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1. INTRODUCTION

The aim of this note is to take another side view of the result of [7]. The preprint [71
mainly concerns Nielsen-Thurston type of a surface-automorphism and its behavior under
drilling a surface. In this note, as an application of [7], we consider the hyperbolicity of
a knot appearing as a section in a surface bundle over the circle S! admitting a Seifert
fibration.

We begin with recalling some fundamental definitions and results.

A compact, orientable 3-manifold is called Seifert fibered if it admits a foliation by
circles called Seifert fibers. A Seifert fibered 3-manifold can be regarded as a fiber bundle
over a 2-orbifold with circular fiber. Every Scifert fibered 3-manifold with non-cmpty
boundary and some of closed ones also admits a fibration over S! with surface fiber. In
this note, we will mainly deal with such Seifert fibered 3-manifolds. About Seifert fibered

3-manifolds, see [13] for a survey.
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As usual, a knot will mean an embedding of S! or its image in a 3-manifold. We
empirically know that ‘most’ knots are hyperbolic, that is, have the complements with a
complete hyperbolic metric of finite volume, even in a non-hyperbolic 3-manifold. About
hyperbolic knots, see [2] for a survey.

In a Seifert fibered 3-manifold which also fibers over S*, we consider a knot appearing

as a section of the fibration, which we call a sectional knot, and ask the next question.

Question. In a Seifert fibered 3-manifold fibering over S*, which sectional knot is hy-
perbolic?

Although no Seifert fibered 3-manifold is hyperbolic, it is conjectured that there exist
plenty of hyperbolic sectional knots. We will actually confirm this in some cases by
describing when such a knot is hyperbolic in terms of the projection of a knot.

To state our theorems, we prepare some notations, which will be used throughout the
article. Let F be a closed, connected, orientable surface and f an orientation preserving
automorphism of F. Let M; be a mapping torus with the gluing map f, meaning that
M; = (F x I)/{(z,0) = (f(z),1)}, where I denotes the unit interval [0,1]. This M is
obviously regarded as a fiber bundle over the circle S* with fiber F. Note tha if f is
periodic, i.e., some power of f is the identity map of F, then My is foliated by circles.
This gives the unique Seifert fibration of M, up to isotopy when the genus of the surface
F is greater than one [9).

Let p: F x I — F be a natural projection and ¢ : F x I — M} a natural quotient
map. For a sectional knot K in M;, we call the curve appearing as pog~'(K) on F a
projection of K. This definition, unlike the usual knot theory, yields a projection which
is not a closed curve. To avoid this, if necessary, we isotope f to have at least one fixed
point zo and isotopc a sectional knot to run through the point g(zo x {0}) in My. Under
this setting, every projection of a sectional knot is a (not necessarily simple) closed curve
on F' containing x.

When the genus of the surface F is less than two, it is shown that no sectional knots
are hyperbolic in My. A brief obscrvation about this will be given in the next section.
Henceforth, except for Section 2, we will always assume that the genus of F' is greater
than one.

The first theorem, which was essentially obtained by Kra [10], concerns the simplest
case that f is the identity map. In this case, M; is homeomorphic to F x S*.
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Theorem 1. A sectional knot in F x S is hyperbolic if and only if its projection is
stably filling on F.

We say that a closed curve on F is stably filling if any curve freely homotopic to it
intersects every nontrivial embedded loop on F. The proof we will give is based on
3-manifold topology, and so it is quite different from the one induced from [10].

Next, we consider the case that My is a small Seifert fibered 3-manifold. A Seifert
fibered 3-manifold is called small if it is a circle bundle over a 2-orbifold whose underlying
space is the 2-sphere S? and whose singular set consists of at most three cone points.
Note that My is small if and only if the gluing map f is irreducible and peI'IOdlC in the
sense of Nielsen-Thurston. In this case, we have the following.

Theorem 2. Let My be a small Seifert fibered 3-manifold fibering over S*.

(1) Suppose that My has no sectional Seifert fiber. Then every sectional knot in M [
is hyperbolic.

