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Abstract. The distinction between the discretizing of acontinuous dynamical system, and an anal-

ogous discrete dynamical system, is examined. Anumber of critical conceptual misunderstandings

are identified, in historical context. Implications for the internal structures in machine learning,

ecological dynamics, and atomic wave systems, are discussed.

51. Introduction. In arecent paper [GusOO] Ipromised “to analyze from ahistorical perspective

how this rather fundamental finding was previously missed.” The fundamental finding referred to

was abasic connection Idiscovered (a dozen years ago) between widely used recently developed ma-

chine learning algorithms and the recently developing theory of chaotic discrete dynamical systems.

My discovery moreover implied some critical conceptual misunderstandings within both the ma-

chine learning community and the dynamical system community. The first purpose of the present

paper is to keep my promise of [GusOO]. In doing this Iwill go beyond [Gus 00, Gus90, Gus97,

$\mathrm{G}\mathrm{u}\mathrm{s}98\mathrm{a}$, $\mathrm{G}\mathrm{u}\mathrm{s}98\mathrm{b},\mathrm{G}\mathrm{u}\mathrm{s}98\mathrm{c}$, GS99], referring to those papers for convenience. Asecond purpose is to

go beyond my previous work by discussing here also certain implications for the internal structures

of population dynamics and quantum wave system dynamics.

52. Machine Learning. In 1988 as aresult of asuccessful interdisciplinary proposal for an NSF

Engineering Research Center for Optoelectronic Computing Systems at the University of Colorado

and Colorado State University, Ifound myself responsible for the mathematics and algorithm de-

velopment to accompany an optical neural network being constructed in hardware. The original

Perceptron machine learning algorithm, which was linear, had been by then superseded by the im-

portant Backpropagation algorithm. Backpropagation overcame many learning limitations of the

linear Perceptron. This was accomplished in Backpropagation by introducing nonlinear thresholds,

typically implemented by sigmoids $f(x)=(1+e^{-\beta x})^{-1}$ . Irefer the reader to the bibliography and

in particular to [RM86] for agood discussion of Badcpropagation (also called other names such as

the $\delta$-rule, multilayer perceptron, etc.). For the purposes of this paPer, we may describe Backprop-

’Department of Mathematics, University of Colorado, Boulder, Colorado 80309-0395, USA

数理解析研究所講究録 1271巻 2002年 100-111

100



agation learning as the building of alearning surface (sometimes called the learning landscape)
in multidimensional space on the basis of anumber of repetitive training examples (input-0utput
pairs).

To fix this idea, Ishow in Figure 1such alearning surface from [GG92]. In that (unpublished)
paper, we modified Backpropagation to an algorithm we called Anglelearning Backpropagation, or
Angleprop for short. You may view Figure 1as depicting conceptually the same type of landscapes
the standard Backpropagation algorithm generates as aresult of alarge number of training pairs
repetitively fed to it. Because Backpropagation learns this surface by arepetitive steepest descent
procedure, convergence to the valleys (which carry smaller least squares error than mountains or
plateaus) is often very slow, especially if the previous training iteration put you on one of the
plateaus. Our idea in Angleprop was to just learn the angles between weights, rather than the
weights themselves. Iinclude Angleprop here to show you typical Backpropagation error surfaces,
and because [GG92] was never published elsewhere and contains an interesting original idea. See
also [WUG94] for some recent nice pictures of such learning surfaces from the Japanese engineering
community.

