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Abstract

Generalizing the construction of [Du], we introduce afamily of weight sys
tems in asense dual to the family of Lie algebra weight systems. The basic
component in our construction is askew-symmetric function of three variables
$f(x, y, z)$ that satisfies the following equation (we call it the Klein equation):
$f(x, y, z)f(u, v, z)-f(x, u, z)f(y, v, z)+f(x, v, z)f(y, u, z)=0$, which is the coun-
terpart of the Jacobi identity for the structure tensor of aLie algebra. We prove
that analytic Kleinian functions lead to weight systems expressible through the
classical Lie algebraic $5\mathrm{I}2$ weight system. Non-analytic Kleinian functions do exist,
but the nature of the corresponding weight systems is yet unclear. Chemin faisant,
we study the multivariate analog of the Klein equation and prove the criterion of
decomposability of skew-symmetric functions in an arbitrary number of variables.

1Weight systems
Let $V_{n}$ be the space of Vassiliev invariants for framed oriented knots of degree no greater
than $n$ . According to the theorem of Vassiliev and Kontsevich, we have

$V_{n}/V_{n-1}\cong A_{n}^{*}$ ,

where $A_{n}^{*}$ , the space of weight systems of degree $n$ , is defined as dual to the space of
diagrams

$A_{n}= \frac{\langle \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{s}\mathrm{o}\mathrm{f}\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}n\rangle}{\langle \mathrm{A}\mathrm{S}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{I}\mathrm{H}\mathrm{X}\mathrm{r}\mathrm{e}1\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\rangle}$ .

Here are the exact definitions.

Definition 1 $A$ (Jacobi) diagram (also called Chinese character, see [BN1]) is a regular
3-valent $gmph^{1}$ with a fixed rotation. The rotation is the choice of a cyclic order of edges
at every 3-valent vertex, $i$ . $e$ . one of the tevo cyclic permutations in the set of three edges
adjacent to this vertex.

lNote that the number of vertices of such agraph is always even. Half of this number is referred to
as the degree of adiagram
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Definition 2The space $A_{n}$ is the quotient space of the linear space over $\mathbb{Q}$ generated by

connected diagrams of degree $n$ ($i$ . $e$ . having $2n$ vertices), modulo the following relations.
AS (antisymmetry) relation:

IHX relation:

Definition 3A weight system of degree $n$ is a function on the space $A_{n}$ with values in
some Abelian group. In other words, a weight system is a function of a diagram which

satisfies the AS and $IHX$ relations.

Awell known construction is Kontsevich’s construction of the weight system with
values in the universal enveloping algebra of aLie algebra equipped with an ad-invariant
non-degenerate symmetric bilinear form (see [Kon] for the original construction, [BN1]
for the specialization to linear representations and [CD2, CDK] for more details). In
this construction, one associates acopy of the structure tensor of the Lie algebra 9
with every 3-valent vertex and then makes the contraction over all edges. The structure
tensor, moved into the space $\mathrm{g}$

$\otimes \mathfrak{g}\otimes \mathrm{g}$ by means of the metric, is atotally antisymmetric
element of this space, which ensures the compatibility with the AS relation. The IHX
relation follows from the Jacobi identity.

2Matiyasevich’s polynomial
This construction, introduced in [Du], was inspired by $[\mathrm{Y}\mathrm{u}\mathrm{M}]$ .

Let $\mu$ : $E(D)arrow\{1,2, \ldots, m\}$ be anumbering of the set of edges of adiagram $D$ .
We assign an independent variable $Xi$ , $i=1$ , $\ldots$ , $m$ , to the edge number $i$ and, with
every vertex $v\in V(D)$ , we associate the polynomial

$(v_{1}-v_{2})(v_{2}-v_{3})(v_{3}-v_{1})$ , (1)

if $v_{1}$ , $v_{2}$ , $v_{3}$ are the variables assigned to the three edges meeting at $v$ , taken in the order
consistent with the rotation at $v$ . Set

$\mathrm{M}^{\mu}(D)=\prod_{v\in V(D)}(v_{1}-v_{2})(v_{2}-v_{3})(v_{3}-v_{1})$
.

