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ABSTRACT. In this note, we review recent works of fibered knots embedded in astandard
closed surface of genus 2. In particular, we discuss fiberedness of some class of double
torus knots which are band-sum of two torus knots. The problem includes: how to
calculate the Alexander polynomials, how to construct minimal genus Seifert surfaces and
how to show the constructed candidates are actually fiber surfaces. As an application,
we give an easy quick formula for the Alexander polynomials of 2-bridge knots. Detailed
proof will be in the forthcoming paper.

1. INTRODUCTION

Aknot (or link) $K$ in $S^{3}$ is called adouble torus knot (or link) if $K$ can be embedded
in the Heegaard surface of genus 2(i.e., astandardly embedded closed surface of genus
2). In [7] and [8], such knots are extensively studied and we follow the notations invented
in them.

Double torus knots form alarge family of knots that contains torus knots, 2-bridge
knots, knots with $(1, 1)$-decomposition(i.e., genus one bridge one knots) and tunnel num-
ber one knots. However, the class of doudle torus knots is not hopelessly large, with some
3-bridge knots outside the category. For example the knots $8_{16}$ and $8_{17}$ are not double
torus knots. The former is ahyperbolic knot with an 2-string essential tangle decomp0-
sition, which is never the case for hyperbolic double torus knots by [14]. The knot $8_{17}$ is
not invertible (cf. [9, p131]), while adouble torus knot is either of period 2or strongly
invertible.

Figure 1.1: non double torus knots $8_{16}$ and $8_{17}$ . They are fibered knots.
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As another criterion, double torus knots have tunnel number at most 2and hence the

connected sum of three trefoils is not adouble torus knot.

Other interesting examples of double torus knots are Berge’s doubly primitive knots

[1], and Dean’s twisted torus knots [3] [13]. The class of Berge’s knots is conjectured $(\mathrm{c}.\mathrm{f}$ .

[5] $)$ to cover all knots which yield lens spaces via Dehn surgery. They are known to be

fibered knots [16], [8]. Some twisted torus knots yield small Seifert fibered spaces via

Dehn surgery, and known examples which yield those with finite fundamental groups are

known to be fibered. Encouraged by these facts, the following is set up.

Conjecture 1.1. If a knot K yields a manifold M with a finite fundamental group via

Dehn surgery, then K is a fibered knot of tunnel number one.

If $K$ is atunnel number one knot, $K$ is adouble torus knot, because $K\subset\partial N(K\cup\tau)$ ,

where $\tau$ is an unknotting tunnel, and $N(K\cup\tau)$ by definition is astandardly embedded
handlebody of genus 2.

Study of fibered double torus knots is interesting partially because of that conjecture,

and partially because algebraic and geometric methods interact nicely. Torus knots are
fibered, and all fibered 2-bridge knots are already classified. Sufficient conditions for some
other double torus knots to be fibered are obtained in [8].

In [8], several methods are introduced to find fibered knots among double torus knots.

The examples contain: some ribbon knots obtained as aband-sum of two torus knots,

joins of positive braids, knots with coherently oriented connection diagrams, some knots
with $(1, 1)$-decomposition, and Berge’s knots. In [6], some conditions are given for aclass

of knots with $(1, 1)$-decomposition to be fibered knots.
In this paper, introduce arecently obtained result: determination of double torus knots

of type $(1, 1)$ , which are band-sum of torus knots. In the following section, we first review
notations for double torus knots intruduced in [7].

2. NOTATIONS

Let $K$ be aknot embedded in astandard double torus $H$ . We regard $H$ as being

obtained by glueing two once-punctured tori $T_{L}$ , $T_{R}$ along the circle Ct. Conversely, $K$ is
cut by Ct into parallel classes of arcs properly embedded in $T_{L}$ , $T_{R}$ . If $K$ misses one of the
tori, $K$ is atorus knot and we do not consider the case
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Figure 2.1: $K\{(3,3,3;3,3,3|4)(1,0,1,1)(0, -1,1,1)\}$