When we went to implement Backpropagation on the hardware optical neural network, I
learned that the optical devices were not available to us to implement the thresholdings. Therefore
we just took this optical data out to adigital computer to do all thresholding and then went back
into the optics for the next training epoch. At that point Ilearned that one reason the sigmoid
thresholding was so popular in the machine learning community was that it had the nice property
that its derivative is conveniently expressed in terms of itself: $\mathrm{f}’\{\mathrm{x}$ ) $=\beta f(x)(1-f(x))$ . In particular,
in the Backpropagation algorithm, this permits the weight changes $\triangle\omega_{ij}$ to be calculated in terms of
currently known network values. Although the Backpropagation update formulas become somewhat
complicated due to lots of neural network interconnectivity and feedback, one can see that they take
the form (at an output node, for simplicity) $\triangle\omega_{ij}=\eta f’(\mathrm{n}\mathrm{e}\mathrm{t})(t_{\ell}-\mathit{0}_{\ell})\mathit{0}_{j}=\eta(t_{\ell}-\mathit{0}\ell)\beta o_{\ell}(1-\mathit{0}_{\ell})\mathit{0}_{j}$

where $t\ell$ is alearning target value, $\mathit{0}_{\ell}$ is the net output at the current $k\mathrm{t}\mathrm{h}$ iteration, $\mathit{0}_{j}$ is the
transmitting node value, $\eta$ is apreassigned learning parameter, net is alinear combination of
weighted inputs being fed to the nodes, and $\beta$ is the s0-called gain. If we lump factors in we
may see that the digitally implemented Backpropagation weight updates are each of the form
$x_{n+1}=\mu x_{n}(1-x_{n})$ , which is the discrete iterated quadratic map of dynamical systems theory
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Figure 1: Aplot of the error for the XOR problem versus the angles of the weights
relative to the bias axis and one of the weight axes, a) Aglobal view of the error
surface, b) An enlarged view of solution in lower lefthand corner. Note constrained
location of solution
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Ilearned in the period 1988-1990that virtually everyone in the machine learning community

was implementing Backpropagation, or similar thresholding multilayer perceptron algorithms, dig-

itally. Yet they all were also viewing the thresholding as it appears in Figure 1, they spoke of it

that way, they viewed it that way, in terms of acontinuous steepest descent minimizing path down

to aleast squares cost function surface. Ihinted at my discovery of local discrete quadratic map

dynamics due to digital implementation in [Gus90] but it was only some years later after Ihad

ascertained to the best of my ability that no one else shared my discovery, that Ipresented this

finding rather completely in $[\mathrm{G}\mathrm{U}\mathrm{S}98\mathrm{c}]$ .

Recall that the quadratic map is well-known to map the interval $0\leqq x\leqq 1$ to zero independent

of initial guess $x_{0}$ , when $\mu<1$ . For $1<\mu<3$ one converges to anonzero stationary point. For

$\mu>3$ the quadratic map may exhibit periodic orbits, aperiodic orbits, or chaos. As the simulations

of [ $\mathrm{G}\mathrm{u}\mathrm{s}98\mathrm{c}$ , GusOO] show, neural networks implementing Backpropagation do exhibit the same
three qualitative behaviors. Although network connectivity, input and target values; initial weight

choices, learning parameter, etc., all the complexity of the learning network architecture and data,

may affect which of these basic behaviors you see, amain point is that this quadratic map behavior
within aneural network is completely local, i.e., it applies to each individual node in the network.

Iillustrate this here in Figure 2. This Figure is the detail of the fourth column of [ $\mathrm{G}\mathrm{u}\mathrm{s}98\mathrm{c}$ , Figure

2]. As gain $\beta$ increases through values $\beta=3,4,5,6,7,8$ , one sees weight change behavior varying

from rapid convergence to zero to intermittent oscillations to oscillatory nonconvergence.

\S 3. Historical Comment. Above Ihave pointed out how the machine learning community missed

the fact that even the local node-specific learning dynamics was that (when implemented digitally)

of the quadratic map of discrete dynamical systems theory. This fact was obscurred by the strong

historical and cultural dogma influenced by the conceptual transition from the linear Perceptron

to the nonlinear, smoothly thresholded multilayer perceptron, with its smooth slopes and ravines,

upon which you can do gradient descent. That is not to say that others in the machine learning

community had not happened onto notions or experience of chaos within neural network theory

