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Abstract

We consider fiber-preserving complex dynamics on fiber bundles
whose fibers are the Riemann spheres and whose base spaces are com-
pact metric spaces. We define the semi-hyperbolicity of dynamics on.
fiber bundles. We will show that if a dynamics on a fiber bundle is semi-
hyperbolic, then we have that the fiberwise Julia sets are k—porous and
that the dynamics has a kind of weak rigidity. We also show that the
Julia set of a rational semigroup(semigroup generated by rational maps
on C) which is semi-hyperbolic except at most finitely many points in
the Julia set and satisfies the open set condition is porous or is equal to
the closure of the open set. Note that if a set J in C is k-porous then
the upper Box dimension of the set J is less than 2 — ¢(k) where c(k)
is a positive constant depending only on k. Further we get an upper
estimate of the Hausdorff dimension of the Julia set.

1 Introduction

To investigate random one-dimensional complex dynamics, dynamics of semi-
groups generated by rational maps on the Riemann sphere C and fiber-
preserving holomorphic dynamics on fiber bundles which appear in complex
dynamics in in several dimensions, we consider the dynamics of fibered ra-
tional maps, that is, fiber-preserving complex dynamical systems on fiber
bundles whose fibers are the Riemann spheres and whose base spaces are
general compact metric spaces. The notion of dynamics of fibered rational
maps, which was a generalized notion of ‘dynamics of fibered polynomial
maps’ by O.Sester([Sel], [Se2], [Se3]), was introduced by M.Jonsson in [J2].
The research on dynamics of semigroups generated by rational maps on
the Riemann sphere ([HM1], [HM2], [HM3] [GR], [Bo], [St1], [St2], [St3],
[S1], [S2], [S3], [S4], [S5]), the research of random iterations of rational
functions([FS], [BBR]) and the research on polynomial skew products on



C? ([H1], [H2), [J1]) are directly related to this subject. For the research
of polynomial skew products (dynamics of fibered polynomials) whose base
spaces are general compact metric spaces, see O.Sester’s works [Sel], [Se2]
and [Se3]. In [Se3] he investigated the quadratic case in detail. In particular,
he developed a combinatorial theory for quadratic fibered polynomials and
constructed an abstract space of combinatorics. Moreover he showed some
realizability and rigidity for an abstract combinatorics.

1.1 Notations and definitions

Definition 1.1. ( [J2]) A triplet (,Y, X) is called a ‘C-bundle’ if
1. Y and X are compact metric spaces,
2. m:Y = X is a continuous and surjective map,

3. There exists an open covering {U;} of X such that for each i there ex-
ists a homeomorphism ®; : U; x C - n~1(U;) satisfying that ®;({z} x
C) = 7~ 1(z) and <I>j‘1 o ®; : {z} x C - {z} x C is a M6bius map for
each z € U; NUj, under the identification {z} x C = C.

Remark: By the condition 3, each fiber Y, := 7~1(z) has a complex struc-
ture. We also have that given zp € X we may find a continuous family
iz:C—o Y, of homeomorphisms for z close to zg. Such a family {i;} will be
called a ‘local parameterization’. Since X is compact, we may assume that
there exists a compact subset My of the set of Mébius transformations of C
such that iz 0 jz ! € M) for any two local parametrizatios {iz} and {j;} . In
this paper we always assume that.
Moreover in this paper we always assume the following condition:

e there exists a smooth (1,1)-form w; > 0 inducing a metric on Y, and
T > wy is continuous. That is, if {i;} is a local parametrization,
then the pull back ifw, is a positive smooth form on C depending
continuously on z.

Definition 1.2. Let (7,Y, X) be a C-bundle. Let f : Y — Y and 9: X —
X be continuous maps. We say that f is a fibered rational map over g (or
a rational map fibered over g) if

l. rof=gonm

2. fly. : Yo = Yy(4) is a rational map for any = € X. That is, (i, )~ 1o foi,
is a rational map from C to itself for any local parametrization i, at
r € X and iy, at g(x).

Notation: If f:Y — Y is a fibered rational map over g: X - X,

then we put f? = f"|y, for any z € X and n € N. Furthermore we put
dn(z) = deg(f?) and d(z) = d;(z) for any z € X and n € N.
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Definition 1.3. Let (7,Y, X) be a C-bundle. Let f : Y — Y is a fibered ra-
tional map over g : X = X. Then for any x € X we denote by F;(f)(simply
F;) the set of points y € Y, which has a neighborhood U of y in Y, satis-
fying that {f7 }neN is a normal family in U, that is, y € F; if and only if
the family Q7 = i;! o f? o i, of rational maps on C (zn denotes g™(z) ) is
normal near l(y) note that by remark in the definition of C-bundle, this
does not depend on the choices of local parametrizations at z and z,. Still
equivalently, F is the open subset of Y; where the family {f'} of mappings
from Y, into Y is local equicontinuous. We put J(f)(simply J;)= Yz \ Fz.
Furthermore, we put

J(5) = | Jor F(H) =Y\ J(),
zxeX

and J,(f)(simply J;z)= J(f) NY; for each z € X.

Remark 1. There exists a fibered rational map f:Y =Y satysfymg that
Uzex J= is NOT compact.

We give some notations and definitions on dynamics of rational semi-
groups.

For a Riemann surface S, let End(S) denote the set of all holomor-
phic endomorphisms of S. It is a semigroup with the semigroup opera-
tion being composition of maps. A rational semigroup is a subsemigroup of
End(C) without any constant elements. We say that a rational semigroup
G is a polynomial semigroup if each element of G is a polynomial. The re-
searches on dynamics of rational semigroups were started by A.Hinkkanen
and G.J.Martin ([HM1]), who were interested in the role of dynamics of
polynomial semigroups in the research of various one-complex-dimensional
moduli spaces for discrete groups, and F.Ren’s group([GR]).

Definition 1.4. Let G be a rational semigroup. We set
F(G) = {z € C| G is normal in a neighborhood of z}, J(G) =C\ F(G).

F(G) is called the Fatou set for G and J(G) is called the Julia set for G.
The backward orbit G~1(z) of z and the set of exceptional points E(G) are
defined by: G~1(z) = Ugegg™(2) and E(G) = {z € C | §G~'(2) < 2}. For
any subset A of C, we set G~1(A) = Ugecg~!(A). We denote by (hi, he, .. .)
the rational semigroup generated by the family {h;}.

