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1Introduction
This article is based on my lecture at the Complex Dynamics Workshop of the
Research Institute of Mathematics at Kyoto University in October 2001. It is
an exposition of joint work with Janina Kotus.

The tangent family $f_{\lambda}(z)=\lambda\tan(z)$ is the meromorphic analogue of the
quadratic family $z^{2}+c$ . The functions $f_{\lambda}(z)$ are characterized by their mapping
properties: they are, up to scale, the only meromorphic functions fixing zero
with no critical points and two symmetric asymptotic (omitted) values. The
classification of stable behavior is essentially the same as for the quadratic fam-
ily. Again like the quadratic family, the parameter plane has acombinatorial
description based on the orbit of the singular value, appropriately interpreted.

The real axis plays aspecial role for the quadratic family. For real values
of the parameter, the critical value is real and so is its forward orbit. Studying
the orbit of the critical value, we can understand the observed period doubling
and renormalization. For the tangent family, the imaginary axis plays asimilar
role. If the parameter lies on the imaginary axis, the asymptotic values are real
as are even of iterates. Restricting our attention to the second iterate $f_{\lambda}^{2}$ for
A $=iy\in\Im$ , we again observe period doubling.

In this paper we give an overview of the dynamical theory for the tan-
gent family and describe the period doubling phenomena and some of its con-
sequences. For details and proofs see [1, 3, 4, 5, 6] and the references cite
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2 Mapping Properties of the Tangent
Recall that the map $f(z)=\tan z$ maps the complex plane $\mathbb{C}$ onto the Riemann
sphere $\hat{\mathbb{C}}$ minus the two points $\{\pm i\}$ . It has period $\pi$ . The strip {$z=x+iy$ :
$-\pi/2<x\leq\pi/2\}$ is mapped 1-1 onto $\hat{\mathbb{C}}\backslash \{\pm i\}$ as follows: the real axis in the
strip maps to the full real axis; the imaginary axis maps to the interval $(-i,i)$
in the imaginary axis; the vertical Hue $z=\pi/2+iy,y$ $>0$ is mapped to the
imaginary axis $(i\infty,i)$ and $y<0$ is mapped to $(-i\infty, -i)$ ;the regions $y>\mathrm{c}$ and
$y<-c$ , $c>0$ are mapped onto open topological disks punctured $\mathrm{a}\mathrm{t}\pm i$ . The
regions are called asymptotic tracts and the image of any curve $\gamma(t)=x(t)+iy(t)$

such that $y(t)arrow\infty$ as $tarrow\infty$ is an asymptotic curve ending at the asymptotic
value $i$ . Thus, it is sometimes convenient to think of the asymptotic value as
the “image” of infinity.

The derivative $f’(z)=\sec^{2}z\neq 0$ for any $z\in \mathbb{C}$ so there are no critical points
(and thus no critical values).

To get the mapping properties of $f_{\lambda}(z)$ we just multiply the image plane by
$\lambda$;the asymptotic values are now $\pm\lambda i$ .

There is symmetry in both the variable and parmeter:

$f_{\lambda}(-z)=-f_{\lambda}(z)$ and $f_{-\lambda}(z)=-f_{\lambda}(z)$

It follows that if $z_{0}$ is aperiodic point of period $p$, $f_{\lambda}^{p}(z_{0})=z_{0}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}-z_{0}$ is
also periodic of period $p$. Thus, for the periodic orbit, $z_{0}$ , $z_{1}$ , $\ldots$ , $z_{p-1}$ , either
there is asymmetric orbit $-z0,$ $-z_{1}$ , $\ldots,$ $-z_{p-1}$ or $p$ is even and the symmetric
points are contained in the orbit, $z5+j=-z_{\mathrm{j}}$ , $j=0$, $\ldots$

$\epsilon_{-1}2^{\cdot}$

3The Dynamic Plane
We define stability for meromorphic functions just as we do for rational maps.

Apoint $z$ is stable if aU the iterates $f_{\lambda}^{n}(z)$ are defined and if there is a
neighborhood on which these iterates form anormal family. The set of stable
points is also called the Fatou set and is denoted $F_{\lambda}$ . It is clearly open and
completely invariant. It may be empty.