On each tori, $K\backslash O$ consists of at most three parallel classes. Then as in Figure
2.1, we denote by $(n_{1}, n_{2}, n_{3}, n_{1}’, n_{2}’, n_{3}’)$ the numbers of constituent arcs. Off course we
have the equality $n_{1}+n_{2}+n_{3}=n_{1}’+n_{2}’+n_{3}’:=n$ . Denote by $(p, q)$ , $(r, s)$ the slopes
of the first and second parallel classes of arcs in $T_{L}$ , and the slope of the third is au-
tomatically $(-p+r, -q+s)$ . Also denote by $(p’, q’)$ , $(\mathrm{r}, s’)$ the slopes of the two of
the parallel classes in $T_{R}$ . The convention of ordering the arcs and that of the slope
should be inferred from the figure. Finally, in gluing the arcs along $\mathcal{O}$ , we have a
choice, which is denoted by $-n<\rho\leq n$ . Then by arranging the above numbers as
in $K=\{(n_{1}, n_{2}, n_{3};n_{1}’, n_{2}’, n_{3}’|\rho)(p, q, r, s)(p’, q’, r’, s’)\}$ we can express adouble torus knot
$K$ .

When $K$ has only one parallel classes of arcs on $T_{L}$ and $T_{R}$ , $K$ can be denoted by
$K=\{(n, 0,0;n, 0,0|\rho)(p, q, -, -)(p’, q’, -,-)\}$ and we say that $K$ is of type $(1, 1)$ . As
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other types, we have (1,$2)-$ , (1,$3)-$ , (2,$2)-$ , (2,$3)-$ and (3,$3)$ -types. We say that K is

separating if $H\backslash K$ is disconnected, and otherwise, K is non-separating.

3. STUDY OF DOUBLE torus KNOTS OF TYPE $(1, 1)$

To study the fiberedness of double torus knots of type $(1, 1)$ , we state some properties

of them.

Proposition 3.1. [8, Proposition 4.5] Let K be a double torus knot of type (1, 1). Then;

K is a non-separating knot if and only if $\mathrm{g}\mathrm{c}\mathrm{d}(n,p)=1$ and n is odd.

If $K$ is aseparating knot, The separated piece of the double torus is aSeifert surface

of genus 1. Fibered knots of genus 1are only the trefoil and the figure-eight knot. Then

we are only interested in anon-separating double torus knots of type $(1, 1)$ and we may

assume the following;

(3.1) $n$ is odd and $\mathrm{g}\mathrm{c}\mathrm{d}(n,p)=1$ .

As found in [8] our knot is obtained by band-connected sum of two torus knots of type
$(r, s)$ and $(\mathrm{r}’, \mathrm{s}\mathrm{r})$ . This can be convinced by drawing afigure. Moreover we have the

following;

Proposition 3.2. [8, Theorem 4.4] Let K $=\{(n,$0,0;n, 0,$\mathrm{O}|p)(r,$s, -,$-)(r’,$s, -,$-)\}$ be

a double torus knot of type (1, 1). Assume |r|, |s|, $|r’|$ , $|s’|\geq 2$ . Then K is a satellite knot.

First, we observe that $K$ is asatellite knot with companion atorus knot of type $(r, s)$

and its pattern knot $K’$ is another double torus knot of type $(1, 1)$ of the form:

(3.2) $K’=\{(n, 0,0;n, 0, \mathrm{O}|p)(1, rs, -, -)(r’, s’, -,-)\}$

Now $K’$ is again asatellite knot and its companion is atorus knot of type $(\mathrm{r}’, -s’)$ and

its pattern knot $K’$ is adouble torus knot of type $(1, 1)$ of the form:
(3.3) $K’=\{(n, 0,0;n, 0, \mathrm{O}|p)(1, rs, -, -)(1, r’s’, -,-)\}$

These observations lead to the following;

Proposition 3.3. Let $K$ be a double torus knot of type $(1, 1)$ , and $K’$ its final pattern

knot given in (3.3). Then we have;

(1) $K$ is fibered if and only if $K’$ is fibered.
(2) $K$ has a monic Alexander polynomial if and only if so does $K’$ .
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Proof. Since $n$ is odd, the linking number between the pattern knot and the core of the
companion torus is not 0. Therefore, the conclusion follows from Propositions 4.15 and
8.23 of [2]. $\square$

By Proposition 3.3, it suffices to study the fiberedness for the knots of the form;
(3.4) $K=\{(n, 0,0;n, 0, \mathrm{O}|p)(1, \alpha, -, -)(1, \beta, -, -)\}$,

where $\alpha$ and $\beta$ are non-zero integers. (If $\alpha=0$ or $\beta$ $=0$ , then $K$ is atrivial knot.)

