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An expression of harmonic vector fields
of hyperbolic 3-cone-manifolds,

in terms of the hypergeometric functions

Michihiko FuJir and Hiroyuki OCHIAI
BHEE (R#XE-BAAMH) FESBZ RRIEX¥XEER-#I)

§0. Introduction.

By a hyperbolic 3-cone-manifold, we will mean an orientable Riemannian 3-manifold C of
constant sectional curvature —1 with cone-type singularity along simple closed geodesics .
To each component of the singularity ¥, is associated a cone angle a. The subset N := C—-X
has a smooth, incomplete hyperbolic structure whose metric completion is identical to the
singular hyperbolic structure on C. A sufficiently small tubular neighborhood U of each
component of £ in N has the metric dr? + sinh®*rd6? + cosh’rd¢?, where r is the distance
from the singular locus, ¢ is the distance along the singular locus, 0 is the angular measure
around the singular locus defined modulo a. Let A be the Laplacian of N with this metric.

In this paper, we give an explicit expression of a harmonic vector field v in U, by means of
the hypergeometric functions. This expression can be obtained, since a simultaneous ordi-
nary differential equation with variable r, which is a consequence of separation of variables
of the partial differential equation (A + 4)7 = 0 on U (this is equivalent to the equation
Av =0 on U), can be solved exactly by means of Riemann’s P-equations, where 7 denotes
a l-form dual to v. In fact, single ordinary differential equations of higher order, which
are consequences of an elimination of functions from the simultaneous equation, are trans-
formed by the substitution z = (-:%‘Iﬁ 2 into linear differential equations of Fuchsian type
with three singular points. The differential operators of these equations are factorized into
operators which express Riemann’s P-equations (see Theorem 3.1). Also it is seen that some
relationships between differential operators of Riemann’s P-equations holds (see Theorem
3.2). Then the single ordinary differential equations can be solved without integration of
functions. Moreover, if a parameter, which is obtained at the procedure of the separation of

the variables, satisfies a genericity condition (Assumption 5.1), then fundamental systems of
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solutions of the simultaneous differential equation can be concretely obtained (see §5.1 and
§5.3). Then the functions consisting the fundamental systems are explicitly represented by
means of the hypergeometric functions. In this paper, we will give the explicit expression
of 7 (hence v), with some condition on parameters (see the begining of §3). See [2] for the

general case.
§1. Definition of hyperbolic 3-cone-manifolds.

In this section, we give the definition of hyperbolic 3-cone-manifolds (see [1]).

Consider an 3-dimensional manifold C' which can be triangulated so that the link of each
simplex is piecewise linear homeomorphic to the standard sphere and give a complete path
metric on C such that the restriction of the metric to each simplex is isomorphic to a geodesic
simplex of constant sectional curvature —1. The manifold together with the metric above is
called a hyperbolic 3-cone-manifold and denote it again by C.

The singular locus ¥ of a hyperbolic 3-cone-manifold C consists of the points with no
neighborhood isometric to a ball in a Riemannian manifold. It is a union of totally geodesic
closed simplices of dimension 1. At each point of ¥ in an open 1-simplex, there is a cone angle
which is the sum of dihedral angles of 3-simplices containing the point. The subset C — ¥
has a smooth Riemannian metric of constant curvature —1, but this metric is incomplete
near X.

In this paper we consider hyperbolic 3-cone-manifolds of the following type. Let M be a
closed orientable 3-manifold and ¥ be a link in M of k components. Let us denote by X7 the
J-th component of the link 3. We assume that M is the underlying space of a hyperbolic
3-cone-manifold C' with singular locus . The subset N := C — X has a smooth Riemannian
metric g with constant sectional curvature —1 which is incomplete near each component
Y7 of £. The metric completion of the hyperbolic structure on N gives rise to C. Each
component 7 of T is a totally geodesic submanifold, and in cylindrical coordinates around

Y7, the metric g has the form
dr? + sinh®rd§? 4 cosh®rd¢?,

where 7 is the distance from the singular locus, ¢ is the distance along the singular locus, ¢
is the angular measure around the singular locus defined modulo @ for some o? € (0, 00).

The number o’ is a cone angle at 7.
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§2. Laplacian of hyperbolic 3—cone-manifo!ds.

