x’\in\Sigma_{m}\backslash \{x\}$ and any $n\in \mathrm{N}$ we
have that $h_{x_{\acute{n}}}\circ\cdots h_{x_{\acute{1}}}(V)\subset\overline{\mathbb{C}}\backslash U$ . Hence we have that $G$ is normal in $V$

and this is acontradiction. $\square$

Lemma 4.13. Under the assumption of Theorem 3.2, we have that for each
$(x, y)\in\pi_{\overline{\mathbb{C}}}^{-1}(G^{-1}(J(G)\backslash UH(G)))$ , $\lim\sup_{narrow\infty}d(q_{x}^{(n)}(y), UH(G))>0$ .

Proof. Let $(x,y)$ be apoint in $\pi_{\overline{\mathbb{C}}}^{-1}G^{-1}(J(G)\backslash UH(G))$ . Then $q_{x}^{(n)}(y)\in$

$J(G)\backslash UH(G)$ for each $n\in \mathrm{N}$ .
Assume that $\lim_{narrow\infty}d(q_{x}^{(n)}(y), UH(G))=0$ . We will deduce acontradic-

tion. For each $z\in UH(G)\cap J(G)$ , let $g_{z}$ be the element of $G$ in the statement
of Lemma 4.12 Let $H=\{g_{z}|z\in UH(G)\cap J(G)\}$ . Then we have $\#(H)<\infty$ .
Let $\epsilon>0$ be asmall number such that if apoint $z\in UH(G)\cap J(G)$ and an
element $h\in H$ satisfy $h(z)=z$ , then

$h(B(z, \epsilon))\subset U$. (4)
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Let $A_{\epsilon}$ be the $\epsilon$-neighborhood of $UH(G)\cap J(G)$ in C. Then there exists a
number $n_{0}\in \mathrm{N}$ such that $q_{x}^{(n)}(y)\in A_{\epsilon}$ for each $n\geq n_{0}$ .

For each $n\geq n0$ , let $z_{n}\in UH(G)\cap J(G)$ be the unique point such
that $d(z_{n},q_{x}^{(n)}(y))<\epsilon$ . Since $g(UH(G))\subset UH(G)$ for each $g\in G$ we may
assume that

$q_{\sigma^{n}(x)}^{(1)}(z_{n})=z_{n+1}$

for each $n\geq n_{0}$ .
Since $\#(UH(G)\cap J(G))<\infty$ , there exists apositive integer $n_{1}\geq n_{0}$ and

$l\in \mathrm{N}$ such that $z_{n_{1}+l}=z_{n_{1}}$ . Let $g_{1}\in Ci$ be the unique element such that
$g_{1}(z_{n_{1}})=z_{n_{1}}$ . Let $w\in\{1, \ldots,m\}^{l}$ be the word such that $h_{w_{l}}\circ\cdots\circ h_{w_{1}}=g_{1}$ .
Then by (4) and the open set condition we have that $\sigma^{n_{1}}(x)=w^{\infty}$ . Since
we are assuming $d(q_{x}^{(n)}(y), UH(G))arrow 0$ as $narrow\infty$ , by $z_{n_{1}+l}=z_{n_{1}}$ we get
that $g_{1}^{k}(q_{x}^{(n_{1})}(y))arrow z_{n_{1}}$ as $karrow\infty$ . Hence by Lemma 4.12 we must have that
$z_{n_{1}}$ is aparabolic fixed point of $g_{1}$ and $q_{x}^{(n_{2})}(y)$ belongs to $W\cap \mathcal{P}$ , where $W$

is asmal neighborhood of $z_{n_{1}}$ in $U$, $P$ is the union of attracting petals of
$g_{1}$ at $z_{n_{1}}$ and $n_{2}$ is alarge positive number with $n_{2}\geq n_{1}$ . Then there exists
an open neighborhood $V$ of $y$ such that $q_{x}^{(n_{2})}(V)\subset W\cap P$. Taking $W$ so
small and $n_{2}$ so large we may assume that $g_{1}^{s}(q_{x}^{(n_{2})}(V))\subset W\cap P$ for any
$s$ : N. Since $h_{j}^{-1}(U)\subset U$ for each $j=1$ , $\ldots$ , $m$, we get $q_{x}^{(n)}(V)\subset U$ for
each $n\in \mathrm{N}$ . By the open set condition, for any $x’\in\Sigma_{m}\backslash \{x\}$ we have that
$q_{x}^{(n)},(V)\subset\overline{\mathbb{C}}\backslash U$ for each $n\in \mathrm{N}$. Hence we get that $G$ is normal in $V$ and
this contradicts to that $y\in \mathrm{J}\{\mathrm{G})$ .

Cl

Now we will give aproof of Theorem 3.2.