Remark 3.4. For example, the following knot $K’$ is different from $K$ in (3.4).
$K’=\{(n, 0,0;n, 0, \mathrm{O}|p)(\alpha, 1, -, -)(1, \beta, -,-)\}$ . However, it is easy to show that $K’$ is
equivalent to the double torus knot $\tilde{K}$ of the form given in (3.4).

In the following, for simplicity, we denote (3.4) by $K(n,p|\alpha, \beta)$ .

By rotating, twisting the right side torus $T_{R}$ , mirroring, and isotopies, we have the
following;

Proposition 3.5. We have the following equivalences, $where-K$ core the mirror im-
age of K. $K(n,p|\alpha, \beta)\cong K(n, -p|\alpha, \beta)\cong K(n, n-p|\alpha, \beta)\cong K(n,p|-\beta, -\alpha)\cong$

$-K(n,p|\beta, \alpha)$

As acorollary, we have and ffom now on assume the following;

Corollary 3.6. Suppose $K(n,p|\alpha, \beta)$ is non-trivial and non-separating. Then $n>3$ , $n$

is odd, $\mathrm{g}\mathrm{c}\mathrm{d}(n,p)=1$ and $\alpha\beta\neq 0$ . Without loss of generality, we may assume $n>p>0$
and $\alpha\geq|\beta|>0$ . We may further restrict $p$ to be even.

Note that $K(n,p|\alpha, \beta)$ is obtained from the split union of two unknots by banding. As
in the following figures, we can express $K(n,p|\alpha, \beta)$ by aschematic figure, where the core
of the band is depicted by an arc. Moreover, we can prove that the full-twists of the
arcs can be removed without affecting the fiberedness, while preserving the Alexander
polynomials. For simplicity, we assume $\beta>0$ , but the other case is similarly understood.
Remark the similarity to the Schubert’s diagram of the 2-bridge knots ( $\mathrm{c}.\mathrm{f}$. Figure 3.3)
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Figure 3.1: $K(5,2|2,2)$

Figure 3.2: $K(7,4|2,2)$

Concerning the Alexander polynomial of double torus knots of type $(1, 1)$ , the following

has been obtained. We denote by $B(n,p)$ the 2-bridge knot of type $(n,p)$ using Schubert’s
notation.

Proposition 3.7. [8, Theorem 4.7] Let K $=K\{(n,$0,0;n, 0,$\mathrm{O}|p)(r,$s, -,$-)(r’,$s,$-,-)\}$ .

Then K is a band some of two torus knots $T(r,$s) and $T(r’, -s’)$ , and the Alexander
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polynomial of $K$ is of the form;

$\Delta_{K}(t)=\Delta_{T(r,s)}(t)\Delta_{T(r’,-s’)}(t)f(t)f(t^{-1})$

for some $f(t)$ . Moreover, if $rs=r’s’=\alpha$ , then $f(t)=\Delta_{B(n,p)}(t^{\alpha})$ .

This is the first place where we can see an algebraic relationship between the 2-bridge
knot $B(n,p)$ and $K\{(n, 0,0;n, 0, \mathrm{O}|p)(r, s, -, -)(r’, s’, -,-)\}$ . Inspired by this, T. Naka-
mura found ageometric relationship of them [12]. The most important observation in
[12] concerning double torus knots contains the following.

Proposition 3.8. The double torus knot $K=K(n,p|1,1)$ can be deformed by ’twistings
of bands’into the connected sum of $B(n,p)$ and its orientation-reversed mirror image.
Moreover the rwistings preserve the Alexander polynomial.

Figure 3.3 illustrates Proposition 3.8. Note that by constructing Seifert surfaces, we can
see that the twisting of bands are realized by Stallings twists on minimal genus Seifert
surfaces. However, in general, the Seifert surface obtained by smoothing the ribbon
singularities of the ribbon disk is not of minimal genus.

