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ABSTRACT. This is abrief, non-technical survey of the group-
theoretical concept of LERFness (also called subgroup separabil-
ity), the topological problem of lifting an essential immersion to
an embedding, and the interplay between these two ideas through
the last few decades. Some key definitions and significant results
are given, as well as recent development and current conjectures.

The purpose of this survey paper is tw0-fold: first,to introduce a
few group theoretical notions that have proved helpful in an important
problem in low-dimensional topology, and second, to review briefly
the historical development and progress made by both topologists and
group theorists. My hope is that this survey will help the reader un-
derstand the importance of the topic at hand and point to appropriate
papers and articles for further exploration of the subject.

1. INTRODUCTION

One of the basic problems in low-dimensional topology has been the
following: given a $\pi_{1}$-injective immersion of an $n-1$ manifold $S$ into
an $n$-manifold $M$ , can one lift the immersion to an embedding of $S$

into some finite-degree covering space $\hat{M}$ of $M?$. This “lifting problem”
has proved quite useful in the study of compact surfaces since loops
(1-dimensional manifolds) immersed in asurface has alot to say about
the topology of the given surface. For dimension 2, the problem has
been solved affirmatively for many years now: more specifically, we
have the following:

Theorem 1.1. Suppose $f:S^{1}arrow S$ is an immersion of the circle into
a compact surface $S$ such that $f_{*}:$ $\pi_{1}(S^{1})arrow\pi_{1}(S)$ is injective. Then,
there is a finite-degree covering space $S$ of $S$ such that $f$ lifts to an
embedding $\hat{f}:S^{1}arrow\hat{S}$ .

The proof of this theorem was originally given in [24], in which Scott
actually proved many other significant results, as will be mentioned
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later in this survey. In particular, the above theorem is an immediate
corollary of the fact that all closed surface groups and free groups have
the s0-called LERF property (to be defined later), asufficient condition
to guarantee that every $\pi_{1}$-injective immersion lifts to an embedding in
afinite cover. In Section 5, Iwill briefly summarize how Scott proved
this very important result.

In this brief, non-technical, and historical survey of the topological
question of lifting immersions, Iwill demonstrate how group theory
and topology have interacted with each other, contributing to the de-
velopment in both fields. Iwill begin by stating the what and the
why of the topological-geometric problem and then define some key
group-theoretical terms and concepts that are crucial in understanding
important results. Iwill then cover the historical development of these
ideas and conclude by stating some recent development, conjectures,
and future challenges in the theory of 3-manifolds, thus making this ar-
ticle appropriate for aconference with atheme like “Low-Dimensional
Topology of Tomorrow.”

2. THE BASIC TOPOLOGICAL PROBLEM
Here is the main topological problem we are focusing on in this paper.

Let us refer to this as the “Lifting Problem” for short.

Problem 2.1. Suppose $f:Sarrow M$ is aproper immersion of acompact
surface into acompact 3-dimensional manifold $M$ such that $f_{*}:$ $\pi_{1}(S)arrow$

$\pi_{1}(M)$ is injective. Then, is there afinite-degree covering space $\hat{M}$ of
$M$ such that $f$ lifts to an embedding $\hat{f}:Sarrow\hat{M}$?

This problem is significant for several reasons. Just as immersed
and embedded loops play an important role in the theory of compact
surfaces, immersed and embedded compact surfaces have been very
helpful in 3-manifold theory. In particular, if an immersed surface $S$ in
$M$ can be lifted to an embedding in afinite cover $\hat{M}$ , then $\hat{M}$ is aHaken
manifold, which, according to the celebrated theorem of Waldhausen, is
rigid, i.e., homotopy equivalence implies homeomorphism. This would
make $M$ avirtually Haken manifold. This problem, therefore, has close
connection with the following conjectures in low-dimensional topology
and geometry.

Conjectures 2.2. If $M$ is a compact irreducible 3-manifold with an
infinite fundamental group, then
(1) $M$ is a virtually Haken manifold (“virtually Haken Conjectur\"e );
(2) $M$ is virtually $\mathbb{Z}$-representable($i.e.f$ there exists a finite cover $\hat{M}$
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of M such that $\beta_{1}=rk(H_{1}(\hat{M}))>0)(" Positive$ Betti Number Con-
jecture f’).