The chaotic or Julia set is defined as $J_{\lambda}=\hat{\mathbb{C}}\backslash F$). It is closed, backward
invariant and forward invariant whenever the iterates are defined. It is never
empty because it always contains the poles.

The $\omega$-limit set is the accumulation set of $\overline{\bigcup_{n}f_{\lambda}^{n}(\pm i\lambda)}$. It is denoted $\omega_{\lambda}$ . It
is forward invariant and controls the dynamics.

Points that eventually land on poles are called prepoles. In [7] we proved

Theorem 3.1. The Julia set is the closure of the prepoles.

Aperiodic cycle is repelling, attracting or neutral as the multiplier $m(\lambda, z_{0})=$

$|ff_{\lambda}^{p}(z_{0})/dz|$ is greater, less or equal to 1. Note that the multiplier doesn’t
depend on $\mathrm{t}\mathrm{h}\mathrm{e}{}_{\mathrm{g}}\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}2\pi|$ of the cycle at which it is evaluated. If, for aneutral cycle,
$m(\lambda, z\mathrm{o})=eq$ , the cycle is parabolic.

We also proved, again in [7],
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Theorem 3.2. The Julia set is the closure of the repelling periodic cycles.

Summarizing results in [7] and [4] we have have the following classification
of stable behavior for the tangent family.

Theorem 3.3. If $F_{\lambda}\neq\emptyset$ then either

$\bullet$ $0<|\lambda|<1$ and $F_{\lambda}$ is the complement of a Cantor set in $\hat{\mathbb{C}}$ or

$\bullet$ $|\lambda|\geq 1$ and either

1. (a) There are two symmetric periodic cycles of simply connected
components $\pm\{D:\}_{0}^{p-1}$ each with the same multiplier and there
is an attractive cycle contained inside each cycle of components;

$\omega\lambda$ is contained inside $\pm D:$ .
(b) There are two symmetric periodic cycles of simply connected

components $\pm\{D:\}_{0}^{p-1}$ each with the same multiplier and there
is a parabolic cycle on the boundary of each cycle; again, $\omega_{\lambda}$ is
contained inside $\pm D:$ .

(c) Each cycle $\pm\{D_{i}\}_{0}^{p-1}$ is a cycle of Siegel disks. That is, $f_{\lambda}^{p}|\pm D_{\ell}$

is holomorphically conjugate to an irrational rotation and the
boundary $of\pm D$:is contained in $\omega_{\lambda}$ .

2. (a) There is a single symmetric eventually periodic cycle of simply
connected components $\{D:\}_{0}^{2p-1}$ such that for $i=0$ , $\ldots$ $p-1$
$D_{:}=-D_{p+:}$ . There is a single attractive cycle contained inside
these components; $\omega_{\lambda}$ is contained inside the components.

(b) There is a single symmetric eventually periodic cycle of simply
connected components as above with a single parabolic cycle con-
tained on their boundary; again, $\omega_{\lambda}$ is contained inside the com-
ponents.

(c) The components form a single cycle of Siegel disks of period $2p$

and the boundary of the components $\pm D$:is contained in $\omega_{\lambda}$ .

Every component of $F_{\lambda}$ eventually lands on these periodic components.

It follows from this theorem that if $F_{\lambda}\neq 0$ there is auniquely defined
multiplier $m(\lambda)$ , the multiplier of one or both of the cycles corresponding to the
periodic stable domains. We also conclude that either there is asingle infinitely
connected component of $F_{\lambda}$ , $(|\lambda|<1)$ , or all the components of $F_{\lambda}$ are simply
connected.