Pmof. of Theorem 3.2. Suppose $J(G)\neq\overline{U}$. Then by Proposition 4.3 in
[S4], we have intJ(G)=\emptyset . For any $d$ $\in J(G)$ and $r$ $>0$, we set

$h(y’,r)= \sup\{s|\exists y’\in\overline{\mathbb{C}}, B(y’, s)\subset F(G)\cap B(y’,r)\cap U\}$

and $h(r)= \inf\{h(\oint,r)|\nu \in J(G)\}$ . Then since intJ(G)=\emptyset , we have
$h(r)>0$ for any $r>0$ .

Let $\delta_{0}>0$ be small number. Let $B$ be the $\delta_{0}$-neighborhood of $UH(G)\cap$

$J(G)$ in C. By Lemma 4.3 and Lemma 4.11, we have that there exists a
positive number $\delta_{1}$ and anumber $N\in \mathrm{N}$ such that for any $y’\in J(G)\backslash B$ , $0<$
$\delta\leq\delta_{1}$ and any component $V$ of $g^{-1}(B(y’, 2\delta))$ , $V$ is simply connected and
$\deg(g:Varrow B(y’,2\delta))\leq N$ . By Lemma 4.13 and Theorem 2.1, we have

$\tilde{J}(f)=\bigcup_{x\in\Sigma_{m}}J_{x}$
. (5)

Let $y\in J(G)$ be apoint. Since $\pi_{\overline{\mathbb{C}}}\tilde{J}(f)=J(G)$ (Proposition 3.2 in [S5]), by
(5) we have that there exists apoint $x\in\Sigma_{m}$ such that $y\in J_{x}$ .
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Let $\delta_{2}=\min\{\delta_{0}, \delta_{1}\}$ . Let $r$ be apositive number. We set $B_{n}=q_{x}^{(n)}(B(y, r)$

and $y_{n}=q_{x}^{(n)}(y)$ for each $n\in \mathrm{N}$ . Since $y\in J_{x}$ , we have that there exists the
smallest positive integer $n_{0}$ such that diam $B_{n_{0}+1}>\delta_{2}$ . Then there exists a
constant $l\circ$ such that $l_{0}\delta_{2}<\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}B_{n0}$ .

Case 1. $y_{n_{0}}\in J(G)\backslash B$ .
By Corollary 2.3 in [Y], there exists aconstant $K$ depending only on

$N$ and aball $B(y_{n0}, r_{0})\subset B_{n0}$ with $r_{0}$ diam $B_{n_{0}}/K\geq \mathrm{m}l\delta K$ such that the

component of $(q_{x}^{(n\mathrm{o})})^{-1}(B(y_{n0},r_{0}))$ containing $y$ is asubset of $B(y, r)$ . There
exists aball $B(y’, \frac{2}{3}h(r_{0}))$ included in $B(y_{n_{0}},r\mathrm{o})\cap F(G)\cap U$.

Let $D_{0}$ be acomponent of $(q_{x}^{(n_{0})})^{-1}(B(y’, \frac{1}{2}h(r\mathrm{o})))$ contained in $B(y, r)$ .
By the open set condition, we have $g^{-1}(U\cap F(G))\subset U\cap F(G)$ for each $g\in G$ .
Hence we have $D_{0}\subset F(G)\cap U$. Let $y’\in D_{0}\cap(q_{x}^{(n\mathrm{o})})^{-1}(y’)$ be apoint. Then
by Corollary 1.8 and 1.9 in [S4], Dist $(\partial D_{0}, y’)\leq M$ for some $M$ depending
only on $N$ and diam $D_{0}\vee\wedge r$ . Hence there exists aconstant $0<k<1$ which
does not depend on $y$ and $r$ such that $B(y’, kr)\subset D_{0}\subset F(G)\cap B(y, r)$ .

Case 2. $y_{n_{0}}\in B$ .
By Lemma 4.12 and that $UH(G)\cap J(G)\subset U$, taking $\delta_{0}$ small enough

and using the method in pp286-287 in [Y] we can show that there exists a
ball $B(y’, k’r)$ in $B(y, r)\cap F(G)$ where $k’$ is aconstant with $0<k’<1$
which does not depend on $y$ and $r$ .

$\square$

Now we $\mathrm{w}\mathrm{i}\mathrm{l}$ show Proposition 3.4.

Proof, of Proposition 3.4. By the open set condition, we have $J(G)\subset\overline{U}$.
We will show the folowing.

Claim 1: There exists an open set $V’$ included in $U\cap F(G)$ such that
$h^{-1}(V’)\cap V’=\emptyset$ for each $h\in G$ .

Before showing this claim, we remark that we can easily show the fol-
lowing claim.

Claim 2: If there exists apoint $z\in U\cap F(G)$ such that $z\in\overline{\mathbb{C}}\backslash \overline{G(z)}$,
then the claim 1holds with an small open neighborhood $V’$ of $z$ .