Figure 3.3: The connected sum of $B(5,4)\mathrm{a}\mathrm{n}\mathrm{d}-B(5,4)$ .
Put $B(5,4)$ on this side of the sheet and $-B(5,4)$ on the other side. Applying the

connected sum cuts ‘the band’ and we obtain aribbon knot; two unknots connected by a
band along ‘the half of Schubert’s diagram
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4. STATEMENTS OF RESULTS

In the next section we define the polynomial $h(t)$ for $K=K(n,p|\alpha, \beta)$ and give a

formula to calculate the Alexander polynomial. We also define the graph $H(K)$ for $K$ to

calculate $h(t)$ .

The main results we report in this note are as follows;

Theorem 4.1. Let $K$ be a non-separating double toms knot of type $(1, 1)$ . Then $K$ is

fibered if and only if the Alexander polynomial $\Delta_{K}(t)$ is monic.

Though we do not go in detail in this note, the proof is given by the following two

theorems. It is well known that fibered knots have monic Alexander polynomials.

Theorem 4.2. If the Alexander $\Delta_{K}(t)$ is monic, then the graph $H(K)$ is admissible.

Theorem 4.3. If the graph $H(K)$ is admissible, then $K$ is fibered.

5. FUNDAMENTAL tools AND CALCULATION OF THE ALEXANDER POLYNOMIALS

We intruduce our fundamental tool to calculate the Alexander polynomials of $K(n,p|\alpha, \beta)$ ,

and 2-bridge knots $B(n, p)$ . By Corollary 3.6, we assume;

(’) $n>3$ is odd, $p$ is even, $n>p>0$ , $\mathrm{g}\mathrm{c}\mathrm{d}(n,p)=1$ and $\alpha\geq|\beta|>0$ .

In the following, we define apolynomial $h(t)$ and then we can calculate the Alexander

polynomials as follows;

Theorem 5.1. For $K=K(n,p|\alpha, \beta)$ satisfying $(^{*})$ , we have $\Delta_{K}(t)=$
.

$h(t)h(t^{-1})$ .

Recall that for a2-bridge knot $B(n,p)$ , we may assume $n$ is odd and $n>p$ is even.

Now by Theorem 5.1 and Proposition 3.8, we can calculate the Alexander polynomial of

$B(n,p)$ as follows;

Corollary 5.2. For a 2-br idge knot $K=B(n,p)$ with $p$ even, we have $\Delta_{K}(t)=$
.

$h_{K’}(t)$ ,

have $K’=K(n,p|1,1)$ .

Now we introduce basic tools. Given apair of $\mathrm{c}\mathrm{o}$-prime integers $(n,p)$ , let $S=$

$\{p, 2p, \ldots, (n-1)p\}$ . Then choose the representative $\overline{kp}$ , $(1 \leq k\leq n-1)$ mod $2n$ so
$\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-n<\overline{kp}<n$ , and define anew sequence of integers $\overline{S}=\{\overline{p},\overline{2p}, \ldots,\overline{(n-1)p}\}$ .

The following is an important fact which relates $K(n,p|\alpha, \beta)$ and the 2-bridge knot
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Fact 5.3. The sequence $\overline{S}$ for the pair (n,p) recovers the Schubert normal forrm of the
diagram for the 2-bridge knot $B(n,p)$ .

Let $\epsilon_{k}$ be the sign of $\overline{kp}$, i.e., $\epsilon_{k}=\overline{kp}/|\overline{kp}|$ . The sequence of signs for the pair $(n,p)$ is de-
fined to be $\overline{S}=\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n-1}\}$ . Let $Q=\{q_{i}\}=\{-\beta\epsilon_{1}, \alpha\epsilon_{2}, -\beta\epsilon_{3}, \ldots, -\beta\epsilon_{n-2}, \alpha\epsilon_{n-1}\}$ ,
and $R= \{r_{i}\}=\{\sum_{k=1}^{i}q_{k}\}$ . Define $h(t)=1+\Sigma_{i=1}^{n-1}(-1)^{i}t^{r}:$ .