4The Parameter Plane
If $F_{\lambda}\neq 0$ and if the corresponding multiplier $|m(\lambda)|<1$ we say $f_{\lambda}(z)$ is hyper-
bolic. The hyperbolic locus of the parameter plane is then

$H$ $=$ { $\lambda$ : $F_{\lambda}\neq 0$ and $0<|m(\lambda)|<1$ }
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Denote ageneric connected component of $H$ by $1. We have the folowing
possibilities for which we set notation

1. $\Omega$ $=\Delta^{*}=\{\lambda : 0<|\lambda|<1\}$

2. $\Omega=\Omega_{p}$ :for A $\in\Omega_{p}$ , $f_{\lambda}(z)$ has two attractive cycles of period $p$

3. $\Omega=\Omega_{p}’$ :for A $\in\Omega_{p}’$ , $f_{\lambda}(z)$ has asingle attractive cycles of period $2p$

We have

Theorem 4.1. [5] Either $\Omega=\Delta^{*}$ or the multiplier $m(\lambda)$ defines a holomorphic
universal covering $m:\Omegaarrow\Delta^{*}$ .

Thus, for $\Omega$ $\neq\Delta^{*}$ , $\Omega$ is simply connected and holomorphically conjugate
to the upper half plane. Figure 1was made by $\mathrm{W}.\mathrm{H}$ . Jiang [3]. We see a
well defined structure to the components of $H$. As we saw in theorem 3.3, the
punctured unit disk is analogous to the exterior of the Mandelbrot set. The
maps are hyperbolic and the Jula sets are Cantor sets.

The parameter values such that the asymptotic value lands on apole play a
special role analogous to the centers of the components of the Mandelbrot set.

For each integer, $p>0$ , set

$C_{p}=$ {A : $f_{\lambda}^{p-1}$ (Ai) $=\infty$ }
and set $C$ $=UPCP$ . Then $C_{1}=\{\infty\}$ and $C_{2}=\{(k+1/2)\pi, k\in \mathrm{Z}\}$ .

For A $\in C_{p}$ , the asymptotic values can be thought of as belonging to “virtual
periodic cycles” $f^{p}(\lambda i)=\lambda i$ . Computing

$m(\lambda)=\lambda^{p}\Pi_{j=0}^{p}\sec^{2}f_{\lambda}^{j}(\lambda \mathrm{i})$

we see that for $\lambda\in C_{p}$ , $m(\lambda)=0$ . We therefore call these parameter values
virtual centers.

Note that, unlike the centers of the Mandelbrot set, for any $\lambda\in C$ , by
theorem 3.3, $J_{\lambda}=\mathrm{C}$ . Like the centers though, they can be used to enumerate
the hyperbolic components.

Theorem 4.2. [4] All components of $?t$ , except $\Delta^{*}$ come in pairs $(\Omega_{p}, \Omega_{p}’)$ with
a common boundary point $\lambda\in C_{p}$ . If $p=1$ there is a unique pair of components
$(\Omega_{1}, \Omega_{1}’)$ containing the positive and negative axes with $|x|>1$ respectively.
These are the only unbounded components. The pairs can be enumerated by the
prepoles of the tangent map, tmz so that there is $a$ one to one correspondence
between the prepoles and the virtual centers.

5The Imaginary Parameters
For quadratic maps, the real parameters play aspecial role. The hyperbolic
components exhibit period doublng and the period doublng cascades come
with aSharkovskii ordering. There is an analogous phenomenon for tangent
maps with imaginary parameters
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Figure 1: Hyperbolic components on the imaginary axis
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5.1 The Period Doubling Cascade
Consider $f_{\lambda}^{2}(z)=\lambda\tan(\lambda\tan z)$ . For A $=iq$ , $x$ , $q\in \mathrm{R}$ we have

$f_{\dot{|}q}^{2}(x)=iq\tan$ ($iq$ tm $x$ ) $=-q\mathrm{t}\mathrm{m}\mathrm{h}$($q$ tm $x$ )

and we see that $f_{\dot{|}y}^{2}$ maps the real axis to itself. Moreover, the asymptotic values
$\mp q$ are both real. We know that if $f_{\dot{|}q}$ has an attractive cycle, the cycle attracts
the asymptotic values. The orbits of the asymptotic values lie in the real and
imaginary axes so the attractive cycle must also. The points alternate between
the real and imaginary axes so that the period must be even. Similarly, if there
is aparabolic cycle for $f_{\dot{|}q}$ it lies in the real and imaginary axes. Looking at the
formula for the multiplier of these cycles, it is obviously real. Since $\omega:q$

$\subset \mathrm{R}\cup\Im$ ,
we deduce that there can be no Siegel disks for purely imaginary parameters.