This is the numbered Matiyasevich’s polynomial. To obtain an invariant object, sym-
metrize $\mathrm{M}^{\mu}(D)$ over all numberings $\mu$ , or over all permutations of $x_{1}$ , $\ldots$ , $x_{m}$ :

$\mathrm{M}(D)=\frac{1}{m!}\sum_{\sigma\in \mathrm{S}(m)}\prod_{v\in V(D)}(\sigma(v_{1})-\sigma(v_{2}))(\sigma(v_{2})-\sigma(v_{3}))(\sigma(v_{3})-\sigma(v_{1}))$
. (2)
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Theorem 1The Matiyasevich polynomial M : $A_{n}arrow S\mathbb{Q}[x_{1},$
\ldots ,

$x_{m}]$ is a weight system
on the space $A_{n}$ with values in the space of symmetric polynomials in m variables.

PROOF. The AS relation, as well as the correctness of the definition of $\mathrm{M}$ , follow from
the fact that expression (1) is totally antisymmetric with respect to the permutations of
$v_{1}$ , $v_{2}$ and $v_{3}$ . The IHX relation is aconsequence of the following remarkable polynomial
identity:

$(a-b)(c-d)+(b-c)(a-d)+(c-a)(b-d)=0$. (3)
Remark. The set of all edges of adiagram splits into two subsets: $E(D)=E_{i}(D)\cup$

$E_{o}(D)$ , where $E_{i}(D)$ is the set of all inner edges, connecting two 3-valent vertices, and
$E_{o}(D)$ is the set of all outer edges, having one univalent vertex. In the construction of the
Matiyasevich polynomial (eq. (2)), instead of symmetrizing over all permutations of the
edges, we can symmetrize only over the subgroup that permutes inner edges separately
and outer edges separately, thus arriving at the modified Matiyasevich ’s polynomial
$\tilde{\mathrm{M}}(D)$ . The modified polynomial also satisfies the AS and IHX relations –the last
fact follows from the observation that IHX relations never mix inner and outer vertices.
Note that $\tilde{\mathrm{M}}(D)$ is astronger invariant of $D$ than $\mathrm{M}(D)$ , because $\mathrm{M}(D)$ is the image of
$\tilde{\mathrm{M}}(D)$ under aring homomorphism.

Relation with the s0(3) weight system. In general, aweight system for 3-graphs can
be constructed from any object which is skew-commutative in 3variables. Both in the
case of so(3) and in the case of Matiyasevich, we assign acertain element of $\mathbb{R}^{3}\otimes \mathbb{R}^{3}\otimes \mathbb{R}^{3}$

to every vertex of the graph, and this element is totally antisymmetric with respect to
some action of the permutation group on 3symbols. But the group actions in question
are different:

\bullet In the 50(3) case, the space $\mathbb{R}^{3}$ is identified with s0(3) and the group $S_{3}$ acts in
$\mathbb{R}^{3}\otimes \mathbb{R}^{3}\otimes \mathbb{R}^{3}$

by permutations of the three factors of the tensor product.

$\bullet$ In Matiyasevich’s case, $\mathbb{R}^{3}$ is the linear span of the formal variables $v_{1}$ , $v_{2}$ , $v_{3}$ ,
while the group $S_{3}$ acts in

$\mathbb{R}^{3}\otimes \mathbb{R}^{3}\otimes \mathbb{R}^{3}$

by the same permutation of the bases in each of the three factors.

3Kleinian weight systems
We want to generalize the construction of Matiyasevich’s weight system given in section
2, using an arbitrary function $F(v_{1}, v_{2}, v_{3})$ instead of the polynomial (1).

What are the restrictions on the function $F$ in order that the result of the construc-
tion be aweight system?

For the AS relation to be satisfied, $F$ must be skew-symmetric:

$F(x, y, z)=F(y, z, x)=-F(y, x, z)$ . (4)
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The IHX relation is equivalent to the following identity:

$F(x, y, z)F(u, v, z)-F(x, u, z)F(y, v, z)+F(x, v, z)F(y, u, z)=0$, (5)

which we call the Klein equation.

Theorem 2Any function $F$ of three variables satisfying the two relations 4and 5, gives
rise to weight systems $I\iota_{\underline{F}}^{\nearrow}$ (symmetrization over the complete permutation group on the
edges of a diagram) and $\mathrm{A}_{F}’$ (symmetrization over the subgroup that preserves inner and
outer edges).