or practice. But (to my knowledge), all were confused by failing to distinguish the fundamental
differences between continuous and discrete dynamical systems, or they were influenced too much
by analogy, or there was confusion about onset of chaos being caused by high connectivity or large
scale. Rather than repeat my discussions of these things already in [GusOO] and $[\mathrm{G}\mathrm{u}\mathrm{s}98\mathrm{c}]$ , let me just
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Figure 2: Discrete quadratic map irregularities in weight change dynamics. Learning parameter $\eta=0.8$

and the initial weights chosen randomly in (-0.5, 0.5), the same initial weights then used for each gain
parameter $\beta$ $=3,4,5,6,7,8$. Note the network internal nonlinear waves, which often appear to be coupled
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refer the reader to those papers, with the accompanying summarizing remark here that in [GusOO]
and $[\mathrm{G}\mathrm{u}\mathrm{s}98\mathrm{c}]$ you will find specific reference to, citation to, quotes from, the books of Devaney,
Strogatz, Ott from discrete dynamical systems community, the books of $\mathrm{R}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{l}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{t}-\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{d}$ ,
Hertz, Levine, Wiegand-Gershenfeld, Kosko from the machine learning community, all excellent
books and outstanding scientists. Ialso cite in [GusOO] and $[\mathrm{G}\mathrm{u}\mathrm{s}98\mathrm{c}]$ asignificant number of papers
dealing with chaos in machine learning. Let me add afew more here which have become known to
me and which may be helpful from the historical or conceptual perspectives to anyone who wishes
to further pursue this work.

In [SF87] an early attempt is made to bridge the recently developed “corinectionist” models
(e.g., machine learning algorithms and neural network architectures) to actual brain function.
To quote from the abstract: “Special emphasis is placed in our model on chaotic activity. We
hypothesize that chaotic behavior serves as the essential ground state for the neural peceptual
apparatus.” However, the point of view of [SF87] is that the role of chaos in the brain is that of a
source of background white noise as observed in EEG studies. Then they adopt the Grassberger-
Procaccia et al. model of low-dimensional deterministic (continuous) dynamical system “strange
attractor” chaos. Also they [SF87, p. 190] “we insist repeatedly that behaviorally relevant neural

information is to be found in the average activity of ensembles (as manifested in the EEG) and
not in the activity of single neurons.” And [SF87, p. 171] “Connectionist models can certainly
be modified to produce chaotic and oscillatory behavior, but current theorists have not included
these behaviors in their models,. . . . Another [reason] is that engineers have traditionally viewed
oscillatory and chaotic behavior as undesirable and something to be eliminated.” [SF87] also
contains an interesting adjoined Open Peer Commentary by many of the eminent researchers of the
time, so the whole paper is interesting reading. My final point about it is the following. [SF87],
representing the brain-science community, wants to get rid of the digital computer metaphor that
the rival connectionist community employs. In doing so, [SF87] goes to the continuous dynamical
system chaos models. Thus they have missed my finding that in the digital connectionist models,
single neuron chaos was already present. The connectionist community missed this fact too.

Another interesting earlier paper is [Ha83]. The emphasis there is on “higher” neural process-
ing accomplished by incorporating not only current information but also time-delayed connected
information. However there is also some discussion of individual “trajectories for the netlet,” whic
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in turn leads to discussion of attractors and the low dimensional (continuous) dynamical system

theory of chaos so popular in the $1980\mathrm{s}$ . What interests me about this early paper is that it actually

presents [Ha83, p. 786] “the parabola $F(x)=4bx(1-x)$ , $0<b\leq 1$”as an example of amap

which “will be chaotic for certain ranges of values of $b$ and for certain ‘seed’ values of $x.$
” However

again (in my opinion) abetter understanding was obscured by not distinguishing and even more

delineating the continuous chaos paradigm ffom the discrete chaos paradigm.