(2) Suppose that My has sectional Seifert fibers to,ty,...,t,. Let z; be the point
poq l(t;) for 0 < i < n. Set the point xo as the base point of projections of
sectional knots. Then a sectional knot K in Mj is hyperbolic if and only if no
projection of K represents an element of m,(F, zo) which has the form [y (f o))
for a path v from some z; to x,.

In the statement above, 4 denotes the path obtained from a path 4 by inverting its
orientation. The product of two paths 7; and v, is denoted by <y, *,. For a closed curve
c with a base point zy, [c| denotes the element of 7;(F, zy) represented by c.

Note that for a sectional Seifert fiber ¢ in My, poq~!(t) is a fixed point of f, and so the
case (1) corresponds to the case that f is irreducible and periodic without fixed points.

In the special case that My has only one sectional Seifert fiber t;, we immediately
have the following corollary. In the following, f, denotes the automorphism of m1(F, o)
induced from f.

Corollary 1. Let My be a small Seifert fibered 3-manifold which fibers over S! and
contains single sectional Seifert fiber to. Let zo be the point po q~1(ty) and set zq as the
base point of projections of sectional knots. Then a sectional knot K in M ¢ 18 hyperbolic
if and only if no projection of K represents an element of m,(F,x,) which has the form
(17 £ ([¢]) for any closed curve ¢ with base point z,. a

Also note that this corresponds to the case that f is irreducible and periodic with

single fixed point.
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2. SMALL GENERA CASE

In this section, we give brief observations about the small genera cases.

Suppose that the genus of F equals 0, that is, F' is homeomorphic to S2. Then there
exists only one My, that is, S% x S*. It is well-known that every sectional knot in S?x St
is isotopic to be vertical, that is, the form {*} x S'. This means that every sectional
knot in S? x S! is isotopic to a sectional Seifert fiber and so no one is hyperbolic.

Next, suppose that the genus of F' equals 1, that is, F is the torus. In this case, it is
known that there exist just five M;’s which are Seifert fibered ([6, Examples 12.3.]). All
of these have sectional Seifert fibers. Moreover it is verified that every sectional knot is
equivalent to be vertical; there is a self-homeomorphism of the ambient manifold which
sends the given sectional knot to a sectional Seifert fiber. Again, in this case, no sectional

knot is hyperbolic.

3. SECTIONAL KNOTS IN F x S!

3.1. Outline of the proof of Theorem 1. Throughout this subsection, let M be the
mapping torus with trivial gluing map; (F x I)/{(z,0) = (z,1)}, K a sectional knot in
M, c a projection of K on F and E(K) the exterior M — IntN(K).

Let us first show that ‘only if’ part. For a contradiction, suppose that K is hyperbolic
and c is freely homotopic to a closed curve ¢ which avoids some nontrivial simple loop
¢. There is the sectional knot K’ in M which has ¢ as a projection. In M — IntN(K’),
there is a vertical torus T. = q(e x I). This T is essential (i.e., incompressible and not
boundary parallel) since ¢ is nontrivial on F. Note that the free homotopy between c
and ¢ implies that an isotopy between K and K’, and it extends to an ambient isotopy
of M which moves K to K’. In particular, E(K) is homeomorphic to M — IntN(K").
Therefore we find an essential torus in E(K). This contradicts that K is hyperbolic.

Next, let us consider the ‘if’ part. Suppose that c is stably filling on F' with the base
point zo. By the Thurston’s Uniformization Theorem [14], it suffices to show that (1)
E(K) contains no essential tori and (2) E(K) is not Seifert fibered.

Suppose for a contradiction to (1) that E(K) contains an essential torus 7.

Let F; be the surface g(F x {t}) in M for t € I and F; the surface F;N E(K) in E(K).
Since Fy(= F) is incompressible in E(K), by an isotopy of T in E(K), we assume that
the intersection 7' N F, consists of non-empty nontrivial loops in both T and Fp. Also
we assume that the number of components of T' N Fy is minimal. The preimage ¢~(T)
of T are the disjoint union of annuli Ay,..., A4, C F x I.
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Claim 1. For each A; (i = 1,...,n), one boundary component is in F x {0} and the
other is in F x {1}.