In this section, we state a situation which we will argue in this paper, and make a prepa-
ration on differential geometry. (See Rosenberg [4] for general reference on Riemannian
geometry and Hodgson-Kerckhoff [3] for a special setting on hyperbolic 3-cone-manifolds.)

Let C be an orientable hyperbolic 3-cone-manifold with singularity ¥. We assume that
the singular set ¥ forms a link £ = Z'U...UX* as in §1. The subset N = C — X has a
smooth Riemannian metric g with constant sectional curvature —1.

Let QP(N) denote the space of smooth, real-valued p-forms of N. Let d be the usual

exterior derivative of smooth real-valued forms on N:
d : Q°(N) — QP*I(N).
Let * be the Hodge star operator defined by using the Riemannian metric g on N:

9(¢,* ¥) dN = $ A9,

for any real-valued p-form ¢ and (3 — p)-form 9, where dN is the volume form of N. Let §

be the adjoint of d:
6 : QP(N) — QFY(N).

Let A be the Laplacian on smooth real-valued forms for the Riemannian manifold N:
A =dd+dd

Let U be a sufficiently small neighborhood of a component of £. Let a be the cone angle
in U along the component of £. If we use cylindrical coordinates, (7,60, ¢), the metric g
in U is dr? + sinh®rdf? + cosh®rd¢? as described in §1. We assume that the boundary of
U consists of the points whose distances from the component of ¥ are same. We adapt
(w1,ws,ws) := (dr,sinhrdd, coshrdg) for the co-frame in U. We denote by (e;, ez, e3) the
orthonormal frame in U dual to (w;,ws,ws). Then e; = £, €3 = =2 and e3 = ﬁ%.
For notational convenience, we set r = z!, § = 22, and ¢ = z3. We express the metric g on
UasY,;g;de' ®dr’. Then g11 =1, g22 = sinh®z?, g33 = cosh’z! and g;; = 0 (i # j)-
The Christoffel symbol I}« can be calculated by using the formula

i 1 i1 (9952 . Ogki 995k
Lk = 229 (6:1:" + oI ozt )’

l

where (g*!) = (¢;5)™. The Levi-Civita connection V can be calculated by

) .9
Vit = L gy
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A direct calculation shows that (V . _8_) is equal to

oz axk
0 coshr 8 sinhy 9
sinhr 96 coshr 9¢
:?:l}:: % —sinhrcoshr& 0 ’
sinhr & 0 —sinhrcoshr &

coshr 8¢

and moreover, that the connection 1-form (w%) is equal to

coshr sinhr
0 sinhr 2 coshr w.
coshr
sinhr w2 0 0
sinhr
coshr W3 O 0

Now let v be a vector field in N which satisfies the differential equation Av = 0 in U.
Namely, v is harmonic in U. Let 7 be the 1-form dual to v. Then, by Weitzenbock formula
and the fact that the Ricci curvature of N is —2, 7 satisfies (A +4)7=0in U.

If we express 7 as
T = f(ra 07 ¢)wl + g(T, 9’ ¢)w2 + h(T, 0, ¢)w3

in U, then, by explicit calculation, we obtain the following (see [3] pp.26-27):

2 2 1 1 2 2
(A+4)7‘ = (—frr—(z'l'g)fr'i'(%"'?'-Q)f—8—2f09—§f¢¢+s—§ga+-c—jh¢) wi

+ (- —(3+£) (S 2) g Low— Lo —2s) w
Grr c 3 Gr 52 g 52 gee ng¢¢ 52 [} 2

s? 1 1 2s
+ (—h" -+ h+ (5 - 2) h— —has — —hes - §f¢) ws, (1)

where subscripts denote derivatives with respect to variables and s := sinhr, ¢ := coshr. .

The 1-form 7 in U satifies equivariance properties depending on the shape of the neigh-
borhood U. Since the cone angle is equal to a, 7(r,6 + a, ¢) = 7(r, 0, ¢). If the component
of ¥ has length [, it further satisfies 7(r,0, ¢+ 1) = 7(r,0 + t, ¢), where t measures the twist
in the normal direction along the component of ¥. The complex number ! + ¢t\/—1 is so
called the complex length of the component of the singular locus X.