\S 4. Ecological Dynamics. In [GusOO] Istate: “To May through his influential 1976 paper

[Ma76] belongs much credit for the resurgence of recent interest in simple discrete maps, including

the quadratic map. However, in our opinion, the use of the words ‘analogous, corresponding’ in the

transition from population dynamics $P’(t)=aP(t)-bP^{2}(t)$ to map equations $y_{n+1}=ay_{n}-by_{n}^{2}$

is misleading. There is no way that you can discretize the former to obtain the latter in the sense

of differential equations going to consistent difference equations, e.g. see [Gus99]. Succeeding

treatises of discrete dynamical systems continue to fall into this (in our opinion) trap.77 Iwould

like to elaborate this statement here, beyond what Isaid in [GusOO] and $[\mathrm{G}\mathrm{u}\mathrm{s}98\mathrm{c}]$ .

The ordinary differential equation initial value problem $\frac{d}{}dRt=ap-\psi^{2}$ , $p(t_{0})=p_{0}$ occurs widely

in science. In mathematics it falls within the category of Riccati equations. Its solution is easily

found to be $p(t)= \frac{ap_{\mathrm{O}}}{b\mathrm{p}\mathrm{o}+(a-b\mathrm{p}\mathrm{o})e^{-a(l-\iota_{0\mathfrak{l}}}}=\frac{1}{1+e^{-\beta l}}$ where in the last equality Itook $a=b=\beta$ ,

$p_{0}=1/2$ , $t=0$.

Discretization of adifferential equation, e.g., to render adiscrete version of it for numerical

solution methods, usually carries the desired requirement of consistency: the true solution, when

substituted into the discrete version, has truncation error which goes to zero as the discretization

size becomes arbitrarily small. The obvious finite difference discretization of the initial value

problem is the forward difference $\frac{\mathrm{p}(t+\Delta t)-\mathrm{p}(t)}{\Delta t}=\beta p(t)(1-p(t))$ which is just the difference quotient

approximation to the first derivative. In this simple instance, consistency just reduces to the fact

that the difference quotient rule of elementary calculus is aconsistent one and the sigmoid function

is differentiate.

However, now note that discrete quadratic map has virtually no connection to the continuous

parameter differential equation from the point of view of discretizing the former to get the latter.

Nor can you work back ffom the latter, as if it were adiscretization, to get the former. If you try a
few obvious discretization schemes, you will see no natural connections between the two equations.
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Therefore Ithink agood word is incommensurate: the population dynamics equation and the
quadratic map equation, although analogous, are incommensurate.

\S 5. Historical Comment. May [Ma76] popularized the mathematics of iterated maps and
imagined them to be apossible explanation of the oscillations he had observed in population
dynamics. Gleick [G187] gives agood account of this story. Then [G187, p. 80]: “May realized
that the astonishing structures he had barely begun to explore had no intrinsic connection to
biology.” But [G187] does not develop this latter statement. Let me do so here. If you look at
[Ma81] you will find alowered emphasis on the potential use of iterated maps for such ecological
population modelling. May clearly [Ma81, Chapter 2] now restricts the conceptual use of one-
dimensional quadratic maps to models for single populations. The assumption has to be [Ma81,
p. 6] that “generations are nonoverlapping and growth is adiscrete process (first order difference
equations).” Then for continuous growth, differential equations are proposed [Ma81, section 2.2].
However, to fit population data, time delays are also allowed into these equations. This is okay,
these continuous population models have served ecological dynamics well, but it should be noted
at this point that mathematicians’ know well that differential-delay equations can model awide
variety of dynamics. When we get to the main section 2.3 of [Ma81], Discrete growth (difference

equations), some actual ecological examples are claimed. However, the discussion quickly slides
away from the biology and into the iterated map mathematical lore. Without asingle specific
ecological data set yet, we come to the statement [Ma81, p. 17]: “To see mathematical ecology
informing theoretical physics is apleasing inversion of the usual order of things.” Without any
ecology yet, this would appear to me to be inverted logic. When we do get to population data, one
resorts to time delay or the continuous dynamics models. In Fig. 2.6 [Ma81, p. 21], Fig. 6[Ma76],
we find only one data point in the “chaos” region, and that not for aquadratic equation, rather
for afit by $y_{t+1}\cong 60\mathrm{y}\mathrm{t}(1+y_{t})^{-10}$ .