Here, the second conjecture implies the first.
One way to attack the above-mentioned lifting problem has been to

use the theory of groups. It is rather interesting to see the interaction
between these two fields of mathematics as they have made alot of con-
tribution to each other. (See, for example, [26] for various techniques
involving both group theory and geometry.) The $\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}/\mathrm{g}\mathrm{e}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$

problem was first solved using agroup-theoretical concept, and later
geometric techniques and topology were used to give many counter-
examples in combinatorial group theory.

We now turn to the group-theoretical ideas crucial to the solution
of the above-mentioned “Lifting Problem.” As suggested in Section 5,
historically the answers have been

$\bullet$ “Maybe,”
$\bullet$

“Probably,”

$\bullet$ “Yes, for many manifolds $M,$”

$\bullet$ “Definitely not for other manifolds,” and
$\bullet$ “There seems to be acommon bad ingredient whenever the answer

is no.”

3. APPROACH USING GROUP THEORY

As mentioned in the previous section, the Lifting Problem seeks to
find an embedding from agiven immersion. The difference between
the two is exactly what is causing the problem. It is self-intersection.
In other words, if we can somehow eliminate all self-intersections of
the immersed surface $S$ in $M$ by going up to some finite-degree cov-
using space $\hat{M}$ of $M$ , the problem has the positive answer. Any such
(non-trivial) self-intersection produces aloop represented by some $\gamma$ in
$\pi_{1}(M)$ which isjust apath (not aloop) in $S$ . Now, since the immersion
is $\pi_{1}$ -injective, $\pi_{1}(S)$ can be considered asubset of $\pi_{1}(M)$ , and such 7
is an element of $\pi_{1}(M)\backslash \pi_{1}(S)$ . Hence, anatural way to approach this
problem is to separate such $\gamma$ by some finite-index subgroup of $\pi_{1}(M)$ .
If we can do this to all “problem-causing” elements (i.e., generators of
these self-intersections), then we will be able to produce afinite-i dex
subgroup $\pi_{1}(\hat{M})$ , in which all self-intersections have been eliminated,
i.e., the immersion $f$ lifts to an embedding $\hat{f}$ in $\hat{M}$ , afinite-degree cov-
ering space of $M$ . This naturally gives rise to the concept of “subgroup
separability” of $\pi_{1}(M)$ . The key idea here is captured in the following
definition
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Definition 3.1. Agroup $G$ is called LERF (subgroup separable) if for
every finite-generated subgroup $H$ of $G$ and for ever $\gamma\in G\backslash H$ , there
is afinite-index subgroup $G’$ of $G$ such that $S\subset G’$ but $\gamma\not\in G’$ .

The following theorem provides akey link between the Lifting Prob-
lem and the LERF property. The general idea of the proof is sketched
above, before the definition of LERF-ness.
Theorem 3.2. Let $M$ be a closed 3-manifold. If $\pi_{1}(M)$ is LERF, then
any $\pi_{1}$ -injective immersion of a compact surface $S$ lifts to an embedding
in a finite-degree covering space $\hat{M}$ of $M$ .

Before discussing the LERF property of various 3-manifold groups,
we first list some basic concepts related to subgroup separability and
define afew topological terms in order to understand some recent (and
not so recent) results stated in Sections 5and 6.

4. KEY DEFINITIONS AND CONCEPTS
Here are some definitions preferred by algebraists but also helpful to

topologists. For all these definitions, let $G$ be agroup with identity $e$ .
The first is avery general definition.

Definition 4.1. Let $P$ be some property. $G$ is said to be residually $P$

if for every $\gamma\in G\backslash \{e\}$ , there exists an epimorphism $\phi:Garrow H$ such
that $H$ has property $\mathrm{P}$ and $\gamma$ $\not\in ker(\phi)$ .

The following definitions should make sense once the above definition
is understood.

Definition 4.2. $G$ is said to be residually finite (RF) if for each 76
$G\backslash \{e\}$ , there is afinite-index subgroup $G’$ such that $\gamma$ $\not\in G’$ .

Now, if $S$ is asubgroup of $G$ , we say that $G$ is $S$-RF if for each
$\gamma\in G\backslash S$ , there exists afinite index subgroup $G’$ such that $S\subset G’$

and $\gamma\not\in G’$ . If this condition holds, we say that $G’$ separates $S$ from
$\gamma$ . This is, by the way, equivalent to saying that $S$ is the intersection
of all finite-index subgroups of $G$ containing $S$ . Another equivalent
statement is that for each $\gamma\in G\backslash S$ , there is ahomomorphism $\phi$ from
$G$ to afinite group such that $\phi(\gamma)\not\in\phi(S)$ . Some people refer to this
property as $S$ being “closed” in the profinite topology of $G$ . We may
also say that $G$ is residually finite if and only if it is $\{e\}- \mathrm{R}\mathrm{F}$ .
Definition 4.3. $G$ is said to be extended residually finite (ERF) if $G$ is
S-RF for all subgroups of G. $G$ is called locally extended residually finite
(abbreviated “LERF”) if it is $S$-RF for all finitely generated subgroups
S. $G$ is called $\Pi_{c}$ if it is $S$-RF for all cyclic subgroups $S$ .
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Many results have been proved concerning these properties. For a
comprehensive study, see [1].