Proof. Remark that these annuli is incompressible in F x I — g YK ) since T is essential.
If the boundary of one of them is entirely contained in F x {0} or F x {1}, then by [15,
Corollary 3.2] it is boundary parallel, and so it contradicts the minimality of the number

of components of T' N Fy, O

The following lemma therefore implies that each annulus A; (i = 1,...,n) is also

incompressible in F' x I.

Lemma 3.1.1. Let F be a closed orientable surface and K' an monotone arc in F x I
connecting (zo,0) and (g, 1) for some point o € F. Let A be an incompressible annulus
in E(K') = F x I — intN(K') with one boundary component in F' x {0} and the other
in F' x {1}. If A is compressible in F x I, then A is parallel to the frontier of N(K') in
FxI. ' g

Moreover the following holds in this case.

Claim 2. p(A; N (Fp)) = p(A1 N (F1)) holds. In particular, the number n of annuli is
equal to 1. O

Let ¢; denote the curve p(0A;) for this single annulus A;.

Claim 3. There is an isotopy of F x I such that A, is moved to the vertical annulus
c1 X I and it is identity on the surfaces F' x {0} and F x {1}. _ d

For proofs of these claims, see [7].

Under the isotopy above, the arc ¢~}(K) is moved to an arc k keeping the endpoints
fixed. Thus there is a homotopy between ¢ = p(¢~*(K)) and p(k) on F. Since the
original A, is disjoint from ¢~!(K), the annulus c¢; x I does not intersect k, and hence
p(k) Nc; = 0. However this contradicts that c is stably filling on F.

Suppose for a contradiction to (2) that E(K) is Seifert fibered. Then there exists a
Seifert fibration of M in which K is a fiber by the the next lemma.

Lemma 3.1.2. Let M be an irreducible manifold and k is a knot in M. If M —IntN (k)
is Seifert fibered, then M admits a Seifert fibration in which k is a fiber. a

Here each Seifert fiber of M = F x S, up to free isotopy, is the form {*} x S, and
so it is sectional.
Finally we use the following:
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Lemma 3.1.3. Let M; denote the mapping torus (F x I)/{(z,0) = (f(z),1)} with the
periodic gluing map f which has a non-empty fized point set {xo,...,T,}. Let K be a
sectional knot K in My and c a projection of K. Suppose that K is isotopic to a sectional
Seifert fiber of the form ({z:} x I)/{(z:,0) = (:,1)} if and only if [c] = [¥ * (f o))
in my(F,xo) for some path vy from z; to xo, where * denotes the product of (possibly
non-closed) paths. O

In our case, the gluing map f is the identity map, and so we have
[d=atfil@)=cla=1
for some a € m;(F, ;). However, since a stably filling curve c is nontrivial, it is absurd.

3.2. Examples of curves. The purpose of this subsection is to give concrete examples
of stably filling curves on F. Recall that a closed curve c on a closed orientable surface
F is called filling if every connected component of F' — c is an open disk. Note that c is
stably filling if and only if every closed curve freely homotopic to c is filling.

In the following, we fix a hyperbolic metric on F. As shown in [1] implicitly, we have:

Lemma 3.2.1. A filling closed geodesic is stably filling. O

Let us give examples of stably filling curves on a surface of genus two. Similarly, one
can construct such examples for the higher genus case. Sce [7] for a detail.

By virtue of Lemma 3.2.1, it suffices to find filling geodesics. We start with four copies
of a regular truncated triangle, equivalently, a right-angled rectangular hexagon, in HZ2.
By gluing their edges suitably, we obtain two copies of a pair of pants P, and P, with
equilong boundaries. On P, take three geodesic arcs each one of which is the shortest
path connecting distinct boundary components. Remark that each boundary component
of P, is bisected by the endpoints of these arcs. On P,, take also three geodesic arcs each
one of which is the return path of a boundary component. Remark that each boundary
component of P, again is bisected by the endpoints of these arcs. Then P, and P, are
glued so that the six geodesic arcs form single closed curve c. For these arcs match
geodesically as they are all orthogonal to the boundary. It is casily checked that this c
is actually filling on the resultant surface of genus two.