For hyperbolic components intersecting the imaginary axis we have the fol-
lowing propositions proved in [5]. We tacitly assume that the component is not
$\Delta^{*}$ .

Proposition 5.1. If $\Omega\cap\Im\neq\emptyset$ then $\Omega$ $=-$O.

Proposition 5.2. If $\Omega$ $\cap\Im\neq\emptyset$ , the period of the a trracting cycle(s) is even.

Proposition 5.3. If $\Omega\cap\Im=J\neq\emptyset$ , then $J$ is an interval with a virtual center
at one end. At the other, the multiplier is 81.

There is anatural ordering for components $\Omega$ intersecting the imaginary axis
based on the order of the intervals $J=\Omega\cap\Im.\cdot$ In the following theorems, we
restrict ourselves to those components intersecting the positive imaginary axis.
We reflect to obtain theorems for those on the negative imaginary axis. We
write the elements of apair $(\Omega, \Omega’)$ or $(\Omega,\Omega’)$ to reflect this order, and similarly
for the pairs themselves.

We have

Theorem 5.4. [5] Each parameter $\lambda_{k}=$ $(k +1/2)\pi$, $k$ $=0,1,2$ , $\ldots$ is a virtual
center for a pair $(\Omega_{2}’,\Omega_{2})$ . Set A $=iq$ . As $q$ increases past $(k +1/2)\pi$ we have
a sequence of adjacent pairs of hyperbolic components $w\cdot.th$ a common boundary
point exhibiting a period doubling cascade

$(\Omega_{2}’, \Omega_{2})(\Omega_{4}, \Omega_{4}’)(\Omega_{8}, \Omega_{8}’)(\Omega_{16}$ , $\Omega_{16}’\ldots$

These components accumulate to a unique point iqoo. The left endpoint of $\Omega_{2}’$

is a cusp like the cusp of the cardiod.

Note the difference between the first bifurcation pairs $(\Omega_{2}’.’\Omega_{2})(\Omega_{4}, \Omega_{4}’)$ and
the second $(\Omega_{4}, \Omega_{4}’)(\Omega_{8}, \Omega_{8}’)$ .

In 02 there are two cycles of period 2and in O4 there are two cycles of
period 4. This is astandard bifurcation; the multiplier of the cycle in $\Omega_{2}$ is
negative and becomes -1 at the parabolic point. The orbit of the asymptotic
value approaches the periodic point from both sides. As $q$ increases, that cycl
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of period 2becomes repelling and apair of points, one to the right, and one to
the left become part of anew attracting cycle of period 4. The new cycle has
positive multiplier. The orbit of the asymptotic value lies to only one side of
the new periodic points.

As $iq$ moves to the virtual center joining 04 and 04, the point $p^{*}$ of the at-
tracting cycle closest to the pole reaches the pole. The attracting cycle becomes
avirtual cycle. As $iq$ increases into $\Omega_{4}’$ , the relative positions of $p^{*}$ and the pole
interchange. It follows that the sign of $f_{\dot{\iota}q}^{2}(p)$ changes and the two cycles of
period 4interleave to become one of period 8. If we look at what has happened
to the multiplier of the original cycle, it is asquare root of the multiplier of the
new cycle; in fact, it is the negative square root. Now the orbits of the asymp-
totic values change also. Each periodic point has the orbit of one asymptotic
value approaching from the right and the orbit of the other asymptotic value
approaching from the left. At the parabolic endpoint of $\Omega_{4}’$ , the multiplier is
+1 but the square root is -1. As $q$ increases, the cycle of period 8becomes
repelling, and apair of points, one to the right, and one to the left, of each point
in the cycle become part of an attracting cycle. Each of these points attract
adifferent asymptotic value so they belong to different cycles each of period
8. Thus we have the non-standard bifurcation wherein the cycle of period 8
bifurcates to two new attracting cycles of period 8.

Thus, in each interval A&, $\lambda_{k+1}$ of the imaginary axis we have aperiod dou-
bling cascade reminiscent of the period doubling on the real axis for quadratic
maps.