Because of the decomposition of the Laplacian in U, we can use separation of variables,
assuming that f(r, 6, ¢) equals a function f(r) times a function on the torus (= 8U). Sim-
ilarly for the other functions g(r,8,¢) and h(r,0, ¢). It suffices further to decompose the
functions on the torus into eigenfuncfions of the Laplacian on the torus, which are of the
forms cos(af + b¢) and sin(af + b@), where a :=?-7—rﬁ and b := E%ml—m (n,me Z). We
say such a 1-form 7 is an eigenform of the Laplaciagl. Then, from the expression (1), we see
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that such a 1-form 7 must be of the following type:

T = f(r)cos(al + bd)w, + g(r)sin(ab + bp)w, + h(r)sin(ab + bo)ws, (2)
or 7 = f(r)sin(ad + b@)w, + g(r)cos(abd + bp)w, + h(r)cos(ab + bp)ws.

Then, we can verify the following (see the equation (21) in [3]):

(A+4)r=0

o fN+E+IFMN-R+E+S+9+B)f()-% ( ) — Zh(r) =0,
@y e g'N+E+Ir) —(2+ §§ + ;‘i + S)y(r) 2“°f(r)

o AM(r)+(2+S)W(r)—-(2+2 —; + —';+ )h(r) 2"’ f(r)= 0.

Put
1

1/2 sinhr
) coshr’

and (1-2)"2:=

coshr
then we have that z = (222)2 and that

(A+4)7=0
o 422f"(2) +4zf'(z) — (l—z), + 1—2,, + i+ S+ E)f(2)
m—g(z) Bemh(z) =
o 42%¢"(z) + 429 (2) — (7% + l—,)z + £ : +#2)9(2) - 7B f(2) =0,  (3)
o 422h”(z)+4zh’(z) (i + oo + 5 + () - 2 f(2) =0.

§3. How to solve a single differential equation.

In this paper, we only consider the case where a # 0 and b # 0 (see [2] for all the other
cases). Then we can transform the system of the simultaneous equation (3) to a single
differential equation of the 6-th order with respect to the function hA(z).

Let A be a subset of C defined by

A={zeR; 2<0,1<2}.

In the rest of this paper, let us regard the variable z in the equations in (3) as a complex
number in the domain C — A. Then z!/2 and (1 — z)'/2 are single-valued functions on the
domain C — A.

By the third equation of (3), we have

1) = 3531 = ER(z, 20 (), (4)

where we put

d 2 1d 2 b -1 -3
Rl(z,a,a,b) = ( 2 ) :

el il Ve T ey v P P PO P
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By eliminating the function f(z) from the first equation in (3) and the relation (4) between

f(z) and h(z), we obtain a relation between g(z) and h(z) as follows:

1 d

=1

9(z) = 27 Ry(z, L b)h(z), (5)
where

d — 3 3 d* 2 2 d?
Ry(z, el b) := —42°(z — 1) A +122°(z — 1)*(1 Zz)dz3

2

+22(z — 1)(a® + 152 — a2 + b2z — 132% — bzzQ)diz'f

+(a® — 4z — a®z — b?z + 322 + 3b%2% — 22° — 2b2z3)ad;

1
—  (8a?
+4z(z — 1)( @
—b12? + 623 — 20223 4 8b%22% — 2a%b%23 + 20128 — 2 — 2b%2% — bi2Y).

—a* — 2602z + 20z — 2a%b%z — 82% + 20a°z% — a%2? — 6b%2% + 4a’b?2?

By eliminating f(z) and g(z) from the second equation of (3) and the relations (4) and
(5), we obtain the following equation which h(z) should satisfy:

72 — 3a? — 394z + 3a?z — 3%z + 38722 + 3b22?

9(—1 + 22)
(©) AT T 22),5) (4)
RO (2) + D) rO)(2) + 7P P r®(2)
1
+ ———=(—12 4+ 3a® 4 212z — 12a®z + 6b%z — 5432% 4 9a%2® — 18b%2% + 34823
223(z — 1)3
1
2_3\7(3) 19,2 4 _ 2, _@prd, 2 272
+ 12b°2°)h (z)+—16z4(z—— 1)4( 12a° + 3a® — 272z + 92a°z — 6a°2 — 24b*z + 6a°b*z
+ 179222 — 158422 + 3a%2® + 212b%2% — 12a%b%2% + 3b% 22 — 282823 + 78423 — 3620223
1
+ 6a%b%2® — 6a%2% + 13232% + 174b%2* + 3b2*)h" (2) + m(—12a2 + 3a* + 240’2