We can find a simple closed curve ¢’ on the resultant surface which intersects c exactly
once. By performing the m-Dehn twist along ¢/, we obtain infinitely many curves ¢,
which is also stably filling. These are all mutually non-isotopic. In fact, ¢, and c,
(m # n) are not homologous. For one can find a simple closed curve ¢” intersecting ¢



FIGURE 1. geodesic arcs on P; and P,

exactly once, and then the algebraic intersection number of c,, and ¢ varies depending

only on m.

4. SECTIONAL KNOTS IN A SMALL SEIFERT FIBERED 3-MANIFOLD

4.1. Outline of the proof of Theorem 2. Note that Theorem 2 is an immediate
corollary of the next proposition together with Lemma 3.1.3.

Proposition 1. Let K be a sectional knot in a small Seifert fibered 3-manifold which
fibers over S'. Then K is hyperbolic if and only if K is isotopic to mone of sectional
Seifert fibers.

Proof. Let My denote a small Seifert fibered 3-manifold, equivalently, we assume that f
is an irreducible, periodic surface-automorphism. It is known that M. ¢ is atoroidal, that
is, My contains no essential tori [8]. Let K be a sectional knot in M f, ¢ a projection of
K and E(K) the exterior M; — IntN(K).

If K is isotopic to a sectional Seifert fiber, then E(K) admits a Scifert fibration obvi-
ously, and so K is not hyperbolic.

Conversely suppose that K is not hyperbolic. If E(K) contains an essential torus, then
it remains incompressible in My by Lemma 3.1.1. This contradicts that M; is small, and
so E(K) is atoroidal. Then, by the Thurston’s Uniformization Theorem [14], there is
a Seifert fibration on E(K). By Lemma 3.1.2, the ambient manifold My also admits a
Seifert fibration in which K is a fiber. Since the Seifert fibration of such M ¢ is unique
up to isotopy [9], K is isotopic to a Seifert fiber which is sectional. O

4.2. Examples of maps. In this subsection, we give examples of irreducible, periodic

automorphisms corresponding to Theorem 2 (1) and Corollary 1.
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To do this, we give an observation about the covering theory. See (3] for a detail. Let
us denote an orbifold with the underlying space S? and three cone points by, by and b3 of
indices py, p2 and ps by S%(p1,p2,p3). Put n = lem(py,p2, p3). Suppose that a surjective
representation p : m(S? — {b1,b2,b3}) — Z, which sends a small loop around b; to an
element of order p; is given. Then by taking an n-fold cyclic orbifold covering associated
with p, we obtain a closed orientable surface F of genus g = §n(1— - —-- —--)+1 and
a periodic automorphism f so that F/(f) = S%(p1,p2,ps) ([3], [11]). This f so obtained
is irreducible by [4, Theorem 3.1]. Algebraic conditions for an existence of such branched
coverings (equivalently such representations) was given in [5).

We remark that an irreducible, periodic automorphism f : F — F of period p fixes at
most three points. For if we take a quotient of F by the action (f), then we obtain an
orbifold S2(py,p2,p3) [4, Theorem 3.1]. If f fixes a point z; € F, then z; is injectively
projected to a cone point b; of index p. This implies that f fixes at most three points on
F.

Example 1. Choose an orbifold S%(ma(m; + mz), mi(my + mg), myms), where m; and
m, are coprime. Take a cyclic orbifold covering associated with a representation p :
71(S2 — {by, b2, b3}) — Zn my(my+mz) Which sends a small loop around b; to m; (i = 1, 2).
Then we obtain a closed oricntable surface F' of genus 3(m; + mg)(mymz — 2) + 1 and
an irreducible periodic automorphism f : F — F of period m;my(m; 4+ mz). Since each
branching index is strictly smaller than the period, f has no fixed point. This gives an
example of Theorem 2 (1).