Lemma 1.5 ([S4]). Let G be a rational semigroup and assume G is gen-
erated by a precompact subset A of End(C). Then

JG) = F1J@) = U r(J(G)).

feA heA

In particular if A is compact then we have J(G) = Ugep f~ LJ(G)).
We call this property the backward self-similarity of the Julia set.
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Remark 2. By the backward self-similarity, the research on the Julia sets
of rational semigroups may be considered as a kind of generalization of the
research on self-similar sets constructed by some similitudes from C to itself,
which can be regarded as the Julia sets of some rational semigroups. It is
easily seen that the Sierpinski gasket is the Julia set of a rational semigroup
G = (h1, h, h3) where hi(2) = 2(z — p;) + p;,i = 1,2,3 with p1pops being a
regular triangle.

Example 1.6. 1. ([S4].) Let hy,... , Ay be non-constant rational maps.
Let = {1,... ,m}N be the space of one-sided infinite sequences of
m symbols and g : £, — Ly, be the shift map: that is, g is defined
by g((w1,w2,...)) = (w2, ws,...). Let X be a compact subset of ,,
such that g(X) C X. Let Y = X x C and 7 : Y = X be the natural
projection. Then (r,Y,X) is a C-bundle. Let f : Y — Y be a map
defined by: f((w,y)) = (9(w), hw,(y)). Then f : Y — Y is a fibered
rational map over g : X — X.

In the above if X = X, then we say that f : Y — Y is the fibered
rational map associated with the generator system {h1,...hp}
of the rational semigroup G = (hy,... ,hy,). Then by Proposition 3.2
in [S5](See also §8:Note in [S7]) we have

me(J(f)) = J(G),
where 7 : Y — C is the projection. See [S4] for more details.

2. Let Y be a ruled surface over a Riemann surface X: that is, Y is
a smooth projective variety of complex dimension 2 which is also a
holomorphic P!(C)-bundle over X. Every Y; has a unique conformal
structure and a positive form w, = w|y,, where w is the Kihler form
onY. Let 7 : Y — X be the projection. Then (r,Y, X) is a C-bundle.

Dabija [D] showed that (almost) every holomorphic selfmap f of Y is
a fibered rational map over a holomorphic map g: X — X.

3. Let p(z) € C|z] be a polynomial with degree at least two and q(z,y) €
Clz,y] a polynomial of the form: g(z,y) = y™ + a;(z)y™! +--- . Let
f :C? - C? be a map defined by

f((=,9)) = (p(=), a(=, ).

This is called a polynomial skew product in C2. Dynamics of maps of
this form were investigated by S.-M.Heinemann in [H1] and [H2] and
by M.Jonsson in [J1].

Let X be a compact subset of C such that p(X) C X. (e.g. the Julia
set of p.) Let (m,Y = X x C, X) be a trivial C-bundle. Then the map
f:Y = Y defined by f((z,y)) = (p(z),q(z,y)) is a fibered rational
map over p: X — X.

146



Notation :

e Let Z; and Z> be two topological spaces and g : Z; — Z> be a map.
For any subset A of Z5, we denote by c¢(g, A) the set of all connected
components of g~1(A).

o for any y € C and é§ > 0, we put B(y,d) = {¢ € C | d(y,y’) < 6},
where d is the spherical metric. Similarly, for any y € C and § > 0 we
put D(y,0) ={y' € C| |y —4'| < é}.

e Let (m,Y, X) be a C-bundle. For any y € Y and r > 0 we set

B(y’ 1‘) = {y’ € Yw(y) I d1r(y) (y’ay) < 1‘},

where for each £ € X we denote by d; the metric on Y; induced by

the form w;.
Now we define the semi-hyperbolicity of fibered rational maps.

Definition 1.7. (semi-hyperbolicity on fibered rational maps) Let
(m,Y,X) be a C-bundle. Let f : Y — Y be a fibered rational map over
g: X — X. Let N € N. We denote by SHy(f) the set of points z € Y
satisfying that there exists a positive number 4, a neighborhood U of 7(z2)
and a local parametrization {i;} in U such that for any z € U, any n € N,
any z, € g"1(z) and any V € c(iz(B(i;(lz)(z), 5)), f), we have

deg(f7 : V — ix(B(iz,)(2), §))) < N.

We set
UH(f) =Y\ |J SH~(f)-

NeN
A point z € SHy(f) is called a semi-hyperbolic point of degree N. We say
that f is semi-hyperbolic (along fibers) if J(f) C Unen SHN(S). This is
equivalent to J(f) C SHy(f) for some N € N.

Similarly we define the semi-hyperbolicity on rational semigroups.

Definition 1.8. (semi-hyperbolicity on rational semigroups) Let G
be a rational semigroup and N a positive integer. We denote by SHn(G)
the set of points z € C satisfying that there exists a positive number § such
that for any g € G and any V' € ¢(B(2,9), g), we have

deg(g : V — B(z,6)) < N.

Further we set UH(G) = C \ (UnenSHN(G)). A point z € SHN(G) is
called a semi-hyperbolic point of degree N. We say that G is semi-hyperbolic
if J(G) C Unen SHN(G). This is equivalent to J(G) C SHy(G) for some
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xample 1.9. 1. Let f: Y — Y be a rational map fibered over g : X —
X. We set

P(f) = U U J2( critical points of f,).
neENzeX
This is called the fiber post critical set of fibered rational map f. If
f:Y =Y is hyperbolic along fiberes: that is, P(f) C F(f), then f
is semi-hyperbolic along fiberes with the constant N = 1.

2. In Corollary 6.7 of [Se3] O.Sester showed that any ‘non-reccurent
quadratic fibered polynomials’ with connected fiberwise filled-in Ju-
lia sets are semi-hyperbolic.

3. Let {hy,..., h;m} be non-constant rational functionson C. Let f : Y —

Y be the fibered rational map in Example 1.6.1. By easy arguments
we can show that f : Y — Y is semi-hyperbolic along fiberes if and
only if G is semi-hyperbolic.
In [S4], if G is a finitely generated rational semigroup, then a sufficient
condition to be semi-hyperbolic for a point z € J(G) was given, which
gives a generalization of R.Maiié’s work([Ma]). Further in [S4], the
following statement was shown: Assume that there exists an element
of G with the degree at least two, that each element of Aut C N G(if
this is not empty) is loxodromic and that J(G) # C. Then G is semi-
hyperbolic if and only if all of the following conditions are satisfied.