It is clear from the definitions that every finite group (FIN) is ERF.
ERF implies LERF, which implies $\Pi_{c}$ , which implies $\mathrm{R}\mathrm{F}$ . The strongest
property here, FIN, is not very interesting in the context of the Lifting
Problem. The next strongest property, ERF, seems to be abit too
strong, also. In fact, it is known that every free group of rank greater
than 1is non-ERF. In other words, for most surfaces with boundary,
their fundamental groups are not ERF.

This brings us to the next property, LERF, otherwise known as sub-
group separability. It seems to be an appropriate property to study
since every compact surface group is finitely generated, and these are
the subgroups we would like to separate in $\pi_{1}(M)$ . The next property
$\Pi_{c}$ does not work as well if we want to consider surface groups em-
bedded in 3-manifold groups. RF is obviously too weak for the Lifting
Problem although many results are known about this property (e.g.,
see [14] $)$ . In particular, it is known that if the Geometrization Conjec-
ture is true, then for every irreducible 3-manifold $M$ , $\pi_{1}(M)$ is $\mathrm{R}\mathrm{F}[27]$ .
Hence, Isuppose that if someone wants to find acounter-example to
this well-known conjecture by Thurston, agood approach may be to
find anon-RF group which is the fundamental group of some compact
irreducible 3-manifold(although Idoubt that this is possible).

One interesting fact is that if $G$ is afinitely generated RF group, then
$G$ has solvable word problem and $Aut(G)$ too is a RF group. (Similarly,
LERF implies solvable generalized word problem.) Another interesting
question is the preservation of these properties under the direct-product
and free-product operations. It turns out that the $\mathrm{R}\mathrm{F}$ , IIC, and LERF
properties are preserved under the free-product operation while the FIN
and ERF properties are not. Even more interesting is the fact that
the direct-product operation preserves all of these properties except
LERFness [22]. This is to say that the direct product of two LERF
groups is not necessary LERF. See [1] and [7] for more detail. For
more results on these group-theoretical concepts, see [3], [4], [6], [9],
[13], [19], [20], [22], and others.

Although the LERF property provides asufficient condition for the
Lifting Problem, it is not anecessary condition. In this sense, this
property may be alittle too strong. In fact, it is obvious that if $\pi_{1}(M)$

is LERF, then every $\pi_{1}$-injective immersion lifts to an embedding in
afinite cover. For many topological problems, all we need is one im-
mersion that lifts to an embedding. Nevetheless, the LERF property
seems to be essential and has played asignificant role in the theory of
3-manifolds as we shall soon see in Section 5.
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We conclude this section by two definitions that are perhaps more
useful to topologists but also helpful to algebraists.

Definition 4.4. Acompact irreducible 3-manifold $M$ is agraph man-
ifold if each component (under the canonical, or JSJ, decomposition)
of $M\backslash \mathcal{T}$ is aSeifert fiber space (where $\mathcal{T}$ is the canonical family of
tori). Each such component is called avertex manifold. That is, each
component is foliated by circles.

In this definition, we naturally include one Seifert fiber space with
two torus boundary components glued together.

Definition 4.5. Aproperly immersed $\pi_{1}$ -injective surface $S$ in $M$ is
virtually embedded if it lifts to an embedded surface in some finite cover
$\hat{M}$ of $M$ .

Hence, if $\pi_{1}(M)$ is LERF, every $\pi_{1}$-injective immersed surface $S$ is
virtually embedded. This term should make it more convenient to
discuss the Lifting Problem. However, one must be careful in using
terms like “virtually embedded” since it may mean something else when
used by others (e.g., [18]).

5. HISTORICAL OVERVIEW
It was many years ago when geometric topologists recognized the

usefulness of combinatorial group theory and applied it to topology.
Poincare, Dehn, Haken, and Waldhausen are among the pioneers in
such application. However, the first significant result in the context of
subgroup separability of low-dimensional topological manifolds came
out when, in 1933, Levi [10] proved that all surface groups are $\mathrm{R}\mathrm{F}$ .
Interestingly enough, almost 40 years later, Hempel [9] gave al-page
proof of this same result. Then in 1949, Hall [8] showed that all free
groups are LERF, thus proving that any compact surface with non-
empty boundary has aLERF fundamental group (and so do handle-
bodies).