The simplest case of (m;, my) = (2, 3) was described in [11, Proposition 1]. In this case,
the genus of the resultant surface is 11 and the period of the resultant automorphism is
30.

Example 2. Choose an orbifold $%2(m,, m;, m;m2), where m; and m, are coprime. Take
a cyclic orbifold covering associated with a representation p : m(S? — {by, b2, b3}) —
Zn,m, Which sends a small loop around b; to m; (i = 1,2). Then we obtain a closed
oricntable surface F' of genus 3(m; —1)(mz—1) and an irreducible periodic automorphism
f : F — F of period mym,. The cone point b; has the branching index m;m, which is
equal to the covering index. Thus the preimage of bs consists of exactly one point and
this is a unique fixed point of f. This gives an example of Corollary 1.

In fact, the resultant automorphism is the monodromy of the surfacc bundle over St
obtained by O-surgery along (m,, my)-torus knot in S3.
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4.3. Examples of curves. In this subsection, we see that there are plenty of curves
described in Corollary 1.

Let f : F' — F an orientation preserving periodic automorphism satisfying f(z) = z
for some point zo € F. We assume that the period p of f is greater than two. For the
period two case, please see [7].

Hereafter, fix an (f)-invariant hyperbolic metric on F'; for an existence of such a metric,
see [13, Section 2]. Then each element in m(F,z,) is represented by a geodesic closed
path (i.e., a curve ¢ : I — F such that ¢(0) = ¢(1) = zp and c|(,1) is geodesic).

Actually we show the following. '

Proposition 2. Let f : F — F be a periodic automorphism of period p > 2. Theh
there exists a positive constant Cy depending only on f such that an element v or y~*
in w1 (F, o) cannot be written as a~!f.(a) for any element a € m\(F,x,) if the length of

the geodesic closed path representing -y is greater than Cj.

By this proposition, the element of 7;(F, z,) which and whose inverse are both rep-
resented as o' f,(a) with some o € m(F, z) must have the geodesic closed path with
bounded length as a representative. Since the holonomical image of m;(F, x¢) is discrete,
there exist only finite number of such elements.

In the following, we outline the proof of Proposition 2. See (7] for a detail.

Let ¢ be a geodesic closed path on F. We denote by c™! the geodesic closed path
defined by ¢™!(t) = ¢(1 — ¢t) for t € I and by ;. the angle from ¢(1) to dfs,(¢(0)) for a
geodesic closed path c, where —7 < 67, < .

Set a positive constant ©; depending only on f, 0 < ©; < 7, as follows.

T — O 0<6f<m/2

0f 71”/2<9f<7l’
Of = ,

2m — 0y T <0 <3m/2

O — 7 3m/2 < 0f <2m

where 6 denotes the rotation angle (0 < 85 < 2) of the action of df,, on T;,F. Remark
that 0y # 7 by the assumption that p > 2.
Then the next is proved by careful case-by-case arguments.

Claim 4. For any geodesic closed path ¢, we have min{|0y.|, |0;.~1|} < ;. O

Moreover we have:
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Claim 5. Suppose that |0;.| < Oy holds. If
1
sin(m — ©y)/2
holds, then the product [c][f oc]---[fP~2 o c|[fP~! o (] is not trivial in 7, (F, xo), where I,
denotes the length of c. O

coshl./2 >

The key of the proof of this claim is to show the preimage of a geodesic closed path in
the universal cover H? of F is not closed if the assumption satisfied. See {7] for a detail.
Finally, we use the next claim, which is proved by elementary algebraic calculations.

Claim 6. If [¢][foc]---[fP2oc|[fP" o] # 1 in m(F,xo), then [c| cannot be written as
a~lf.(a) for any a € m (F, zq). O

Consequently, we obtain a desired constant Cy = 2 cosh_l(m).
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