(a) for each z € J(G) there exists a neighborhood U of z in C such
that for any sequence (gn) C G, any domain V in C and any
point ¢ € U, we have that the sequence (g,) does NOT converge
to ¢ locally uniformly on V

(b) for each j =1,... ,m each c € C(f;) N J(G) satisfies
d(c, (GU {id})(fj(c)))'>0

From this fact it was shown in [S4] that if we assume that there exists
an element of G with the degree at least two, that each element of
Aut C N G(if this is not empty) is loxodromic, that there is no super
attracting fixed point of any element of G in J(G) and F(G) # 0,
then G is semi-hyperbolic.

By this theorem we know that G = (22 +2, 22 —2) is semi-hyperbolic.
This is NOT hyperbolic. See [S4].
We need some technical conditions.
finition 1.10 (Condition(C1)). Let (7,Y, X) be a C-bundle. Let f :
— Y be a rational fibered over g : X — X. We say that f satisfies the

idition (C1) if there exists a family {D,},cx of topological disks with
C Yz, = € X such that the following conditions are satisfied:



1. for each z € X there exists a point z; € Y, and a positive number 7
such that D, = B(2z,7s),

2. UmEX UnZO f:z':l(Dz) C F(f)’

3. for any z € X, we have that dia,m(fa(;")(Dx)) — 0, as n — 0o, and

4. infzex rm > 0.

Definition 1.11 (Condition(C2)). Let (7,Y, X) be a C-bundle. Let f :
Y — Y be a fibered rational map over g : X — X. We say that f satisfies
the condition (C2) if for each xp € X there exists an open neighborhood O
of o and a family {D;}zco of topological disks with D, C Yz,z € O such
that the following conditions are satisfied:

1. for each z € O there exists a point z; € Yz and a positive number r,
such that D, = B(zg,7z),

2. UzGO UnZO fg(Dz) - F(f)a

3. for any z € O, we have that diam(f{™(D;)) = 0, as n — oo, and

4. = — Dg is continuous in O.

Example 1.12. 1. Let {hy,...hp} be non-constant rational functions
on C with deg(h;) > 2. Let f : Y — Y be the fibered rational map as-
sociated with the generator system {hi,... , hy} of rational semigroup
G = (hy,... ,hp), which is described in Example 1.6.1. Suppose that
f is semi-hyperbolic along fibers and that w@-(j (f)) = J(G) is not
equal to the Riemann sphere. Then we have that f satisfies the con-
dition (C2). Actually, there exists an attracting fixed point a of some
element of G in F(G). Since G is semi-hyperbolic, we have that setting
D, = D(a,¢€) for each x € ¥,, where € is a positive number, f satis-
fies the condition (C2) with the family of disks (Dg)zcs,,. For more
details, see Theorem 1.35 and Remark 5 in [S4].

2. Let (r, Y = X x C, X) be a trivial C-bundle. Let f:Y — Y be a
fibered rational map over g : X — X satisfying that f; is a polynomial
mapping of degree at least two for each z € X. Then setting D, = D
where D is a small neighborhood of infinity for each z € X, the
fibered rational map f satisfies the condition (C2) with the family of
disks (Dz)zex-

We give the definition of ‘conical’ set in the Julia set.

Definition 1.13. (conical set for fibered rational maps) Let (7,Y, X)
be a C-bundle. Let f : Y — Y be a fibered rational map over g : X — X.
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Let N € N and r > 0. We denote by Joon(f, N, r) the set of points z € J(f)
satisfying that for any € > 0, there exists a positive integer n such that
the element U € ¢(B(f"(2),r), f"lv,,,) containing z satisfies the following
conditions:

1. diam U <,
2. U is simply connected, and
3. deg(f™: U = B(f*(2),r)) < N.

We set jcon(f,N) = Ur>o jcon(fa N,"') and jcon(f) = UNeN jcon(fa N)

Definition 1.14. (conical set for rational semigroups) Let G be a ra-
tional semigroup. Let N € N and r > 0. We denote by Jon(G, N,r) the
set of points z € J(G) satisfying that for any € > 0, there exists an ele-
ment g € G such that g(2) € J(G) and the element U € ¢(B(g(2),r), g)
containing 2 satisfies the following conditions:

1. diam U < ¢,
2. U is simply connected, and
3. deg(g : U — B(g(2),r)) < N.
We set Jeon (G, N) = Urso0Jdeon(G, N, 1) and Jeon(G) = UnenNJeon(G, N).

Definition 1.15. (good points for fibered rational maps) Let (7,Y, X)
be a C-bundle. Let f : Y — Y be a fibered rational map over g : X — X.
We set

Jgood(f) = {z € J(f) | lim sup d(f"(z), UH(f)) > 0}.

Definition 1.16. (good points for finitely generated rational semi-
groups) Let (hy,...,hp,) be a rational semigroup. Let f : E,, x C —
Xm X C be the ﬁbered rational map associated with the generator system
{h1,--- yhm}. Then we set Jgooq(G) = wf(Jgood(f)) Note that this defi-
nition does not depend on the choice of any generator system of G which
consists of finitely many elements.

2 Results on Fibered Rational Maps

In this section we state some results on dynamics of fibered rational maps
which are deduced by semi-hyperbolicity, except Theorem 2.6 . The proofs
are given in §4.

Theorem 2.1. (measure zero) Let (n,Y, X) be a C-bundle. Let f: Y —
Y be a fibered rational map over g : X — X. Suppose all of the following
conditions:
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1. f satisfies the condition (C1),

2. for each x € X, the boudary of J(f)NUH(f) in Y, does not separate
points in Yy,

3. J(f) \Unen F ™ (UH(f)) C Jyooa(f) and

4. for each z € J(f)NUH(f) and each open neighborhood V of z in Yy,
we have that the diameter of fr z)(V) does not tend to zero as n — oo.

Then J(f) = Uzex Jz and for each x € X, the 2-dimensional Lebesgue
measure of Jz \ Upen [ " (UH(f)) is equal to zero.

Definition 2.2. Let (Y,d) be a metric space. Let k be a constant with
0 < k < 1. Let J be a subset of Y. We say that J is k-porous if for any z € J
and any positive number r there exist a ball in {y € Y | d(y,z) < r}\J
with the radius at least kr.