— 6a'z — 5622 — 6a22% + 3a*2? — 44b%22 + 6a%b%2% — 3b%2% + 13623 — 12a°2% + 148h°23
— 12a%b%2% + 12b%2% — 1492% + 6a%2* — 164b%2* + 6a2b%2* — 15b%2* + 5425 + 60b%2°

+ 6b'2°)K(2) + 5476‘(;1—_7)"6(‘64“2 + 20a* — a® + 2320%z — 70a%z + 3a®z + 12a2b%2
— 3a*b?z — 3160222 + 83a%2? — 3af22% — 56a%b%22% + 9a?b%2® — 3a?b?z? — 1623 + 180a22°

— 36a%2% + a2 — 48K22% + 82a2622° — 9a%tR2® — 18b%75 + 9a%bt2® — b52° + 562° — 350270
+ 3a'z® + 100022 — 440®6%2* + 3a*b%2* + 47b 2" — 9a%b%2* + 36%2* — 342° 4 3a%2°

— T18%2° + 6a%b2° — 40b*2° + 3a%b'2® — 3b82° + 928 + 196728 + 11628 + b828)h(2) = 0.
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This is a differential equation of Fuchsian type with regular singularities at z =0, z =1

and z = co. The characteristic exponents are

240 4+ _ M. =1 3 1 5 2+V5 — 1). —1dby/=T 14by/=T 3dby/—1 —

i%’ 2a’ 2a (Z—O)’ 20 2) 20 2y T2 (2”1)7 2 ’ 2" 2 (z—oo).
d

Let X(Z,E,

the equation above is written as

a, b) denote the differential operator which represents the equation above. Then

2, dgz_’ a,b)h(z) =0.  (6)

By direct computation, it can be verified that the theorem below holds:

X(

Theorem 3.1. The differential operator X (z, 2 i,a,b) is factorised as below:

X(zah) = Pyl a,0,b)Py(z 0 0Pz, 200,0)
= Pg(z, E_z—’ —a, b)Pg(Z, -d—z-, —a, b)Pl(z, %, a,b),
where
A %’a’ b = Ed'; + G N %) Ed" (4z2(:2— nt 4:(2;—11) + 42(7,__1 1)2> ’
B dgz"a’ b) = % + (% o 1) di M (423(1:—21) * 422:_251) * 4z(25_ 1)2)
R d%’a’ "= % " (g = ) di " ((04;22(31)4) ::(jizll) " 42(221 1)2)

The operators P;(z, %, a,b)’s are ones which give Riemann’s P-equations and the funda-

v dz?
mental solutions are written by the Riemann P-function.
By direct computation, it can be checked that some relationship between P(z, %,a, b)

and Ps(z, %, a,b) holds:

Theorem 3.2. Put
d cf2+(§ 3 )d ( al—-14 b? +25 -1 )

Py(z, — = —
(2, dz’a’b) dz? Y 422(z — 1) + 42(z — 1) + 4z(z — 1)2
Then, the following equation as operators holds:

Pl(z,;; b2z~ ) Pulz, o d ' a,b) = (e = )Pz, o ,a,b)Pz(z 4 ob)=1.
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We obtain a corollary of Theorem 3.1 and Theorem 3.2:

Corollary 3.3. Solutins of the equation

4 o bu(z) =0

X(z, =

are written as follows:

D)W () + 0 (2),

where v(z), w*(z) and w™(2) are solutz'ons of the equations Py(z,%,a,b)v(z) =0,

Py(z, & =,a,b)wt(z) = 0 and P(z ,dz, —a,b)w™(z) = 0 respectively. To the contrary, if v(z),
w'*'(z) and w™(z) are solutions of the equations Py(z,%,a,b)v(z) =0,
Py(z,L,a,b)w*(2) =0 and Py(z, £, —a,b)w™(2) = 0 respectively, then

u(z) = v(2) + 22(z — 1)* Py(z

u(z) = v(z) + 22(z — 1)*Py(z, diz, 0, b)(w* () + w(2))

satisfies the equation X (z, &, a,b)u(z) =0.
§4. Fundamental systems of solutions of the simulataneous differential equation.