To show the claim 1, by the open set condition we have

$j=1\cup h_{j}^{-1}(U\cap F(G))m\subset U\cap F(G)$ . (6)

Suppose the equality does not hold in (6). Then there exists apoint $z\in$

$U\cap F(G)$ such that $h_{j}(z)\in\overline{\mathbb{C}}\backslash U$ for each $j=1$ , $\ldots$ , $m$ . Hence by the open
set condition, we get that $z\in\overline{\mathbb{C}}\backslash \overline{G(z)}$. By the claim 2, the claim 1holds

161



Hence we may assume that

$j=1\cup h_{j}^{-1}(Um\cap F(G))=U\cap \mathrm{F}(\mathrm{G})$. (7)

Let $\alpha$ : $U\cap F(G)arrow U\cap F(G)$ be the map defined as: $\alpha(z)=h_{j}(z)$ if
$z\in h_{j}^{-1}(U\cap F(G))$ . This is well defined by (7) and the open set condition.

Let $z\in U\cap F(G)$ be apoint. If $z\in\overline{\mathbb{C}}\backslash \overline{G(z)}$, then by the claim 2we
have the claim 1. Hence we may assume $z\in\overline{G(z)}$ i.e.

$z\in\cup\{\alpha^{n}(z)\}n=0\infty$ . (8)

Let $W$ be the connected component of $U\cap F(G)$ containing $z$ . By (8) there
exists the smalest positive integer $n$ with $\alpha^{n}(W)\subset W$. By (8) and the open
set condition, we have one of the folowing cases 1and 2.

Case 1: $W$ is included in an attracting basin of an element $g\in G$ , $z$ is
the attracting fixed point in the basin and $g|W=\alpha^{n}|_{W}$ .

Case 2: $W$ is included in aSiegel disk or aHerman ring of an element
$g\in G$ of degree at least 2and $g|_{W}=\alpha^{n}|_{W}$ .

If we have the case 1, then there exists an open set $V’$ included in $W$

with $\alpha^{-l}(V’)\cap V’=\emptyset$ for each $l\in \mathrm{N}$ i.e. $h^{-1}(V’)\cap V’=\emptyset$ for each $h\in G$ .
If we have the case 2, then taking $V’$ in aconnected component $A$ of

$\alpha^{-n}(W)$ with $A\cap W=\emptyset$ , we have $\alpha^{-l}(V’)\cap V’=\emptyset$ for each $l\in \mathrm{N}$ i.e.
$h^{-1}(V’)\cap V’=\emptyset$ for each $h\in G$ .

Hence we have shown the claim 1. Let $V’$ be an open set included in
$U\cap F(G)$ such that $h^{-1}(V’)\cap V’=\emptyset$ for each $h\in G$ . Then by the open set
condition we have $g^{-1}(V’)\cap h^{-1}(V’)=\emptyset$, if $g$ , $h\in G$ and $g\neq h$ . Further
the post critical set of $G$

$P(G):=\cup$ {
$g\in G$

critical values of $g$}

does not accumulate in $V’$ . Let $V$ be an open disk included in $V’\backslash \mathrm{F}(\mathrm{G})$ .
Then we have that

$\int_{V}\sum_{h\in G}\sum_{\alpha}||\alpha’(z)||^{2}dm(z)<\infty$ ,

where $\alpha$ runs over aU well-defined inverse branches of $h$ on $V$. Hence for
almost every $x\in V$ with respect to the Lebesgue measure, we have $5(2,x)$ $<$

$\infty$ . $\square$

Now we will show Theorem 3.5. we need some lemmas
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Lemma 4.14. Let $G$ be a rational semigroup. Assume that $\infty\in F(G)$ and

for each $x\in E(G)$ there exists an element $g\in G$ such that $g(x)=x$ and
$|g’(x)|<1$ . Let $A$ be a subset of $J(G)$ . Suppose that there exist positive
constants $a_{1}$ , $a2$ and $c$ with $0<c<1$ such that for each $x\in A$ , there exist
two sequences $(r_{n})$ and $(R_{n})$ of positive real numbers and a sequence $(g_{n})$ of
elements of $G$ satisfying all of the following conditions:

1. $r_{n}arrow 0$ and for each n, $0< \frac{f}{R}\mathrm{n}-<\mathrm{C}n$ and $g_{n}(x)\in J(G)$ .

2. for each n, $g_{n}(D(x, R_{n}))\subset D(g_{n}(x), a_{1})$ .

3. for each $ng_{n}(D(x,r_{n}))$ :) $D(g_{n}(x), a_{2})$ .

Then
$dim_{H}(A)\leq s(G)$ .