By introducing the graph $H(K)$ of $K$ , we can easily obtain $h(t)$ from (a half of) Schu-
bert’s diagram without manipulating the above sequences;

Define the graph $H(K)$ of $K(n,p|\alpha,\beta)$ as obtained by plotting $(0, 0)$ , $(1, r_{1})$ , $(2, r_{2})$ ,
. . . ’ $(n-1, r_{n-1})$ in the $xy$-plane and connecting adjacent vertices. Bi-color the vertices
of $H(K)$ black and white alternatingly so that the first and the last (the $n$-th)are black.
Then we can read off $h(t)$ from $H(K)$ :the coefficient for $t^{j}$ equals the number of black
vertices at the $j$-level minus that of white vertices at the $j$-level. Now, the graph $H(K)$ can
be directly obtained from (the half) of Schubert’s diagram for the 2-bridge knot $B(n,p)$

by following the underpath and record from which way it goes through the overpath,
where each time the $y$-coordinate of the vertex goes up or down by $\alpha$ or $\beta$ .

We say that the graph $H(K)$ is admissible if $H(K)$ has exactly one absolute maximal
vertex and one absolute minimal vertex.

See Figure 5.1 for example at $K(n,p|\alpha, \beta)=K(11,8|2,1)$ .
$\overline{S}=\{8, -6,2,10, -4,4, -10, -2,6, -8\},\overline{S}=\{1, -1,1,1, -1,1, -1, -1,1, -1\}$ ,
$Q=\{-1, -2, -1,2,1,2,1, -2, -1, -2\}$ , $R=\{-1, -3, -4, -2, -1,1,2,0, -1, -2\}$ .
$h(t)=-t^{-4}+2t^{-3}+t^{-2}-3t^{-1}+2+t-t^{2}$ .

( $1\mathrm{c}^{\backslash }\mathrm{g}\mathrm{r}\alpha\backslash$ of $t$

$\#\bullet-\#\mathrm{O}$

2 -1
1 1
0 2

$-2-1-3$

$-\cdot \mathrm{J}1$

-12-1

Figure 5.1: The half of the Schubert’s diagram of $B(11,8)$

to construct the graph $H(K)$ to obtain $h(t)$ .
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Example 5.4. See Figures 5.2, 5.3 for the cases of $(n,p)=(7,2)$ and $(7, 4)$ for various
$(\alpha, \beta)$ .

Remark 5.5. If $(\mathrm{a}, \beta)=(1,1)$ , cancellations of the terms in $h(t)$ never occur, because

the vertices of the graph $H$ lying in the same $y$-coordinate have the same color. However

in general, as seen in $K(7,2|2,1)$ , some terms of $h(t)$ may cancel each other. Moreover as
in $K(11,2|2,1)$ , cancellation among terms of local maximum may happen. Cancellations
among terms of the highest degree may yield a‘non-fibered knot with amonic Alexander

polynomial’. However, Theorem 4.2 asserts it never happens.

$(n,p)=(7,2)$
$(\alpha, \beta)=(1,1)$ $(\alpha, \beta)=(2,1)$

$h(t)=$
. $2t^{2}-3t+2$ $h(t)=$

.
$t^{4}-2t^{2}$ \dagger $t+1$

$H(K)$ : non-admissible admissible
$K$ : non-fibered fibered

Figure 5.2
$(n,p)=(7,4)$

$(\alpha, \beta)=(1,1)$ $(\alpha, \beta)=(2,1)$

$h(t)=$
. $2t^{2}-3t+2$

$H(K)$ : non-admissible non-admissible
$K$ : non-fibered non-fibered

Figure 5.3

Remark 5.6. Note that as 2-bridge knots, $B(7,2)=B(7,4)$ , and hence they have the

same Alexander polynomial. However, as seen in the above example, the ways terms

appear are different. This difference causes the following interesting fact. Note that
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$B(7,$ 2), $B(7,$ 4) are non-fibered, and hence $K(7,2|1,$ 1), $K(7,4|1,$ 1) axe non-fibered. How-
even, $K(7,2|2,$ 1) is fibered while $K(7,4|2,$ 1) is non-fibered.