Remark 3. If Y is the Euclidean space R™ and d is the Euclidean metric,
the Box dimension of any k-porous bouded set J in R™ is less than n—c(k, n),
where c(k,n) is a positive constant which depends only on k and n ([PR]).

Theorem 2.3. (porosity) Let (7,Y,X) be a C-bundle. Let f: Y =Y bea
fibered rational map over g : X — X. Suppose that f satisfies the condition
(C1) and that f is semi-hyperbolic. Then there ezists a constant k with
0 < k < 1 such that Jy is k-porous in Yy for each x € X. In particular, there
exists a constant 0 < ¢ < 2 such that for each x € X,

dimg(J;) < dimp(Jz) < ¢,

where dimg denotes the Hausdorff dimension and dimp denotes the Boz
dimension with respect to the metric on Y, induced by wy (wz is the form in
the remark in Definition 1.1).

Theorem 2.4. (a rigidity) Let (7,Y,X) and (%Y, X) be two C-bundles.
Let f: Y =Y be a fibered rational map over g : X >Xandf:Y:»Ya
fibered rational map over g : X 5 X. Letu:Y = Y be a homeomorphism
which is a bundle conjugacy between f and f :.e. u satisfies that fou = vor
for some homeomorphism v : X — X and fou = uo f. Suppose that f
is semi-hyperbolic along fiberes and satisfies the condition (C1). For each
we X, let uy : Yy — ﬁ,(w) be the restriction of u. Let x € X be a point.

Then if ug is K-quasiconformal on Fy, for each a € Unez{g"(z)} we have
that ug : Yo — Yy(q) 18 K-quasiconformal on the whole Yo.

Definition 2.5. Let C be a positive number. Let K be a closed subset of
C. We say that K is C-uniformly perfect if for any doubly connected domain
A in C satisfying that A separates K i.e. both two connected components
of C \ A have non-empty intersections with K, mod A (the modulus of A.
For the definition, see [LV])is less than C.
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Remark 4. Uniform perfectness implies many good properties ([BP],[Po],[St
This term was introduced in [Po]. In [Su], there is a survey on uniform per-
fectness.

Theorem 2.6. (uniform perfectness) Let (m,Y, X) be a C-buundle. Let
f:Y =Y be a fibered rational map over g : X — X satisfying that d(z) > 2
Jor any x € X. Then we have the following.

1. There ezxists a positive constant C such that for any =z € X, we have
that J, and J, are C-uniformly perfect.

2. Suppose further f(F(f)) C F(f)( for example, assume that g: XX
i3 an open map). If a point z € Y satisfies that f (z)(z) = 2z and
( ;‘(z))' (2) =0 for somen € N and z € J,,(z), then z belongs to the
interior of j,,(z) with respect to the topology of Y-

3 Results on Rational Semigroups

In this section we state some results on dynamics of semigroups generated
by rational functions on the Riemann sphere. The proofs are given in §4.

Definition 3.1. Let G = (hy, hy, .. m) be a finitely generated rational
semigroup. Let U be an open set in C We say that G satisfies the open
set condition with U with rwpect to the generator systems {hl, ha, ... hm}
if for each j = 1,...,m, h;'(U) C U and {h;'(U)};=1,..,m are mutua.lly
disjoint.

Theorem 3.2. (porosity) Let G = (hy,... ,hy,) be a rational semigroup

with an element of degree at least two. Suppose all of the following conds-
tions;

1. G satisfies the open set condition with an open set U with respect to
the generator system {fi,..., fm},

2. (UH(G) N J(G)) < oo and
3. UH(G)N J(G) c U.

Then we have that J(G) = U or that J(G) is porous(and so the Boz
dimension  of J(G) s strictly less than 2). Moreover, the fibered rational map
f:Zm XxC = yy x C associated with the generator system {h1,... ,hy}

satisfies that )
JH= U %
ZEL,



Definition 3.3. Let G be a rational semigroup and ¢ a non-negative num-
ber. We say that a Borel probability measure y on C is §-subconformal if
for each g € G and for each Borel measurable set A

u(g(A)) < /A 9’ (2) 1P dp,

where we denote by || - | the norm of the derivative with respect to the
spherical metric. For each z € C and each real number s we set

S(s2)=), > ld@l™

9€G g(y)=2

counting multiplicities and
S(z) = inf{s | S(s,z) < oo}.
If there is not s such that S(s,z) < oo, then we set S(z) = co.Also we set
s0(G) = inf{S(z)}, s(G) = inf{é | 3 : I-subconformal measure}
We have an estimate on so(G) when G satisfies the open set condition.

Proposition 3.4. Let G = (hy,...hy) be a rational semigroup. When
m = 1, we assume that h; is neither identity nor an elliptic Mobius transfor-
mation. Suppose G satisfies the open set condition with an open set U with
respect to the generator system {hy,... ,hm}. Suppose also that J(G) # U.
Then there exists an open set V included in U N F(G) such that for almost
x € V with respect to the 2-dimensional Lebesgue measure, we have

S(2,z) < oo.
In particular, so(G) < 2.

Theorem 3.5. (Hausdorff dimension) Let G = (hy, ... hy) be a rational
semigroup. Under the same assumption as that of Theorem 3.2, we have that

dimg (J(G)) < 5(G) < 50(G),

where dimi[ denotes the Hausdorff dimension with respect to the spherical
metric in C.

Example 3.6. Let hi(z) = 22+ 2, ha(z) = 22 —2 and U = {|2] < 2.}.
Then we have h7*(U) Uh;1(U) C U and h7}(U) Nh3 ' (U) = 0. Let h3 be a
polynomial which is conjugate to hf by an affine map o, where hy(z) = z2+%
and n € N is a number large enough. Taking o appropriately, we have
J(h3) c U\ (b (U) U h31(T)). Taking n large enough, we have h;1(U) C
U\ (h{*(T) Uh; ' (T)). Then G = (hy, hy, h3) satisfies the conditions in the
assumption of Theorem 3.2. In this case UH(G)NJ(G) is the parabolic fixed
point of h3. By Theorem 3.2, we get that J(G) is porous and in particular,
the Box dimension is strictly less than 2.
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4 Tools and Proofs
4.1 Tools

To show theorems in §2 and §3 , we need the followings. For the research
on semi-hyperbolicity of usual dynamics of rational functions, see [CJY] and
[Ma).

Notations.