5.2 Periods of All Orders
Away from the virtual centers the functions $g_{n}(\lambda)=f_{\lambda}^{n}(\lambda i)$ aie holomorphic in
A. They have essential singularities at the poles of $f_{\lambda}^{j}(\lambda i)$ , $j\leq n-1$ , and poles
at the solutions of $f_{\lambda}^{n-1}(\lambda i)=(k+1/2)\pi$ .

For $\lambda=qi\in\Im$ , the functions $g_{2n}(q)$ become real valued functions of areal
variable, real analytic away from the virtual centers. We define afull branch of
$g_{2n}(q)$ to be abranch (with no singularities) between consecutive solutions of
$g_{2n-2}(q)=(j-1/2)\pi$ and $92\mathrm{n}-2(\mathrm{q})=(j+1/2)\mathrm{t}\mathrm{t}$ . Then

Proposition 5.5. [5] If $q\in((k+1/2)\pi, (k+3/2)\pi)$ any full branch of $g_{2n}(q)$

has range containing the $interval-(k+1/2)\pi$ , $(k+1/2)\pi)$ and such $b$ ranches
exist $for-k<j\leq k$ .

Using this we prove

Theorem 5.6. [5] In each interval $(\lambda_{k}, \lambda_{k+1})$ there eist hyperbolic components
of every even period. The ordering of the periods reflects the ordering of the
endpoints of the full branches of the $g_{2n}$ . There is a period doubling cascade to
the right of each left endpoint of a full branch of gin.
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5.3 Cantor Sets with Bounded Geometry
The limit point of the period doubling cascade for real quadratic maps is the
Feigenbaum point. For this map the Jula set contains aforward invariant
Cantor set, the accumulation set of the critical value. Moreover this Cantor set
has bounded geometry; that is, the ratio of the sizes of the gaps to the remaining
intervals is bounded at all levels. We see asimilar phenomenon for the limit of
period doubling for tangent maps.

Choose $q\in((k+1/2)\pi, (k+3/2)\pi)$ and set

$h_{q}(x)=$ -qtmh(qtmx)

for real $x$ . Periodic points of $h_{q}(x)$ are the real periodic points of $f_{-:}q(z)$ ;their
period for $h_{q}$ is half the period for $f_{-:q}$ . Therefore, by theorem 5.4, there is an
interval $I_{k}=[k+1/2)\pi, q_{\infty})$ such that as $q$ moves from left to right, $h_{q}(x)$ goes
through aperiod doubling cascade.

Let $h(x)=h_{q_{\infty}}(x)$ . We are interested in the set $\omega$
$=\omega_{\dot{|}q_{\infty}}$ . This is the

part of the set $\omega:q$ that lies in R. To this end, we first study the combinatorial
structure of the periodic cycles generated in the period doubling cascade. These
are precisely the real periodic points of $f_{-:}^{2}q$ .

The only periodic points we are interested in come ffom the cascade so, for
readability, we mean only these when we say periodic points. Once periodic
points appear, their positions relative to those there already do not change. At
each step there is one new point appearing to the left and one to the right of
each of the existing points. At step $n$ there are $2^{n}$ periodic points; half lie in
the positive real axis and the other half lie symmetricaly in the negative real
axis. We want to set up anotation for them that reflects their ordering on the
real axis.

Let $s_{n}=x_{1}\ldots x_{n}$ where $x:\in\{0,1\}$ . We denote the periodic points $\pm p_{\epsilon_{n}}$ .
The map $s_{n} \mapsto\sum_{1}^{n}-1\mathrm{R}_{2}^{1-x_{f}}$ orders the points on $\mathrm{R}^{+}$ ;for agiven $s_{n}$ , the points
$s_{n}0$ and $s_{n}1$ at the next level are to the left and right of $s_{n}$ respectively. We
also find it convenient to set $m_{n}=2^{n-1}$ .