To this day, confusion persists about the appropriate roles of discrete and continuous chaos.
By this Imean, respectively: chaotic iterative dynamics produced by an iterated discrete dynamical
system, and chaotic dynamics produced by the continuous time evolution of anonlinear system of
ordinary differential equations. For example, beyond the popular quadratic map, another popular
discrete dynamical system is the quadratic Henon-Heiles map, see [Ta89]. Perhaps the most popular
example of acontinuous chaotic dynamical system is the famous quadratic Lorenz system which was
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an extreme simplification of the partial differential equations of meteorology. See the discussions

in [G187], [Ta89], and elsewhere. Both the Lorenz continuous dynamical system and the Henon

discrete dynamical system possess strange attractors. What Iam asserting above in Section 4and

throughout this paper is that the algebraic similarities in $fom$ between the discrete dynamical

systems and the continuous dynamical systems equations can be critically misleading, and one

cannot assert apriori any ‘corresponding’ behavior in their dynamics without afurther analysis

which would (unlikely in most instances) prove such.

How this confusion happens? Iwould like to identify two key factors, although there are

certainly others. Let me briefly present these two factors: analogy and vocabulary. The point I

would like to make here is that Analogy although apowerful mental function, should be regarded

as asubjective reasoning. Always it should then be placed into an objective analysis. Subjective

reasoning relies on experience-based intuition and can be very powerful but can also lead to serious

errors unless checked by deductive systematic testing. Right brain and left brain cannot trust each

other and their coexistence may be viewed as avaluable system of checks and balances. The second

factor Iwish to identify is vocabulary. For example, one finds the term logistic used in the literature

for both the continuous population equation and discrete quadratic map. Also the same function

is called both the logistic function and the sigmoid function. Such vocabulary failures of precision

can translate into conceptual confusions.

56. Atomic Physics. Next Iwould like to turn to athird field of scientific endeavor, Atomic

Physics, where Ibelieve caution should be exercised to avoid critical misunderstandings due to

insufficient care in distinguishing continuous and discrete dynamical systems. Ihaven’t discussed

this situation previously. The problems arise in attempts to model quantum dynamics by classical

Hamiltonians so that one can actually calculate approximate bound states and their energies as
periodic orbitals as if they were in the old Bohr “solar system” quantum mechanics. Within

the mathematics of quantum mechanics these theories and techniques go under the names Born-

Oppenheimer approximation, WKB method, Bohr-Sommerfeld quantization. In our conference

volume [GR81] you will find several articles on this topic. Ialso recommend the conference volume

[Hi83] for asimilar perspective. Also see [Ta89], to which Iwill refer below. Iwill also refer to

[BR97], with all due respect and apologies to my colleague William P. Reinhardt with whom Iput

out the book [GR81] about twenty years ago
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Without getting into the details, given aquantum mechanical Hamiltonian $H$ viewed semi-

classically, the density of states per unit energy $\rho(E)$ is given by $\rho(E)=Tr[\delta(E-H)]=\sum_{n}\delta(E-$

$E_{n})$ where C5 is the delta function and the $E_{n}$ are the distinct eigenvalues of the Hamilton-

ian. By Fourier Transform $\delta(E-H)=\frac{1}{2\pi\hslash}\int_{-\infty}^{\infty}e^{iEt/\hslash}e^{-iHt/\hslash}dt$ , the density becomes $\rho(E)=$

$\int_{-\infty}^{\infty}e^{iEt/\hslash}Tr(e^{-iHt/\hslash})dt=\frac{1}{2\pi\hslash}\int_{-\infty}^{\infty}e^{iHt/\hslash}\int\langle q, e^{-iHt/\hslash}q\rangle dqdt$ where the last integral represents

integration of the expectation values over all configuration states $q$ at time $t$ in the evolution. The

semiclassical approximation then is achieved by approximating this expectation value integrand

by $\langle q_{1}, e^{-iHt/\hslash}q_{2}\rangle\sim e^{i\phi(q_{1\prime}q_{2})/\hslash}$ where $\phi(q_{1}, q_{2})$ is the action integral along the classical trajectory

connecting $q_{1}$ and $q_{2}$ in time interval $[0, t]$ . In other words, the quantum averagirig is replaced by

asingle frequency oscillation. This leads via the now classical Hamiltonian dynamics to arequire-

ment that the values of $q$ which actually contribute in this stationary phase sense to the integral

must lie on aperiodic trajectory. See [BR97] and [Ta89] for more details.