5.1. Application of diagrammatic calculations of $\Delta_{K}(t)$ . In this subsection, we use
the diagrammatic calculations of $\Delta_{K}(t)$ to have straight forward explanation to the facts
found in [8]. The latter half of Theorem 3.7 is understood as follows;
For $K=K(n,p|ce,\alpha)$ with $p$ even, the graph $H(K)$ is obtained by similarly expanding by
$\alpha$ the graph for $K’=K(n,p|1,1)$ . Therefore $h_{K}(t)=$

.
$h_{k’}(t^{\alpha})$ . Meanwhile, by Proposition

3.8, we have $h_{K’}(t)=$
.

$h_{B(n,p)}(t)$ . We give one more application: The following was pointed
out in [8, p. 636]. We understand this by seeing that the Alexander polynomial is not
monic.

Proposition 5.7. For any non-zero $\alpha$ , $K(n,p|\alpha, -\alpha)$ is not a fibered knot.

Proof. Assume $p$ is even. Then the $y$-coordinates of the vertices $v_{0}$ , $\ldots$ , $v_{n-1}$ are as
follows:

$\{0, \alpha\epsilon_{1}, \alpha\epsilon_{1}+\alpha\epsilon_{2}, \alpha\epsilon_{1}+\alpha\epsilon_{2}+\alpha\epsilon_{3}, \ldots, \alpha\epsilon_{1}+\alpha\epsilon_{2}+\cdots+\alpha\epsilon_{n-1}\}$ .
By the skew-symmetric of $\{\epsilon_{1}, \ldots, \epsilon_{n-1}\}$ , we see that the above is equal to

$\{0, \alpha\epsilon_{1}, \alpha\epsilon_{1}+\alpha\epsilon_{2}, \alpha\epsilon_{1}+\alpha\epsilon_{2}+\alpha\epsilon_{3}, \ldots, \alpha\epsilon_{1}+\alpha\epsilon_{2}+\alpha\epsilon_{3}, \alpha\epsilon_{1}+\alpha\epsilon_{2}, \alpha\epsilon_{1},0\}$ .
Since the number of vertices of $H(K)$ is odd $(=n)$ , this means the $\mathrm{b}\mathrm{i}$ color graph

$H(K)$ is symmetric with respect to avertical line which goes through the center vertex
$v_{\frac{n-1}{2}}$ , i.e., each vertex other than $v_{\frac{n-1}{2}}$ has its counterpart of the same color at the same
$y$-coordinate. Therefore, $h_{K}(t)$ is not monic, and hence by Theorem 5.1, neither is $\Delta_{K}(t)$ .

5.2. When $\Delta_{K}(t)$ is monic? In this subsection, we consider when $\Delta_{K}(t)$ is monic for
$K=K(n,p|\alpha, \beta)$ , or equivalently, when $K$ is fibered. In the previous subsection, we saw
that for any $\alpha\neq 0$ , $\Delta_{K(n,p|\alpha,-\alpha)}(t)$ is not monic, while $\Delta_{K(n,p|\alpha,\alpha)}(t)$ is monic if and only if
$\Delta_{B(n,p)}(t)$ is monic, i.e., the 2-bridge knot $B(n,p)$ is fibered. However, even if $\Delta_{B(n,p)}(t)$

is not monic, it can happen that $\Delta_{K(n,p|\alpha,\beta)}(t)$ is monic for some $\alpha$ , $\beta$ (see Remark 5.6).
For more detailed discussion, we have the following propositions;

Proposition 5.8. Suppose $\alpha>0$ and $\beta>0$ . Then we have;
(1) $\Delta_{K(n,p|\alpha,\beta)}(t)$ is monic if and only if $\Delta_{K(n,p|2,1)}(t)$ is monic.
(2) $\Delta_{K(n,p|\alpha,-\beta)}(t)$ is monic if and only if $\Delta_{K(n,p|2,-1)}(t)$ is monic.

Proposition 5.9. If $B(n,p)$ is fibered, then for any $\alpha,\beta>0$ , $\Delta_{K(n,p|\alpha,\beta)}(t)$ is monic.
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There are six cases for the monic property of the Alexander polynomial of $K(n,p|\alpha, \beta)$ .

In the right column, we give an example in each case.

$\frac{Case(A)B(n,p)\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{i}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{d}}{(1)\Delta_{K(n,p|\alpha,\beta)}(t)\mathrm{i}\mathrm{s}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{c}\Leftrightarrow\alpha\neq-\beta.e.g.,B(25,16)}$

.