1. Let X be a compact set in C and z be a point in C\ X. Then we set

Dist(X, 2) = glea%d(y’ z)/;lél)x(ld(:% z).

2. For two positive numbers A and B, A < B means K~! < A/B<K
for some constant K independent of A and B.

Lemma 4.1 ([CJY]). (distortion lemma for proper maps) For any
positive integer N and real number r with 0 < r < 1, there exists a constant
C = C(N,r) such that if f : D(0,1) — D(0,1) is a proper holomorphic map
with deg(f) = N and f(0) =0, then

D(f(20),C) C f(D(20,7)) C D(f(20),7)
for any z € D(0,1). Here we can take C = C(N,r) independent of f.
The following is a generalized distortion lemma for proper maps.

Lemma 4.2 ([S4],[S6]). Let V be a domain in C, K a continuum in C
with diamgK = a. Assume V C C\ K. Let f : V — D(0,1) be a proper
holomorphic map of degree N. Then there ezists a constant r(N, a) depending
only on N and a such that for each r with 0 < r < r(N,a), there ezists a
constant C = C(N,r) depending only on N and r satisfying that for each
connected component U of f~1(D(0,r)),

diams U < C,

where we denote by diamg the spherical diameter. Also we have C(N, r) =0
ast — 0.

The following lemma is a slightly modified version of Lemma 2.15 in [S4].

Lemma 4.3 ([S4]). Let (7,Y,X) be a C-bundle. Let f : Y - Y be a
fibered rational map over g : X — X. Assume f satisfies the condition
(C1). Assume zg € SHy(f) for some N € N. b Then there erists a positive
number &y such that for each § with 0 < § < &y there exists a neighborhood
U of zo := m(2) in X satisfying that for each n € N, each z € U and each
Tn € p~™(z), we have that each element of c(izi;olé(zo, d), f1) is simply
connected.
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The following theorem says about what happens if there exists a non-
constant limit function on a component of a fiber-Fatou set. This is the key
to state other results.

Theorem 4.4 ([S4]). (Key theorem I) Let (r,Y, X) be a C-bundle. Let
f:Y =Y be a fibered rational map over g : X — X. Assume f satisfies
the condition (C1). Let z € Y be a point with z € Fy(,). Let (i) be a local
parametrization. Let U be a connected open neighborhood of z;(lz)(z) in C.
Suppose that there exists a sequence (nj) of N such that R; := z';l,,j (2) °
f:gz) 0 iy(z) converges to a non-constant map ¢ uniformly on U as j — oo.

Further suppose f:(j 2) (2) converges'to apoint zo €Y. Let S;; = f;,f,-;'(l;) for
1<i< 3. We set

V = {a € Y(4) | F¢ >0, lim sup sup d(Sij o (&), &) =0},
V0 5>1 te B(ae)

where ¢ is a map from Yp(,,) onto Yonir(,) defined by the local parametriza-
tion around m(29). Then V is a non-empty open proper subset of Yr(,,) and

we have that X
oV C Jw(zo)(f) n UH(f)

Corollary 4.5. Let (7,Y,X) be a C-bundle. Let f : Y — Y be a fibered
rational map over g : X — X. Assume f satisfies the condition (C1). As-
sume also that for each z € X, the boundary of J(f) NUH(f) in Y, does
not separate points in Yy. Then for each z € Y with z € Fy(,), we have that
dz’amf;r'(z)(W) — 0 as n — oo for each open connected neighborhood W of z

in Yy (,) and that d( :(z)(z), UH(f)) = 0 as n — oo.

4.2 Proofs of results on fibered rational maps
We start with the following.

Proposition 4.6. Let (7,Y,X) be a C-bundle. Let f : Y — Y be a fibered
rational map over g : X — X. Suppose that Jz has no interior points for
each © € X. Then the two dimensional Lebesque measure of Jeon(f) N Jy 18
equal to zero for each x € X.

Proof. Fix N € N. Suppose that there exists a point z € X such that
Jeon (fy N)NJz(this is an open set in J,;) has positive measure. Then there ex-
ists a Lebesgue density point y € Jeon(f, N)NJ;. Let yp, = f™(y) and zp, =
g™ (z) for any m € N. Let 4 > 0 be a number such that y € Jeon(f, N, 8). Let
Up, U, be the elements of ¢(B(ym,d/2), ™), c(B(ym,d), f™) containing
y respectively. Since y € Joon(f, N,d), there exists a subsequence (n) in N
with n — oo such that U}, is simply connected, deg(fZ : U}, — B(yn,8)) < N

155



for each n and diamUj, — 0 as n = co. By Corollary 1.9 in [S4] for any local
parametrization i,
—1
i G 1) "
n=o0  m(iz" (Un))

where m denotes the spherical measure of C. Using an argument in the proof
of Theorem 4.4 in [S4], from (1) we can show that

m(1;}(B(yn,6/2) N Fz,))

neo  m(iz, (B(yn, 6/2)))
where i;, denotes a local parametrization. There exists a subsequence (n;)
of (n), a point yo, € Y and a point z,, € X such that Yn; = Yoo and
Tn; = Too 38 j — 00. By (2) we have that B(yoo, §/2) C Jz_,. On the other

hand, by the assumption we have that for any a € X, J, has no interior
point. This is a contradiction.

O

Proposition 4.7. Let (7,Y,X) be a C-bundle. Let f : Y — Y be a fibered
rational map over g : X — X. Suppose f satisfies the condition (C1). Then
we have the following.

1.

Jyood(f) n U Jz C jcon(f)
z€X

2. If we assume further that for each z € X, the boundary of jz( fin
UH(f) in Y; does not separate points in Yy, then

Jyood(£) C Feom(£) 0 | -

zeX

Proof. First we will show the first statement. Let z € (J,cx J- be a
point satisfying that limsup,_, . d(f*(z),UH(f)) > 0. For each m € N
let z,, = f™(2) and z,, = wf™(2). For each m € N and each r > 0 let
Um(r), U}, (r) be the elements of ¢(B(zm, /2), f;'(‘z)), c(B(2m, ), Fr(z)) con-
taining z respectively. There exists a positive number §, positive integer
N and a sequence (n) in N such that deg( n(z) ° U.(6) = B(zn,0)) < N.
By Lemma 4.3, taking § small enough we can assume that U’,(4) is simply
connected.