It is well-known that classical Hamiltonian systems may exhibit chaos. For example [Ta89]

the Henon-Heiles Hamiltonian $H= \frac{1}{2}(p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2})+x^{2}y-\frac{1}{3}y^{3}$ exhibits chaotic Poincare

cross sections. There are many other examples and it can be said that the thrust of quantum

chaos studies are motivated by these classical Hamiltonian chaotic dynamical systems. [BR97, $\mathrm{p}$ .
83] are careful to point out that true quantum systems do not typically display chaos in the sense
of exponential sensitivity to initial state. They are careful to distinguish (I) quantized chaos, (II)

semi-quantum chaos, (III) quantum chaos. It is really (I) which dominates most current modelling.
Thus one may consider not only periodic orbits from the stationary phase approximation Idescribed
above, but also aperiodic orbits and more irregular orbits in the same setting. [Ta89, p. 229] is also
very careful to point out that the steps in the semiclassical approximation from the Schr\"odinger
partial differential equation to aclassical Hamilton-Jacobi equation, “is very subtle.” As Planck’s
constant Ais taken to zero, one is neglecting the $i\hslash\nabla^{2}S/2m$ term in the limit. Moreover $\hslasharrow 0$

corresponds to “ever more rapid oscillations in the wave function.” Here $S=S(q, t)$ represents a
single phase evolution in the wave function $\psi(q, t)=e^{iS/\hslash}$ resulting from aseparation of variables.
They go on to make clear that “It is completely wrong to think that someone can somehow write
quantum mechanical quantities as classical quantities plus an expansion of corrections in power of
$\hslash$ . ”

\S 7. Historical Comment. My concern about the models presented above in Section 6is the mix
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of discrete and continuous dynamical systems employed in this current research in atomic physics.

This mix is found throughout [BR97] and [Ta89] and elsewhere. It is too easy to imagine that the

discrete model’s wave system dynamics somehow really depict what is happening in the continuous

model’s wave system, even when staying completely within the frame of classical Hamiltonian

systems. Although [BR97] and [Ta89] are careful to put in qualifying provisos, there still is the

inference that one really is modelling quantum chaos, i.e. stated more carefully, quantum evolutions

which depend on an underlying chaos. The fact that underlying discrete nonlinear chaotic phase-

space dynamics can be treated in terms of state space (e.g., probability distributions) functions

over the phase space is demonstrably true in statistical mechanics, see e.g. [Gus97] or [GR81] and

citations therein. But it only holds true in that situation for rather special ’Kolmogorov’ dynamical

systems and on compact phase spaces. Thus the “manifestations of chaos in atomic and molecular

physics” [BR97] must be taken as experimentally or conceptually inspired rather than theoretically

proven. Finally, is there really any need for such chaos models in atomic physics? The physical

evidence presented in [BR97] and [Ta89] is meager at best. And amanifestation of chaos is not

proof of true underlying physical chaos.

58. Conclusions. The three ‘stories’ Ihave given here illustrate the force of fashion within

the scientific enterprise. The machine learning community followed afashion of smooth learning

surfaces and did not see and did not want the chaos which Iidentified as inadvertently introduced

through digital, i.e., discrete, implementation of nonlinear thresholdings. The ecological dynamics

community became entranced with afashion of chaos even though chaos was not in their population

dynamics. The atomic physics community created afashion of quantum chaos which n0-0ne has

yet seen.
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