(2) $\Delta_{K(n,p|\alpha,\beta)}(t)$ is monic $\Leftrightarrow\alpha\beta>0$ . e.g., $B(5,2)$

Case(B) $B(n,p)$ is not fibered.
(1) $\Delta_{K(n,p|\alpha,\beta)}(t)$ is monic $\Leftrightarrow\alpha\neq\pm\beta$ . e.g., $B(7,2)$

(2) $\Delta_{K(n,p|\alpha,\beta)}(t)$ is monic 9 $\alpha\beta>0$ , $\alpha\neq\beta$ . e.g., $B(9,2)$

(3) $\Delta_{K(n,p|\alpha,\beta)}(t)$ is monic a $\alpha\beta<0$ , $\alpha\neq-\beta$ . e.g., $B(17,10)$

(4) $\Delta_{K(n,p|\alpha,\beta)}(t)$ is not monic for any $\alpha$ , $\beta$ e.g., $B(9,4)$ .

Remark 5.10. In [8] it was proved that $K(n, n-1|\alpha, \beta)$ belongs to Case Al, by calculat-
ing the fundamental groups of explicitly constructed fiber surfaces and their complement.

Problem 5.11. An open problem is to determine the monic property with respect to
$(n,p)$ .

6. TOOLS TO PROVE FIBEREDNESS

In this section, we recall two important reasoning to prove that aSeifert surface is a
fiber surface. One is called Stallings twists and the other KobayashVs banding on pre-fiber

surfaces.
AStallings rwist is an operation to produce anew fiber surface from one with acertain

condition; Let $c$ be an unknotted oriented circle embedded in asurface $F$ in $S^{3}$ . Suppose
the linking number $\mathrm{l}\mathrm{k}(\mathrm{c}, c’)=0$ , where $c’$ is apush off of $c$ in anormal direction of $F$ .
Then apply $\pm 1$-surgery along $c$ . Briefly, the operation is to cut $F$ by adisk spanned by
$d$ and then glue back after atwisting. Obviously, the new ambient manifold is $S^{3}$ , but
we have anew Seifert surface for a(different) link. J. Stallings [15] showed the following;

Proposition 6.1. Suppose a Seifert surface $F’$ is obtained from $F$ by a Stallings rwist.
Then $F’$ is a fiber surface if and only if so is $F$ .

In [10], T. Kobayashi introduced the notion of pre-fiber (Seifen) surface for links and,

using that notion, determined in [11] when aband connected sum of links is afibered
link. In this section, we recall his results. For the notion of sutured manifold, we refer to
[10] or [4]
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Let $L$ be alink with aSeifert surface $F$ . Denote by $F_{E}=F\cap E(L)$ the restriction
of $F$ in the link exterior $E(L)=\mathrm{c}1(S^{3}-N(L))$ . The sutured manifold $(N, \delta)=(F_{E}\cross$

$I$ , $\partial F_{E}\cross I)$ is aproduct sutured manifold, where $R_{+}(\delta)$ and $\mathrm{R}_{-}(\mathrm{S})$ are respectively $F_{E}\cross\{1\}$

and $F_{E}\cross\{0\}$ . The sutured manifold $(\mathrm{N},6)\delta^{c})=(\mathrm{c}1(\mathrm{E}(\mathrm{L})-N), \mathrm{c}1(\partial E(L)-\delta))$ , where
$R_{\pm}(\delta^{c})=R_{\mp}(\delta)$ is called the complementary sutured manifold for $F$ .

Definition. ASeifert surface $S$ is apre-fiber surface if there exist pairwise disjoint
compressing disks $D^{+}$ , $D^{-}$ in $N^{c}$ for $R_{+}(\delta^{c})=R_{-}(\delta^{c})$ respectively such that $(\overline{N}, \delta^{c})$

is homeomorphic to a(not necessarily connected) product sutured manifold, where $\overline{N}$

denotes the manifold obtained from $N^{c}$ by cutting along $D^{+}\cup D^{-}$ Then there is apair
of compressing disks $\overline{D}^{+},\overline{D}^{-}$ for $S$ such that $\overline{D}^{\pm}\cap N^{c}=D^{\pm}$ , which we call a pair of
canonical compressing disks for $S$ .