Proof. We may assume that $\#(J(G))\geq 3$ . Let $\delta\geq s(G)$ be anumber and
$\mu$ a $\delta$ -subconformal measure. By the method in the proof of Lemma 5.5
in [S4], we can show that there exists aconstant $d>0$ not depending on
$n\in \mathrm{N}$ and $x\in A$ such that

$\frac{\mu(D(x,r_{n}))}{r_{n}^{\delta}}\geq c’$ .

Prom this and Theorem 7.2 in [Pe], we get $\dim_{H}A\leq\delta$. $\square$

Proposition 4.15. Let $G$ be a rational semigroup. Assume that $F(G)\neq\emptyset$

and that for each $x\in E(G)$ , there exists an element $g\in G$ such that
$g(x)=x$ and $|g’(x)|<1$ . Then we have

$dim_{H}(J_{con}(G))\leq s(G)$ .

Proof. We have only to show the following:
Claim: For fixed $N\in \mathrm{N}$ and $r>0$ , $\dim_{H}(J_{con}(G, N,r))\leq s(G)$ .
We will show this. We can assume $\infty\in F(G)$ . Let $x\in J_{con}(G, N,r)$ be

apoint. Then there exists asequence $(g_{n})$ in $G$ such that for each $n\in \mathrm{N}$ we
have $g_{n}\in J(G)$ ,

$\deg(g$ : $V_{n}(r)arrow D(g_{n}(x),r)\leq N$

and $V_{n}(r)$ is simply connected and diam $V_{n}(r)arrow 0$ as $narrow\infty$ , where $V_{n}(r)$

is tne element of $c(D(g_{n}(x), r)$ , $g_{n})$ containing $x$ . Let $\varphi_{n}$ : $D(0,1)arrow V_{n}(r)$

be the Riemann map such that $\varphi_{n}(0)=x$ . By the Koebe distortion theorem
we have for each $n$ ,

$V_{n}(r) \supset D(x, \frac{1}{4}|\varphi_{n}’(0)|)$ .

By Lemma 4.1 and the Koebe distortion theorem, there exists an $\epsilon>0$ such
that for each $n\in \mathrm{N}$ ,

$V_{n}( \epsilon r)\subset D(x, \frac{1}{8}|\varphi_{n}’(0)|)$ .
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Since diam $V_{n}(r)$ $arrow 0$ as n $arrow\infty$ , we have $|\varphi_{n}’(0)|arrow 0$ as n $arrow\infty$ . Applying
Lemma 4.14, we obtain the claim. Cl

Now we will show the following theorem.

Theorem 4.16. Let $G=\langle h_{1}, \ldots, h_{m}\rangle$ be a finitely generated rational semi-
grvup with $F(G)\neq\emptyset$ . Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be the fibered rational map associ-
ated with the generator system $\{h_{1}, \ldots, h_{m}\}$ , where $\mathrm{Y}=\Sigma_{m}\cross\overline{\mathbb{C}}$. Suppose
that $f$ satisfies the condition (Cl) and that for each $x\in\Sigma_{m}$ , the bound-
$ary$ of $\hat{J}_{x}(f)\cap UH(f)$ in $\mathrm{Y}_{x}$ does not separate points in $\mathrm{Y}_{x}$ . Then we have
$J_{good}(G)\subset J_{cm}(G)$ and

$\dim_{H}(J_{good}(G))\leq s(G)\leq s_{0}(G)$ .
Proof. We may assume $\#(J(G))\geq 3$ . First we will show the folowing:

Claim: If $E(G)\neq\emptyset$ , then for each $x\in E(G)$ there exists an element
$g\in G$ such that $g(x)=x$ and $|g’(x)|<1$ .

If there exists an element $h\in G$ with $\deg(h)\geq 2$ , then this claim is
trivial. Suppose that each element of $G$ is of degree 1. By Lemma2.3 in
[S5], we have $\#(E(G))\leq 2$ . Since $f$ satisfies the condition (C1) for each
$i$ , $h_{:}$ is loxodromic. Since $h_{:}(E(G))=E(G)$ for each $i$ , we must have that
each $x\in E(G)$ is fixed by $h_{:}$ for each $i$ . Let $x\in E(G)$ be apoint. Suppose
$|h_{\dot{1}}’(x)|>1$ for each $i$ . Then we get $J(G)=\{x\}$ and this is acontradiction
since we are assuming that $\#(J(G))\geq 3$ . Hence $|h_{\dot{1}}’(x)|<1$ for some $i$ . Hence
the claim holds.

The statement of our theorem follows ffom the claim, the second state-
ment in Proposition 4.7, Proposition 4.15 and Theorem 4.2 in [S2]. 0
Now we $\mathrm{w}\mathrm{i}\mathrm{l}$ show Theorem 3.5.

Proof. of Theorem 3.5. This follows from Lemma 4.11, Lemma 4.13 and
Theorem 4.16. $\square$
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