For a solution h(z) which is given by Corollrary 3.3, the corresponding functions f(z) and

g(z) are obtained by the relations (4) and (5) respectively. These relations are expressed by
the operators R;(z,£,a,b) and Ry(z, 4 a,b), the order of which are 2 and 4 respectively.
We will see that each of these operators can be reduced to an operator of lower order and
then give a simple expression of solutions. "

By direct computation, we can verify the following lemma on the operator R;(z, dﬁz-, a, b):

Lemma 4.1. Put

Q(ziab)-—dz+(2+i-)i+ a? +b2+25+ 5
’dz’ ) . d2 Y 2—1/ dz 422(2_1) 42;(2;—1) 42(2—'1)2 )

Then the following equation holds:

d 2 _ _A.3(, _1\3 a a
Rz(z,a,a,b) a’ = —42°(z — 1)°Q(z, dz,a_,b)Pl(z, dz,a,b).

Let the operators P;(z, £,a,b), P(z, £, —a,b) and Ri(z, &, a,b) be abbreviated as P.. P,

and R; respectively.
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By (4) and (5), the components of each solution (f(z),g(z),h(z)) of the simultaneous
equation (3) which corresponds to a solution bu(z) of the equation Piv(z) = 0 are
f(z) = %z%(l ~2)iRbv(z) = —2z%(1 — z)

d 1
(E T2z - 1)) v(z),
g(z) = éz:z_lebv(z) —azPu(z),  h(z) = bu(2).

(Y]

The second equation on f(z) is verified by dividing the operator by P, from the right and
the second equation on g(z) is seen by Lemma 4.1.

Next, we will argue a representation of solutions which correspond to solutions of the
equations Pw(z) =0 and Py w™(z) =0.

By Cor 3.3, the components (f(z), g(z), h(z)) of each solution of the simultaneous equation
(3) which corresponds to a solution bw*(z) of the equation P,w* = 0 are

fz) = %z%(l—z)%Rlzz(z—1)4P4bw"'(z)

2
_ az’l‘(l—z)%(d a+2 3 a? + b?

_ +
& 2 T D  2a- 1)) w* (2),
g9(z) = ﬁz:’}Rgzz(z — 1)4Pibw*(2)
_a afd  e¥2, 3 2\
= a2(1-2) (dz+ 2z +2(z—1) a(z—1) w*(2),
h(z) = 2)(z—1)'Piw*(2)
d a+2 3
_ _3(% +
= bz(1-2) (dz t——t 20— 1)) w'(2).
All the second equations above can be verified by dividing the operators by the operator P,
from the right. Let Ty(a,b), T2(a) and T3(a,b) denote the operators which correspond to

h(z), g(z) and f(z) respectively;

— d oo dq_if,d 06+ 3a  d+¥
Ti(a,b) = Ti(2,5-,a,b) == 27(1-2) (“$+ %2 2z-1) 2z-1))°
— — = Zz -_ - -
Ty(a) = Ta(z, 7-,0) :=az3(1-2) (dz+ 22 ' 2(z-1) a(z—l))’
. d N 3 i a+2 3
T3(a,b) = T3(z,dz,a,b) = bz(1-2) (dz+ 2z +2(Z-1)).

Then the equations above are written as
f(2) = Ti(a,b)w*(2), g(2) = Ta(a)w*(2), h(z) = Ta(a,bjw*(2).

In the same manner, the components (f(z), g(2), h(2)) of each solution of the simultaneous

equation (3) which corresponds to a solution bw~(z) of the equation Py w~(z) = 0 are
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represented as follows, by using the operators T7, 15 and T3,
f(z) =Ti(=a,b)w™(2), g¢(2) = ~To(-a)w™(2), h(z) = T3(—a,b)w™(2).

Summarizing above, we have the proposition below:

Proposition 4.2. Let {v1(2),v2(2)}, {wi(2),wF(2)} and {wy(z),w; (2)} be fundamental
systems of solutions of the equations Piv(z) = 0, Pw*(z) = 0 and Py w(z) = 0 respec-
tively. For each i € {1,2}, put

(fi(2), 4@, (2) = (=21 - 2)¥ (& — 5pkpy) vile), az~Hs(2), bus(2))
(fir2(2), 9iv2(2), hire(2)) = (Ti(a,b)wf (2), Ta(a)wif (2), Tz(a, b)w; (2)),
(fi+a(2); 9ira(2), hira(2)) = (Ta(=a,b)w; (2), —To(—a)w; (2), Ts(—a,b)w; (2)),

Then the 6 triples {(f;(2),9i(2),hj(2));7 = 1,...,6} forms a fundamental system of solu-

tions of the simultaneous equations (3) on the domain C — A.
§5. Explicit expressions of the fundamental systems of solutions.