Then, atruly significant result came in 1978. By using topological
and geometric approach, Scott [24] proved that all surface groups are
LERF. Scott proved this elegant theorem as follows. First, he showed
that the fundamental group of the orientable genus-2 surface is LERF.
(This is by no means trivial.) Since every subgroup of aLERF group
is LERF, and since the genus-2 surface is covered by every orientable
surface, it follows that every (orientable) surface group is LERF. The
non-0rientable cases are easy as they are double covered by orientable
surfaces and because finite extensions of LERF groups are LERF.
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In fact , in the same paper, Scott also showed that all Fuchsian groups
are LERF and so is the fundamental group of every Seifert fiber space.
Considering the fact that 6out of the 8geometries in 3dimensions
are all Seifert fibered, this covers alot of 3-manifolds. In particular,
his result immediately gives the corollary that every $S^{1}$ bundle over
asurface have aLERF fundamental group. Anatural question that
arises here is, “Are all 3-manifold groups LERF?” The answer to this
question had to wait for another 9years. Amore specific question is
the LERFness of the fundamental groups of surface bundles over $S^{1}$ .
Scott himself addresses this issue in his paper, saying, “I am unable to
decide whether the same holds for bundles over $S^{1}$ with fibre asurface.
It seems quite possible that this is false” (p. 565, [24]). He was right
again.

Incidentally, there was aslight error in [24], and Scott wrote an
erratum [25] in 1985, correcting his mistake. In this correction, he
states that the error had been immediately noted and corrected but
an open erratum seemed to be necessary since there was an increasing
level of speculation that all 3-manifold groups are.LERF. This almost
negates his earlier speculation quoted in the last paragraph. Ironically,
his first speculation in the original paper turned out to be correct and
the “increasing” anticipation referred to in his correction turned out to
be wrong.

Two years after Scott’s erratum appeared, in 1987, Burns, Karrass,
and Solitar, three algebraists at York University, came up with the first
3-manifold whose fundamental group is non-LERF [5]. As Scott had
originally speculated 9years earlier, it was asurface bundle over $S^{1}$

(with one torus boundary component). Thus, it was shown that not
all 3-manifold groups are LERF.

Aresult such as this naturally raises dozens of new questions. For
example, since their example was not aclosed manifold, is the fun-
damental group of every closed 3-manifold LERF? Also, the example
given in [5] is not aknot group, suggesting that perhaps all knot groups
may be LERF (this was aquestion which was not answered until 2001
in [21]. More importantly, since LERFness is asufficient condition and
not anecessary condition, is it still possible to lift immersions to em-
beddings in their example manifold? This question was studied in [15],
and the answer came with the help of another surprising theorem in
[23] (see below). Meanwhile, more non-LERF 3-manifold groups were
found [13], and in 1997 non-LERF 3-manifolds admitting acubing of
non-positive curvature were proved to exist [17]. All of these results,
however, were based on the one example given in [5]
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Note that all these articles addressed the non-LERFness of the funda-
mental groups and not the lifting of immersed surfaces. The problem
of virtual embeddings, it turned out, required amore topological or
geometric idea, or additional restrictions. For example, if we consider
only totally geodesic immersed surfaces in hyperbolic 3-manifolds the
answer is yes as shown by Long [11] in 1987. Another example of
additional restrictions is the cubing of non-positive curvature: under
this condition, it can be shown that certain canonical surfaces in the
cubing can be lifted to embeddings [2]. Some related results were also
proved using arather tedious method of “record-keeping” in the vertex
manifolds of graph manifolds [16].

Amore general (and perhaps avery surprising) solution came in
1998, when Rubinstein and Wang [23] gave the first argument to show
why some $\pi_{1}$-injective immersions could not be lifted to an embedding
in any finite cover of $M$ when $M$ is agraph manifold. In fact, their
result was better: they gave acomplete characterization for horizon-
tal immersed surfaces in graph manifolds to be virtually embedded.
This was the first proof that non-virtually-embedded surfaces existed
in 3-manif0lds (although such existence had been suspected from the
non-LERFness of their fundamental groups). It turned out that the
manifold produced by Burns, Karrass, and Solitar does contains non-
virtually-embedded surfaces [15]. The argument of [23] can also pr0-
duce many other examples like that. Hence, the long-awaited solution
to the Lifting Problem was found, and the answer was, “Not always.”