To determine when aband connected sum of two links are fibered, the following notion
is essential. Kobayashi called the following banding aband of type $F$ , now after Kobayashi,
we call it aK-band.

Let $S$ be apre- iber surface with apair of canonical compressing disks $D^{+}\cup D^{-}$ Let
$p_{+}$ and $p_{-}$ be properly embedded arcs in $S$ sharing exactly one end point $e\in\partial S$ . Their
interiors may intersect each other in $S$ . Push $p_{+}$ (resp. $p-$ ) in the positive (resp. negative)
normal direction of $S$ , and then push $e=p_{+}\cap p_{-}$ off $S$ so that we obtain an arc $\alpha$ in $S^{3}$

such that $\alpha\cap S=\partial\alpha\subset\partial S$ . Suppose $\alpha$ intersects each of $D^{+}$ and $D^{-}$ in exactly in one
point.

Definition. Let $S$ be apre- iber surface and $\beta$ aband whose ends are attached to
$\partial S$ and whose interior misses $S$ . We call $\beta$ a $K$ -band if its core $\gamma$ (fixing its end points)
is isotopic to an arc $\alpha$ obtained by the above construction.

Kobayashi obtained the following; (Theorem 3and Proposition Ain [11]).

Proposition 6.2. Let $L=L_{1}\cup L_{2}$ be a split link with a 2-sphere separating $L_{1}$ and $L_{2}$

in $S^{3}$ . Then $L$ bounds a pre-fiber surface $S$ if and only if both $L_{1}$ and $L_{2}$ are fibered.

Proposition 6.3. Let $F$ be a Seifert surface obtained from a pre-fiber surface $S$ by adding
a band $\beta$ . Then $F$ is a fiber surface if and only if $\beta$ is a K-band.

Remark 6.4. Note that the twisting of $\beta$ is irrelevant because that can be generated by
Stallings twists using $D^{+}$ .
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Example. Following sequence of Seifert surfaces $\Sigma_{1}$ , $\Sigma_{2}$ , $\cdots$ in Figure 6.1 are examples

of pre-fiber surfaces. First, $\Sigma_{1}$ is an annulus, which is obtained by tubing two disks.

Second, $\Sigma_{2}$ is obtained from $\Sigma_{1}$ by another tubing, where the new tube goes through

the first tube. Next, $\Sigma_{3}$ is obtained from $\Sigma_{2}$ again by adding atube which goes though

the innermost tube of S2. Inductively, we can construct $\Sigma_{i}’ \mathrm{s}$ . By [11, Theorem 3], any

pre-fiber surface for the 2-component trivial link is isotopic to $\Sigma_{i}$ for some $i$ , where the

pair of canonical compressing disk comes from the innermost disk among $Q-(Q\cap\Sigma_{i})$ ,

where $Q$ is the separating 2-sphere for the trivial link.

$\sum_{1}$

$\Sigma_{2}$

$\Sigma_{3}$

Figure 6.1: Pre-fiber surfaces for the 2-component trivial link.

7. CONSTRUCTION OF FIBER SURFACES

In this section we show an example of afiber surface. Let us take $K=K(5,2|2,1)$

as an example. With the band represented by an arc, $K$ appears as in Figure 6.1 (a),

where each blank box contains afull-twist. Slide the ends of the arcs to obtain Figure

6.1 (b). As we will see briefly, we can eliminate the full-twists by Stallings twists. Then

isotope the bands as in Figure 6.1 (c). Then we see that $K$ spans aSeifert surface which

is abanding of apre-fiber surface in Figure 6.1 (d). Moreover the band is a $K$ band and
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hence by Proposition 6.3, we have afiber surface. Actually, for general $K(n,p|\alpha, \beta)\mathrm{w}\epsilon$

can systematically and explicitly read off from the graph $H(K)$ how we should isotope
the bands so that we obtain aSeifert surface $F$ , where $g(F)$ is the half of the degree of
the Alexander polynomial and hence $F$ is aminimal genus Seifert surface.

(a) (c)

$

(b) (d)

Figure 7. 1
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