Suppose that diam (Uy(d)) does not tend to zero as n — oo in (n). Then
by distortion lemma for proper maps there exists a subsequence (n;) of (n)
with n; — 0o and a positive number r such that Uy;(d) D B(z,r) for each
J- Hence

" (B(2,7)) C B(fn;(2),6) (3)
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for each j. By condition (C1), if we take § small enough (3) contradicts to

that z € UgexJz. Hence we get that diam Up(d) — 0 as n — oo in (n).
Hence we get that z € Jeon(f)- ‘

The second statement follows from Corollary 4.5 and the first statement.

O

Corollary 4.8. Let (7,Y,X) be a C-bundle. Let f: Y =Y be a fibered
rational map over g : X — X. Suppose that J(f) = Uyex J= and that f
satisfies the condition (C1). Then for each z € X we have that

d(fz (y),UH(f)) =0, asn— oo,

for almost every y € J with respect to the Lebesgue measure in Y.

Proof. By condition (C1) J, = J; has no interior points for each z € X. By
Proposition 4.6 and Proposition 4.7, we get the statement. O

Proof. of Theorem 2.1. Suppose that there exists a point z € J(f) satisfy-
ing that z € Fy(,). By Corollary 4.5, For each open connected neighborhood
W of z in Fy(,) we have diam f*(W) = 0and d(f"(z),UH(f)) »0asn —
0o. But by condition 3 and 4 in the assumption of our theorem, it causes a
contradiction. Hence we have shown that J(f) = Uzex Jz- By Corollary 4.8
we get that the 2-dimensional Lebesgue measure of J; \ Unen f “(UH(f))
is equal to zero. O

Proof. of Theorem 2.3. For any y' € |J Jz and r > 0, we set
zeX

h(y’ar) = sup{s ‘ 3y" € J1r(y’)a B(y”as) - Fr(y’)}

and h(r) = inf{h(y',r) | ¥ € U Jz}. By Theorem 2.1, we have J(f) =
, z€X
U Jz. By the condition (C1) we have intJ; = @ for any z € X. Hence we
zeX
get that h(r) > 0 for any r > 0.

Since f is semi-hyperbolic and satisfies the condition (C1), by Lemma 4.3
we have that there exists a positive number §; and a number N € N such
that for any y € J(f), 0 < § < 8, n € N and any component V of
(f")~"YB(y,2)), V is simply connected and deg(f™ : V — B(y',26)) < N.

Lety € J(f) andr > 0. We set B, = f™(B(y,r)) and yn = f"(y) for each
n € N. Since y € Jy(y), we have that there exists the smallest positive integer
ng such that diam Bp,4+1 > 61. Then there exists a constant lo such that
lo6 <diam By,. By Corollary 2.3 in [Y], there exists a constant K depending
only on N and a ball B(yno»70) C Bn, with ro >diam By, /K > 59,%2 such
that the component of (f™)~1(B(yn,,T0)) containing y is a subset of B(y,r).
There exists a ball B(y/, 2h(ro)) included in B(yng,70) N Frr(yny)-
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Let Dy be a component of (f™)~1(B(y/, 2h(r0))) contained in B(y,r).
We have that Dy C Fy(,). Let ¥ € Do N (f")~1(y') be a point. Then by
Corollary 1.8 and 1.9 in [S4], Dist (0Do,y") < M for some M depending
only on N and diam Dy < r. Hence there exists a constant 0 < k < 1 which
does not depend on y and r such that B(y”,kr) C Dy C Fry)-

O

4.3 Proofs of results on rational semigroups

— Notation Throughout this subsection, for a generator system {h;, .. .hp,}
let f: Xy xC = X,, x C be the fibered rational map over the sh1ft map
o:Xn > X, whereX,, = {1 ..,m}N, associated with the generator

system {hi,...,hn,}. We set qz (y) 7e(f2 (y)) for any (z,y) € &, x C.

Lemma 4.9. Let E be a finite subset of C. Let (h,... ,h,) be a rational
semigroup. Then for any number M > O there exists a positive integer ng
such that for any (n,z,y) € N x Em X E with n > ng which satisfies all of
the following conditions:

() €E forj=0,... ,n-

2. (¢)'(y) # 0 and

3. for anyi € N andj € Nwithi+j <n, if o), (@) = ()
then |(g0,)' (@ )] > 1,

we have that |(q("))’ (y)| > M.

Proof. This lemma can be shown by induction on §E using the same method
as that in Lemma 1.32 in [S4]. a

Lemma 4.10. Let (hy,... ,hn) be a finetely generated rational semigroup.
Suppose H(UH(G) N J(G)) < oo and UH(G) N J(G) # 0. Then for each
z € UH(G) N J(G) there exists an element g € G, an element h € G and a
point w € UH(G) N J(G) such that h(w) = z, g(w) = w and |¢’(w)| < 1.

Proof. Suppose that there exists a point z € UH(G) N J(G) for which there
exists no (g, h,w) in the conclusion of our lemma. Then by Lemma 4.9 and
the Koebe distortion theorem, we can easily see that for arbitrarily small
€ > 0 there exists a positive number § and a positive constant N such that
if a point wp € UH(G) N J(G) and an element go € G satisfy go(wp) = 2
then the diameter of the component V of g5 1(B(z, §)) containing wyq is less
than e and deg(go : V = B(2,d)) < N. Then taking e small enough, since G
is finitely generated and §(UH(G) N J(G)) < oo we can easily deduce that
there exists a positive constant N' such that for any element g; € G and
any component W of g7}(V), we have that deg(g; : W — V) < N'. This
implies that z € SHy 4 n'(G) and this contradicts to that z € UH(G). 0O
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Lemma 4.11. Under the assumpstion of Theorem 3.2, there exists a disk
D in F(G) such that

1. UgeG g(D) C F(G) and

2. diam qg;") (D) — 0 as n — oo uniformly on x € Ly,
In particular, the fibered rational map f satisfies the condition ( 02).

Proof. Let h € G be an element of degree at least two. Since @ # C\UC
F(G) and UH(G) N J(G) C U, we have that there exists an attracting
periodic point 7 in F(G) \ U. Since UH(G) N J(G) C U again, it follows
that there exists a disk D around z such that g 9(D) C F(G). By
Lemma 1.30 in [S4], the statement of our lemma follows. O

Lemma 4.12. Under the assumption of Theorem 3.2, if UH(G)NJ(G) # 0
then for each point z € UH(G)NJ(G) there ezists the unique elementh € G
satisfying that h™(2) = z for each n € N. Further we have that z is a parabolic
fized point of h.