Example. For arbitrary univariate functions $f$ , $g$ , $h$ the determinant

$F(x, y, z)=|_{f(z)}^{f(x)}f(y)$ $g(x)g(y)g(z)$ $h(x)h(y)|h(z)$

is aKleinian function. In particular, the choice $f(x)=1$ , $g(x)=x$ , $h(x)=x^{2}$ leads to
the Matiyasevich’s polynomial studied above.

Definition 4A function of three variables representable as a determinant above will be

referred to as a decomposable skew-symmetric function.

Remark. (D. Bar-Natan [BN3]). The Kleinian weight system defined by adecom-
posable skew-symmetric function is reduced to the Lie algebraic weight system for the
Lie algebra $\epsilon \mathfrak{l}_{2}$ .

4Decomposable skew-symmetric function
Theorem 3An analytic skew-symmetric function $F(x_{1}, x_{2}, x_{3})$ is decomposable if and
only if it satisfies the identity

$F(x_{1}, x_{2}, x_{5})F(x_{3}, x_{4},x_{5})-F(x_{1}, x_{3}, x_{5})F(x_{2}, x_{4}, x_{5})$

$+\mathrm{F}(\mathrm{x}, x_{4}, x_{5})F(x_{2}, x_{3}, x_{5})=0$ , (6)

where the dots stand for a set of variables, the same for every instance of the function
$F$ .

Proof. In what follows, we refer to Equation 3as 3-term relation. The idea of the
proof is that 3-term relations for askew-symmetric function imply 4-term relations, and
the 4-term relations imply decomposability.

A4-term relation is an equation of the form

$F(x_{1}, x_{2}, x_{3})\mathrm{F}(\mathrm{x}, x_{5},x_{6})-\mathrm{F}(\mathrm{x},x_{2}, x_{4})F(x_{3}, x_{5}, x_{6})$

$\mathrm{F}(\mathrm{x}, x_{2}, x_{5})\mathrm{F}(\mathrm{x}3, x_{4}, x_{6})-\mathrm{F}(\mathrm{x},x_{2}, x_{6})F(x_{3}, x_{4}, x_{5})=0$ . (7)
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Step 1: 4-term relations follow from 3-term relations. Indeed, multiplying the left-
hand side of Equation 4by $F(x_{1}, x_{3}, x_{5})$ , we get:

$F(x_{1}, x_{3}, x_{5})F(x_{1}, x_{2},x_{3})F(x_{4},x_{5},x_{6})-F(x_{1}, x_{3},x_{5})F(x_{1}, x_{2},x_{4})F(x_{3},x_{5}, x_{6})$

$+F(x_{1}, x_{3},x_{5})F(x_{1}, x_{2}, x_{5})F(x_{3}, x_{4}, x_{6})-F(x_{1},x_{3}, x_{5})F(x_{1}, x_{2}, x_{6})F(x_{3}, x_{4}, x_{5})$ .
Applying a3-term relation to each summand of this expression, we get:

$F(x_{1}, x_{2}, x_{3})[F(x_{1}, x_{4}, x_{5})F(x_{3},x_{5}, x_{6})-F(x_{1}, x_{5}, x_{6})F(x_{3}, x_{4}, x_{5})]$

$+F(x_{3}, x_{5}, x_{6})[-F(x_{1},x_{2}, x_{3})F(x_{1}, x_{4}, x_{5})-F(x_{1}, x_{3}, x_{4})F(x_{1}, x_{2},x_{5})]$

$+F(x_{1}, x_{2}, x_{5})[F(x_{1},x_{3}, x_{4})F(x_{3},x_{5}, x_{6})+F(x_{1}, x_{3},x_{6})F(x_{3},x_{4}, x_{5})]$

$+F(x_{3},x_{4}, x_{5})[F(x_{1}, x_{2}, x_{3})F(x_{1}, x_{5}, x_{6})-F(x_{1}, x_{3}, x_{6})F(x_{1}, x_{2}, x_{5})]$ ,

which is 0, because all terms cancel in pairs.
Since the function is analytical, we can divide by $F(x_{1}, x_{3}, x_{5})$ and obtain the 4-term

relation.
Step 2: -term relations imply decomposability. Pick some generic numbers $\mathrm{a}\mathrm{i}$ , $a_{2}$ ,

$b_{1}$ , $b_{2}$ , $c_{1}$ , $c_{2}$ and put

$f(x)$ $=$ $F(a_{1}, a_{2}, x)$ ,
$g(x)$ $=$ $F(b_{1}, b_{2}, x)$ ,
$h(x)$ $=$ $F(c_{1}, c_{2}, x)$ .