In this section, by imposing a genericity condition on the parameter a, we will give an
explicit expression of the fundamental systems of solutions of the differential equation (3),
by means of the hypergeometric functions.

The characteristic exponents of the equations Piv(z) = 0, Bw*(2) =0and Py w™(2) =0

are

° %$ TR (z =0); 2 2\/3, 2_2 : (z=1); —I-H'.;\/:T» _I—ZH (z = 00),
o 5 %2 (2=0) F, F (z=1); BT =W (= o0)

and
= 1); BT ST (5 o)

respectively. The differences of the exponents at z = Oarea, —a;a+1, —a—1anda—1,
—a + 1 respectively.
We will put the following assumption to impose the genericity condition on a:

Assumption 5.1. The parameter a is not an integer.

The condition of Assumption 5.1 is equivalent to that no one of a, —a, a+1, —a~1,a~—1,

—a + 1 is a negative integer.
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Then we can and will choose fundamental systems of solutions explicitly as follows:

vl(z,a, b) = Z%(l _ z)z—fz‘—/—‘iF (a+1+b\£—_l+\/§’ a+1—b\é:f+\/§;a +1; Z),

v (z,—a,b) = 27 (1 - z)B—zﬁF (”“““’2‘,/:—”‘/5, ‘““"";/‘_”‘/g; —-a+ l;z),

wi(z,a,b) = 2%(1- z)'_fl'F (“"'“2"[:1, “+4_2b‘/:1_; a+2 z),
wf(z, —a—2,b) = z:%z'(l _ Z):%F (—a+2;—b\/——1, —a+2;b\E; —a; z),

)

wi(z,—a,b) =27 (1 — z)‘-il‘F ('“+4*2'b‘/:r, "““;"‘/:r; —a+2; z),
wi{-(z,a _ 2, b) - z“—;—z-(l _ z)-';—lF (a+2+2b\/:f’ a+2—2b\/-_l; a; Z),

where F(a, 3;7; z) is the hypergeometric function.

Remark. If we do not put Assumption 5.1, we may employ the standard procedure in the

theory of hypergeometric functions, that is, we may have to take logarithmic terms to form

the fundamental systems of solutions.

Then, by Proposition 4.2 with using the formula

%F(a,ﬂ;'r;z) = %ﬂ-F(a+1,ﬁ+ Ly+12),

we obtain explicitly the fundamental system of solutions of the simultaneous equation (3):

fi(2)

91(2)

h1 (Z)

fa(2)

92(2)
ha(z)

e 2)1;;;- - zm) u(@) = ~2:4(1 - 2} (£ - php) m(za.b)

Z%(l _ Z)l s(z taz+ \/gz _ a)F (a+l+b\gj+\/§, a+l—b\g—_l+\/§;a+ 1; Z)
(a+1+bv/=1+V5)(a+1-bv=1+V5) _atl _5£3 5

- 2(a+1) z+(1 - 2)

< F (a+3+b\£3+\/§ ; a+3—b\é:T+\/5 a+2; z)

fl(za a, b)’
az:ilvl(z) = azzzlvl(z,a’ b)
02" (1 — )" F (SIS eI 0 11 2)

91(2, a, b)v
buy (2) = by (z,a,b)
bz%(l _ z)&gﬁp (a+1+b\£:T+\/5, a+l—b\£:f+\/5-; a+1; z)

hl(za a, b)’

2541 - ) (¢ - i) () = 26401 = ) (& i) e
fl(zs —a, b)7
az%vz(z) = az:élvl(z, —-a,b) = —g1(2,—a,b),

bvy(z) = by (2, —a,b) = hy(z,—a,b),
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A = Tiebui(e) = Tiabof (.ab
= %z P (1 — 2)%(—4az — a’z + V%2 + 2a + 2a°)F (“+4+2bm, “+4"2b‘/:—1;a + 2; z
+a(a+4+b\/4(_a )+(g)+4 —by/=1) _i_( — 2)°F (a+6+2b\/—_1 ’ a+6—2b\/_—T;a +3; z)