Proof. By Lemma 4.10 and the open set condition, there exists the unique
element h € G with h"(z) = z for each n € N. Further we must have
|h(2)| < 1.

If deg(h) = 1, then by Lemma 4.11 it follows that z is a repelling fixed
point of k. This is a contradiction. If deg(h) > 2, then since we are assuming
that §(UH(G) N J(G)) < oo we have that z is an attracting or parabolic
fixed point of h. Suppose z is an attracting fixed point of h. Then there
exists an open neighborhood V of z in U such that h(V) C V. Let z € ¥,
be the point such that kg, o---ohy, = h for each n, where x = (z1,22,...).
Then by the open set condition for any z' € Iy, \ {r} and any n € N we
have that hg o ---hg (V) C C \ U. Hence we have that G is normal in V
and this is a contradiction. O

Lemma 4.13. Under the assumption of Theorem 3.2, we have that for each
(z,9) € 151 (G(J(G) \UH(G))), limsup,_,.d(as” ), UH(G)) > 0.

Proof. Let (z,y) be a point in W%IG_I(J(G) \ UH(G)). Then qg')(y) €
J(G)\UH(G) for each n € N.

Assume that limy,_, 0 d(q,(c") (y),UH(G)) = 0. We will deduce a contradic-
tion. For each z € UH(G)NJ(G), let g, be the element of G in the statement
of Lemma 4.12 Let H = {g, | z € UH(G)NJ(G)}. Then we have §(H) < oo.
Let € > 0 be a small number such that if a point z € UH(G) N J(G) and an
element h € H satisfy h(z) = z, then

h(B(z,€)) C U. (4)
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Let A, be the e-neighborhood of UH(G) N J(G) in C. Then there exists a
number ng € N such that q&") (y) € A for each n > ny.

For each n > ng, let 2, € UH(G) N J(G) be the unique point such
that d(zn, ¢ (y)) < e. Since g(UH(G)) C UH(G) for each g € G we may
assume that

1) -
9on(z) (#n) = 211
for each n > n,.

Since §(UH(G)NJ(G)) < oo, there exists a positive integer n; > ng and
l € N such that 2,4y = z,,. Let g; € G be the unique element such that
91(2n,) = zn,- Let w € {1,... ,m}! be the word such that hy,o---ohy, = g;.
Then by (4) and the open set condition we have that o™ (z) = w™. Since
we are assuming d(q,(,") (y), UH(G)) = 0 as n — 00, by zp, 41 = 25, We get
that g% (q,(cnl)(y)) — 2p, a8 k — 0o. Hence by Lemma 4.12 we must have that
Zn, is a parabolic fixed point of g; and qé"z) (y) belongs to W NP, where W
is a small neighborhood of z,, in U, P is the union of attracting petals of
g1 at z,, and n, is a large positive number with ny > n;. Then there exists
an open neighborhood V of y such that qg'z)(V) C W N P. Taking W so
small and n; so large we may assume that g? (qg")(V)) C W NP for any
s € N. Since h;'l(U) CUforeachj=1,...,m, we get q,(;")(V) C U for
each n € N. By the open set condition, for any =’ € &, \ {z} we have that
qg,')(V) C C\ U for each n € N. Hence we get that G is normal in V and
this contradicts to that y € J(G).

a

Now we will give a proof of Theorem 3.2.

Proof. of Theorem 3.2. Suppose J(G) # U. Then by Proposition 4.3 in
[S4], we have intJ(G) = 0. For any 3 € J(G) and r > 0, we set

h(y',r) = sup{s | 3y" € C, B(y",s) c F(G)NB(/,r)nU}

and h(r) = inf{h(y',r) | ¥ € J(G)}. Then since intJ(G) = @, we have
h(r) > 0 for any r > 0.

Let 9 > 0 be a small number. Let B be the do-neighborhood of UH(G)N
J(G) in C. By Lemma 4.3 and Lemma 4.11, we have that there exists a
positive number 4; and a number N € N such that for any 3’ € J(G)\B, 0 <
6 < 61 and any component V of g~ (B(y/,26)), V is simply connected and
deg(g : V — B(y',26)) < N. By Lemma 4.13 and Theorem 2.1, we have

JfN=U % (5)

ZEX,

Let y € J(G) be a point. Since W(—:j( f) = J(G) (Proposition 3.2 in [S5]), by
(5) we have that there exists a point x € ,, such that y € J;.
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Let d; = min{dp, 41 }. Let r be a positive number. We set B, = ¢z )(B(y, T)

and y, = qg(c") (y) for each n € N. Since y € J;, we have that there exists the
smallest positive integer ng such that diam By,41 > 2. Then there exists a
constant [y such that lpdy <diam By,.

Case 1. yn, € J(G) \ B.

By Corollary 2.3 in [Y], there exists a constant K dependlng only on
N and a ball B(yng,70) C Bn, with ro >diam By, /K > '8 such that the

component of (q("")) 1(B(yn,,T0)) containing y is a subset of B(y,r). There
exists a ball B(y', 2h(ro)) included in B(yny,70) N F(G) NU.

Let Dy be a component of (g "°)) 1(B(y, 1h(r0))) contained in B(y,r).
By the open set condition, we have g~} (U ﬂF(G)) C UNF(G) foreach g € G.

Hence we have Dy C F(G)NU. Let y" € DoN (g} "0))-1(4/) be a point. Then
by Corollary 1.8 and 1.9 in [S4], Dist (8Dy,y") < M for some M depending
only on N and diam Dy =< r. Hence there exists a constant 0 < k < 1 which
does not depend on y and r such that B(y",kr) C Do C F(G) N B(y,r).

Case 2. y,, € B.

By Lemma 4.12 and that UH(G) N J(G) C U, taking ép small enough
and using the method in pp286-287 in [Y] we can show that there exists a
ball B(y",k'r) in B(y,r) N F(G) where k' is a constant with 0 < k' < 1
which does not depend on y and r.

a

Now we will show Proposition 3.4.

Proof. of Proposition 3.4. By the open set condition, we have J(G) C U.
We will show the following.

Claim 1: There exists an open set V' included in U N F(G) such that
h~1(V)NV' =0 for each h € G.

Before showing this claim, we remark that we can easily show the fol-
lowing claim.