The 4-term relation says that the vector

$(F(x_{4}, x_{5}, x_{6}), -F(x_{3}, x_{5}, x_{6}), F(x_{3}, x_{4}, x_{6}), -F(x_{3}, x_{4}, x_{5}))$

is orthogonal to each of the three vectors

$(f(x_{3}), f(x_{4}),f(x_{5})$ , $f(x_{6}))$ ,
$(g(x_{3}),g(x_{4}),g(x_{5}),g(x_{6}))$ , (8)
$(h(x_{3}), h(x_{4})$ , $\mathrm{g}(\mathrm{x}5)$ , $\mathrm{h}(\mathrm{x})$

and therefore proportional to their vector product. This means that the function $F$ is
decomposable. The theorem is proved.

Remark. The assumption of analyticity is essential. $\mathrm{T}\dot{\mathrm{h}}\mathrm{e}\mathrm{r}\mathrm{e}$ exist non-analytic
Kleinian functions which are not decomposable. Asimple example is provided by

$F(x, y, z)=E_{0,1,2}+E_{3,4,5}$ ,

where $E_{a,b,c}$ denotes the function equal to 1at the point $(a, 6, c)$ , equal to 81 at the
points obtained from $(a, b, c)$ by permutations of the coordinates, and 0elsewhere.

Theorem 3can be generalized to the case of skew-symmetric functions of an arbitrary
number of variables. We are going to devote adetailed publication to these algebraic
questions
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5Klein functions and Lie algebras
There is asimple way (suggested by S. Chmutov) to construct aLie algebra associated
with aKleinian function $f$ :one sets $c_{ij}^{k}=f(a_{i}, a_{j}, a_{k})$ , where $a_{i}$ are fixed real numbers,
then the two axioms (4) and (5) translate into the skew-commutativity and the Jacobi
identity for the algebra with structure constants $c_{ij}^{k}$ . This looks, however, as arather
artificial construction.

In the case when the function $f$ is apolynomial:

$F(x, y, z)= \sum_{i,j,k}p_{ij}^{k}x^{i}y^{j}z^{k}$
,

there seems to exist amore natural association between Klein functions and Lie algebras.
Indeed, the two equations 4and 5can be rewritten as identities for the coefficients:

$p_{ij}^{k}=p_{jk}^{i}=-p_{ji}^{k}$ ,

$\sum_{k+n=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}}(p_{ij}^{k}p_{lm}^{n}-p_{il}^{k}p_{jm}^{n}+p_{im}^{k}p_{jl}^{n})=0$
.

These equations very much resemble the two defining properties of the structure
constants of aLie algebra:

$c_{ij}^{k}=c_{jk}^{i}=-c_{ji}^{k}$ ,

$\sum_{k}(c_{ij}^{k}c_{lm}^{k}-c_{il}^{k}c_{jm}^{k}+c_{im}^{k}c_{jl}^{k})=0$
.

It seems that, in general, the first set of equations does not imply the second, so
asimple assignment $c_{ij}^{k}=p_{ji}^{k}$ does not give aconstruction of aLie algebra starting
from aKleinian polynomial. However, Ihave afeeling that every Klein polynomial does
correspond to aLie algebra via acertain natural procedure, and in this way one can
obtain acertain class of Lie algebras (Kleinian Lie algebras), whose properties are to
be studied.

6Open problems
1. Are there Kleinian weight systems which are independent of classical Lie algebra

weight systems?

2. Is it possible to detect knot inversion by Kleinian weight systems? In other words,
is there adiagram $D$ with an odd number of univalent vertices and aKleinian
function $F(x, y, z)$ such that $K_{F}(D)\neq 0$ ?

3. Understand the relation between the Kleinian systems and Lie algebras: what is
the exact procedure to obtain Lie algebras from Klein polynomials and what Lie
algebras appear in this way? Also, investigate the relation between the Kleinian
weight system and the Lie algebraic weight system computed with respect to the
associated Lie algebra
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