In [6] we give a $\mathrm{f}\mathrm{u}\mathbb{I}$ description of the map $\mathrm{e}$ induced by $h$ on the sequences
$s_{n}$ . In this article we only consider the periodic point $p_{\epsilon_{n}}\cdot=\mathrm{m}101\ldots 010$ for odd $n$

and $p_{\epsilon_{n}}\cdot=p\mathrm{O}\mathrm{I}\mathrm{O}\mathrm{I}\ldots \mathrm{O}\mathrm{I}\mathrm{O}\mathrm{I}$ for even $n$ and the $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}\pm p_{n}^{1}=\pm p_{111\ldots 11}$. The following
propositions and theorem are all proved in [6]. By continuity and the map $\mathrm{e}$

we have $-\backslash$

Proposition 5.7. The point $p_{\epsilon_{n}}\cdot i\mathit{8}$ closer to the pole $(k+1/2)\pi$ than any other
per iodic point of period less or equal to $2^{n}$ . It is to the right or left of the pole
as $n$ is even or odd. A similar statement holds $for-p_{s_{n}}\cdot$ . The $po\dot{|}nh$ $\pm p_{n}^{1}$ are
respectively the right and lefimost periodic points. If $n$ is odd $h(p_{\epsilon_{n}}\cdot)=-p_{n}^{1}$ and
$\dot{l}fn$ is even $h(p_{\epsilon_{n}}\cdot)=p_{n}^{1}$ .

Again by continuity, since $h(q_{\infty})$ cannot be preperiodic, we have
Proposition 5.8. For all $n$,

$k\pi<h(q_{\infty})<p_{\iota_{n}}$
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Using the map $\Theta$ and proposition 5.7 we have

Proposition 5.9. For all $n>1$ ,

$p_{n-1}^{1}<h^{m_{n}}(-q_{\infty})<p_{n}^{1}<h^{m_{n+1}}(-q_{\infty})<p_{n+1}^{1}<\ldots<q_{\infty}$

This proposition, together with those above, enables us to define the stmc-
ture inter $vals\pm \mathrm{I}_{n}(1)=[h^{m_{n}}(-q_{\infty}), q_{\infty}]$ and $\pm \mathrm{I}_{n}(j)=[h^{m_{n}+j}(-q_{\infty}), h^{j}(q_{\infty})]$,
$j=1$ , $\ldots$ , $m_{n}-1$ . We prove that for each $n$. they are mutually disjoint.

We see that, for all $j$ ,

$\mathrm{I}_{n+1}(j)\subset \mathrm{I}_{n}(j)$ and $-\mathrm{I}_{n+1}(m_{n}+j)\subset \mathrm{I}_{n}(j)$.
We define the pop intervals by $\pm G_{n}(1)=(h_{n}^{m}(-q_{\infty}), h^{m_{n+1}}+m_{n}(q_{\infty}))$ so that

$\mathrm{I}_{n}(1)=-\mathrm{I}_{n+1}(m_{n}+1)\cup G_{n}(1)\cup \mathrm{I}_{n+1}(1)$

We also $\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}\pm G_{n}(1+j)=h^{j}(G_{n}(1))$ , $j=1$ , $\ldots$ $m_{n}-1$ .
The theorem here is

Theorem 5.10. The set obtained by successively removing the $interval_{\mathit{8}}\pm G_{n}(j)$ ,
$n=1,2$ , $\ldots$ , $j=1$ , $\ldots$ , $m_{n}-1$ from the intervals $[-q_{\infty}, h(-q_{\infty})]$ and $[h(q_{\infty}),q_{\infty}]$

is a Cantor set with bounded geometry. That is, using absolute values for lengths
of intervals, the ratios,

$|\mathrm{I}_{n+1}(j)|/|III_{n}(j)|$ , $|-\mathrm{I}_{n+1}(j+m_{n})|/|III_{n}(j)|$ , $|G_{n}(j)|/|III_{n}(j)|$

are bounded above and below by bounds independent of $n$ and $j$ .
The techniques in the proof are similar to those for quadratic maps. One uses

the fact that $h$ has negative Schwarzian derivative to show $h$ is quasisymmetric.
The important difference is that we need go only half way around the cycle to
get the bounds for quasisymmetry. To get bounds on the gaps, we use the fact
that the map $H(x)=|h(x)|$ defined on $[h(q_{\infty}), q_{\infty}]$ has the $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}+p_{s_{n}}$ as its
periodic points, is continuous and is unimodal.
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