Claim 2: If there exists a point z € U N F(G) such that z € C\ G(2),
then the claim 1 holds with an small open neighborhood V' of 2.

To show the claim 1, by the open set condition we have

m
U R UNF(@) cUNF@G). (6)
Jj=1

Suppose the equality does not hold in (6). Then there exists a point z €

U N F(G) such that h;(z) € C\U for each j =1,... ,m. Hence by the open
set condition, we get that z € C \ G(z). By the claim 2, the claim 1 holds.

161



Hence we may assume that

0 h;'(UNF(G)) =UNF(G). (7)
j=1

Let o : UNF(G) = U N F(G) be the map defined as: a(z) = h;(2) if
z € h;l(U N F(G)). This is well defined by (7) and the open set condition.

Let z € UN F(G) be a point. If z € T\ G(2), then by the claim 2 we
have the claim 1. Hence we may assume z € G(z) i.e.

zZ € U {a®(2)}. (8)

n=0

Let W be the connected component of U N F(G) containing 2. By (8) there
exists the smallest positive integer n with o™ (W) C W. By (8) and the open
set condition, we have one of the following cases 1 and 2.

Case 1: W is included in an attracting basin of an element g € G, z is
the attracting fixed point in the basin and g|lw = o™|w.

Case 2: W is included in a Siegel disk or a Herman ring of an element
g € G of degree at least 2 and g|lw = o"|w.

If we have the case 1, then there exists an open set V' included in W
with o {(V)NV' =@ foreachl € Ni.e. A~"}(V/)NV’' =@ for each h € G.

If we have the case 2, then taking V' in a connected component A of
a (W) with ANW =0, we have o }(V/)NV’ = @ for each [ € N i.e.
h=Y(V')NV' =@ for each h € G.

Hence we have shown the claim 1. Let V'’ be an open set included in
U N F(G) such that hA~1(V') NV’ = @ for each h € G. Then by the open set
condition we have g~}(V') Nh=}(V') = @, if g,h € G and g # h. Further
the post critical set of G

P(G) := U {critical values of g}
geG

does not accumulate in V'. Let V be an open disk included in V' \ P(G).
Then we have that

/ >l (2)]? dm(2) < oo,

VhGGa

where o runs over all well-defined inverse branches of A on V. Hence for
almost every z € V with respect to the Lebesgue measure, we have S(2, z) <
0o. O

Now we will show Theorem 3.5. we need some lemmas.
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Lemma 4.14. Let G be a rational semigroup. Assume that oo € F(G) and
for each © € E(G) there exists an element g € G such that g(z) = = and
lg'(x)| < 1. Let A be a subset of J(G). Suppose that there exist positive
constants a1 ,ap and ¢ with 0 < ¢ < 1 such that for each x € A, there exist
two sequences (ry) and (Ry) of positive real numbers and a sequence (gn) of
elements of G satisfying all of the following conditions:

1. r, — 0 and for each n, 0 < >~ < c and an(z) € J(G).

2. for each n, gn(D(z,Rn)) C D(gn(2),a1).
3. for each n gn(D(z,rn)) D D(gn(2), a2)-

Then
dimg (A) < s(G).

Proof We may assume that §(J(G)) > 3. Let § > s(G) be a number and
p a 6—subconformal measure. By the method in the proof of Lemma 5.5
in [S4], we can show that there exists a constant ¢’ > 0 not depending on
n € N and z € A such that

p(D(z,7n)) > .

‘ Ca
From this and Theorem 7.2 in [Pe], we get dimyA < 6. O

Proposition 4.15. Let G be a rational semigroup. Assume that F(G) # 0
and that for each z € E(G), there exists an element g € G such that
g(z) = = and |¢'(z)| < 1. Then we have

dimpg (Jeon(G)) < 8(G).

Proof. We have only to show the following:

Claim: For fixed N € N and r > 0, dimg(Jeon(G, N, 7)) < 3(G).

We will show this. We can assume oo € F(G). Let = € Jeon(G, N, 1) be
a point. Then there exists a sequence (g,) in G such that for eachn € N we
have g, € J(G),

deg(g : Vu(r) = D(gn(z),r) < N

and V,(r) is simply connected and diam V,(r) — 0 as n — oo, where V()
is tne element of ¢(D(gn(z),7), gn) containing z. Let @p : D(0,1) — Va(r)
be the Riemann map such that ¢, (0) = z. By the Koebe distortion theorem
we have for each n,

Va(r) > D(z, 51¢(O)):

By Lemma 4.1 and the Koebe distortion theorem, there exists an € > 0 such
that for each n € N,

Va(er) C D@, gle(O)).
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Since diam Vy,(r) — 0 as » = oo, we have ], (0)| = 0 as n = oo. Applying
Lemma 4.14, we obtain the claim. O

Now we will show the following theorem.

Theorem 4.16. Let G = (hy,... , hy,) be a finitely generated rational semi-

group with F(G) # 0. Let f : Y — Y be the fibered rational map associ-

ated with the generator system {hy,... ,hy}, where Y =X, x C. Suppose

that f sattsﬁes the condition (C1) and that for each x € X,,, the bound-

ary of J.(f)NUH (f) in Y does not separate points in Y,. Then we have
J100i(G) C Jeon(G) and

dimp (Jg00d(G)) < $(G) < 30(G).

Proof. We may assume {(J(G)) > 3. First we will show the following:

Claim: If E(G) # 0, then for each x € E(G) there exists an element
g € G such that g(z) = z and |¢’(z)| < 1.

If there exists an element A € G with deg(h) > 2, then this claim is
trivial. Suppose that each element of G is of degree 1. By Lemma2.3 in
[S5], we have §(E(G)) < 2. Since f satisfies the condition (C1), for each
t, h; is loxodromic. Since h;(E(G)) = E(G) for each i, we must have that
each z € E(QG) is fixed by h; for each i. Let £ € E(G) be a point. Suppose
|hi(x)| > 1 for each i. Then we get J(G) = {x} and this is a contradiction
since we are assuming that §(J(G)) > 3. Hence |h!(z)| < 1 for some i. Hence
the claim holds.

The statement of our theorem follows from the claim, the second state-
ment in Proposition 4.7, Proposition 4.15 and Theorem 4.2 in [S2]. O

Now we will show Theorem 3.5.

Proof. of Theorem 3.5. This follows from Lemma 4.11, Lemma 4.13 and
Theorem 4.16. O
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