6. RECENT DEVELOPMENT
One of the questions referred to earlier was the LERFness of knot

groups. Although not directly addressing this issue, Wise [28] in 1998
proved that the fundamental groups of the complements of the figure-8
knot, Whitehead link, Borromean rings, and Turk’s head knot $8_{18}$ are
all S-RF for geometrically finite subgroups $S$ . In this paper, he refers
to the well-known conjectures:

Conjectures 6.1.
(1) Every hyperbolic 3-manifold group is LERF,
(2) Every geometrically finite subgroup of a hyperbolic 3-manifold group
is separable (virtually embedded), and
(3) Every Kleinian group is LERF.

These conjectures should provide agood goal for “low-dimensional
topology of tomorrow.”

In the same paper, Wise refers to the “Engulfing Property,” originally
discussed by Long [12]. (This is the property that says, “for each
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finitely generated subgroup $H\subset G$ , there is afinite-index subgroup
$G’\subset G$ containing $\#."$ ) Wise showed that the Burns-Karrass-Solitar
example fails to have the Engulfing Property (thus providing another
proof that the group is not LERF).

One more paper worth mentioning here, dealing with similar results,
is the 1999 article by Gitik [6], who defined RF and LERF in terms of
profinite topology and showed that the fundamental groups of many
hyperbolic 3-manifolds(with boundary) are indeed LERF.

The historical development in the previous section may give the idea
that if one wants to find astrange thing, agood place to look is graph
manifolds. Indeed, many non-trivial counter-examples to LERFness
and virtual embeddings have been found in graph manifolds. For ex-
ample, in 2001, Neumann [18] showed that there exist closed graph
manifolds containing no $\pi_{1}$ -injective immersed surfaces of negative Eu-
ler characteristics. In fact, in the same paper Neumann also showed
closed graph manifolds such that no finite cover of it can contain any
embedded surfaces of negative Euler characteristics. According [18],
the latter collection of graph manifolds is aproper subset of the former
collection.

Another significant paper appeared in 2001. This one, by Niblo and
Wise [21], provides the negative answer to the question raised by Burns,
Karrass, and Solitar [5] concerning the LERFness of all knot and link
groups. Here, they show that if $I\backslash ^{r}$ is the sum of any non-trivial torus
knot and any other non-trivial knot, then $\pi_{1}(S^{3}\backslash I\iota^{\nearrow})$ is non-LERF. In
particular, the square-knot complement has anon-LERF fundamental
group. Depending heavily on the argument of [5], they also show that
the complement of the chain of 4circles has anon-LERF fundamental
group as well. They refer to this fundamental group as $L$ . In fact, they
go even further to obtain avery interesting (and somewhat strange)
result: they prove that, for graph manifolds $M$ , $\pi_{1}(M)$ is LERF if
and only if $L$ is not asubgroup of $\pi_{1}(M)$ . This is admittedly avery
bizarre result. What it amounts to is that $L$ is like a“common poison”
found in every group that does not have this desired property called
LERFness. In fact, at the present, every non-LERF 3-manifold group
has this common poison $L$ in it. Perhaps another (and probably less
tasteful) way to illustrate this is that $L$ is like the “trouble kid.” A
trouble kid is achild that is seen whenever and wherever there is trouble
in and around school. In trying to find non-LERF 3-manifold groups,
we have thus far found this trouble kid $L$ in every known example. $L$ is
therefore the “bad guy” preventing $\pi_{1}(M)$ from being LERF. It is the
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“fly in the ointment” (Ecclesiastes 10: 1). As far as the graph-manifold
groups are concerned, if the ointment ni(M) does not have the fly $L$

in it, it is LERF, according to [21]. We have yet to find out if there
are other such “poison” subgroups around. Ido not see any particular
reason that this $L$ is such aspecial group. Thus, Ispeculate that there
are other subgroups that cause 3-manifold groups to be non-LERF.

Hence, although the Lifting Problem has been answered in various
manifolds and different cases, it is far from being completely solved.
The same is true with the LERF property of 3-manifold groups. Along
with Conjectures 2.2 and Conjectures 6.1, there are many other ques-
tions that still need to be attacked and resolved. It is my desire that
the low-dimensional topology of tomorrow will build itself on the rich
history, which Ihave tried to survey in this paper, take on these chal-
lenges, and provide some insightful and beautiful solutions.
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