=: fi(z,a,b),
93(2) = Tr(a)wf(2) = Tz(a)wf(z,a,b)
= 1 2°7 (1 — 2)3(4z — 4az — 2%z + 2a + 2a2)F (“+4+b‘/:f “+4_b‘/:f ;a -+ 2; z)

B RS Yoy etV e S

=: g3(z,a,b),
hs(z) = Ti(a,b)wf(z) = Tz(a,b)ws(z,a,b)
225(1— 2)3(—4z — 20z + 2+ 2a)F (““‘”’)rT atds b‘/_ ;a+ 2; z)

bla+4+by/=T)(a+4-b g2
+(a++\/;(?4£;)+ V=D, (l_z)zF(a+6+2bq_1,a+62b\/_,a+3,z)

=: h3(z, a, b),

f4(Z) = Tl(aa b)w;(z) = Tl(a,b)wf(z, —a - 2) b)
(a2+b27-2azz-nz—l (1—2)2F (—a+2-2i-b3/:T, —a+2;b3/—_1; —a; z)
_(—a+2+b\/fl')‘1(—a+2—b\/37 z:%;—‘(l _ z)3 F ( —a+442—b\/—_1 ’ -—a+4-2-b\/:1- c—a+ 1; z)

=: fa(z,a,b),

Ty(a)ws (2) = Ta(a)w? (z,—a — 2,b)

(2 - a)z =e-1 (1 - z)2F (—a+2+bﬂ —a+2— b\/_ —a; Z)

(= a+2+b\/:1-)4(—a+2 ~bv/=T)  =acl 72 (1 - z)zF (—a+4-2|,-b\/—1, -a+4;b\/—_1; —a+1; z)

94(2)

=: g4(z,a,b),
ha(z) = Ts(a,b)wi(2) = Tz(a,b)wi (2, ~a —2,b)
—br R (1 —2)} F(—a+2+b\/_1 ~a+2— b\/——
b(—a+‘2+b\/_4)a(—a+2 b\/j)z #(1 _z)zF(~a+4+b\/_1 —a+4 by/—1. —a+1; z)

=: h4(Z, a, b),
fs(z) = Ti(-a,b)wy(z) = Ti(~a,b)wy (2, —a,b) = fs(z,~a,b),
95(2) = _T2(_a')w1 ( ) = _TZ( )wl (z’ —-a, b) = '—93(2’ —-a, b)’

h5(z) = T3("a'7 b)wl (z) = T3(_a’ b)wl ( 2, —a, b) = h3(Z, —a, b))

fe(z2) = Ti(—a,b)w;(2) = Ty(—a,b)wi(z,a — 2,b) = f4(z,—a,b),
go(2) = ~Ta(-aus(z) = ~To(~a)uf (2, — 2,b) = ~ga(s, ~a,b),
he(z) = Ti(—a,b)w;(2) = T3(—a,b)w](z,a — 2,b) = hy(z, —a,b).
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Recall that the parameters a and b are real numbers and that z € C — A. Then, it is easy

to see that the following proposition holds:

Proposition 5.2. For eachi € {1,...,6},
fi(f) = EZS1 gi(z) = m, h,‘(i) = m

Especially, if 0 < z < 1, then for eachi € {1,...,6}, fi(2), gi(2), hi(z) € R.
6. Eigenforms of the Laplacian.

Let {(f;(2),9;(2),hj(2));5 = 1,...,6} be the fundamental system of solutions of the si-
multaneous equation (3) on the domain C — A, which is given in Proposition 4.2.
Let f;(r), g;(r) and h;(r) be functions of r(> 0) obtained by the substitution z = (£Zr)?

into the functions f;(2), g;(z) and h;(z) respectively.

Then, by summarizing all the argument and calculations in the previous sections, we have:

Theorem 6.1. Let (f;(r), gj(r), hj(r))’s be the functions given as above. Then any harmonic
vector field v on U, whose dual 1-form T is an eigenform (2) of the Laplacian with the
condition that a ¢ Z and b # 0, is given by a linear combination as follows (or the same

form with sin and cos interchanged):
v= 22;1{1’1‘ fi(r)cos (ab + be) ey + g;g;(r)sin (ad + bgp) ez + r;hj(r)sin (af + bo) e3},

where p;,q;,7; € R.
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