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1. INTRODUCTION

It is well known that an exponential distribution plays an important role in the field
of survival analysis. Amultivariate exponential distribution was given by Marshall and
Olkin (1967), which is much of interest in both theoretical developments and applica-
tions. Especially, Proschan and Sullo (1976) considered a $k+1$-parameter version of the
Marshall-Olkin multivariate exponential distribution and studied likelihood estimation of
its parameters. We consider aselection problem on components of the $k+1$-parameter
exponential distribution.

Let $(X_{1\mathrm{r}}, X_{2\mathrm{r}}, \ldots, X_{k\mathrm{r}})$ , $r=1$ , 2, $\ldots$ be random samples from the multivariate exponen-
tial (MVE) distribution whose survival function is given by

$P(X_{1t}>x_{1}, X_{2\mathrm{r}}>x_{2}, \ldots, X_{kt}>x_{k})$

$= \exp\{-\lambda_{1}x_{1}-\lambda_{2}x_{2}-\ldots-\lambda_{k}x_{k}-\lambda_{0}\max(x_{1},x_{2}, \ldots,x_{k})\}$

where $x:>0$ , $\lambda_{:}>0$ $(i=1, 2, \ldots, k)$ and $\lambda_{0}\geq 0$ . Marshall and Olkin (1967) derived
this distribution under the assumption that failure is caused by $k+1$ types of Poisson
shocks on asystem containing $k$ components. We consider the problem of detecting the
worst component with respect to $\lambda_{:}$ $(i=1, 2, \ldots, k)$ which is viewed as the hazard of the
component in lifetime analysis. We define that the $j$-th component is the worst component
if $\lambda_{j}=\max(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k})$ . Note that

$E(X_{\dot{l}T})=1/(\lambda:+\lambda_{0})$ ,
$Var(X_{\dot{l}\Gamma})=1/(\lambda_{i}+\lambda_{0})^{2}$ ,
$Cov(X_{ir}, X_{j\mathrm{r}})=\lambda_{0}/(\lambda:+\lambda_{0})(\lambda_{j}+\lambda_{0})(\lambda:+\lambda_{j}+\lambda_{0})$ , $i\neq j$ .
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The worst component has the smallest mean. Throughout this paper, we assume that the

$k$-th component is the worst component, that is,

$\lambda_{k}>\lambda_{i}(i=1,2, \ldots, k-1)$ (1.1)

without loss of generality. Since $X_{1r}$ , $\mathrm{X}2\mathrm{r}$ , $\ldots$ , $X_{kr}$ are mutually independent if and only

if $\lambda_{0}=0$ , the problem is reduced to the problem of detecting the worst one out of $k$

univariate exponential populations when $\lambda_{0}=0$ .

We seek aprocedure $R$ which detects one of the components as the worst component.

Acorrect decision (CD) occurs when the detected component is the worst component.

Denoting the probability of acorrect decision (PCD) using $R$ by $P(CD|R)$ , we require

that
$P(CD|R)\geq P^{\star}$ whenever $\lambda_{k}/\lambda_{i}\geq\delta^{\star}(i=1, \ldots, k-1)$ , (1.2)

where $\delta^{\star}(>1)$ and $P^{\star}\in(k^{-1},1)$ are specified by the experimenter in advance. The special

case of this problem when $k=2$ was considered by Hyakutake (1992) and Aoshima and

Chen (1999). So, in the present paper, we assume that $k\geq 3$ . When $k\geq 3$ , the former

paper by the authors in 2002 has tackled the problem of selecting the best component of

the MVE distribution. It would be interesting to observe how much difference the sample

size makes between both the situations of selecting the best component and detecting

the worst component. Also, from the decision theoretical point of view, this kind of

fixed-size estimation on scale parameters is desirable to research in sequential analysis

especially based on atw0-stage sampling scheme since it must deal with abit outside

Stein’s original framework. This is amotivation of this short note. Note that detecting the

worst component with respect to $\lambda_{i}$ is equivalent to that with respect to $p_{i}=\lambda_{i}/\Sigma_{\ell=0}^{k}\lambda_{\ell}$ .

Then, we have from Arnold (1968) that

$P(X_{1r}=X_{2r}=\ldots=X_{kr})=p_{0}$ ,

$P(X_{ir}<X_{i’r}, i’=1, \ldots, i-1, i+1, \ldots, k)=p_{i}$ , $i=1,2$ , $\ldots$ , $k$ . (1.3)

The preference zone $\lambda_{k}/\lambda_{i}\geq\delta^{\star}(i=1, \ldots, k-1)$ in (1.2) is equivalent to $p_{k}/p_{i}\geq\delta^{\star}(i=$

$1$ , $\ldots$ , $k-1)$ .

2. SINGLE-STAGE PROCEDURES WHEN Po IS KNOWN

In this section, we assume that $p_{0}$ is known and consider two single-stage procedures
$(\mathrm{R}\mathrm{e}, \ell=1,2)$ for detecting the component associated with $p_{k}$ . In order to meet re-

quirement (1.2), we need to establish the least favorable configuration (LFC) of $\lambda=$

$(\lambda_{0}., \lambda_{1}, \ldots, \lambda_{k})$ for which the PCD for $R_{\ell}$ is minimized subject to the condition that

$\lambda_{k}/\lambda_{i}\geq\delta^{\star}$ $(i=1, \ldots, k-1)$ . The LFC for aprocedure would be given by

$\lambda_{0}$ , $\lambda_{1}=\ldots=\lambda_{k-1}=\lambda_{k}/\delta^{\star}(\delta^{\star}>1)$ . (2.1)
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We shall evaluate the PCD for $R_{\ell}$ under the LFC given by (2.1), which we will denote by
$P^{\star}(CD|R_{\ell})$ . Under the LFC, we note that

$p_{1}=\ldots=p_{k-1}=p_{k}/\delta^{\star}$ , (2.2)
$p_{k}=\delta^{\star}(1-p_{0})/(\delta^{\star}+k-1)$ .

2.1 Procedure $R_{1}$

We consider the following rule $(R_{1})$ :Take asample of $n$ observations. Let $n$:and
$n_{0}$ denote the number of observations in the regions {x$\{<x:’\}$ and $\{x_{1}=\ldots=x_{k}\}$ ,
respectively. Detect the component that attained the largest count among $(n_{1}, \ldots, n_{k})$ as
the worst component; use randomization to break ties for the first place.

We note that $(n_{1}, \ldots, n_{k}, n_{0})$ has amultinomial distribution with $n= \sum_{\ell=0}^{k}n_{\ell}$ and $k+1$

cell probabilities $(p_{1}, \ldots,p_{k},p_{0})$ in view of (1.3). Then, the rule $R_{1}$ is exactly reduced to the
rule $R$ given by Aoshima, Chen and Panchapakesan (2001) for selecting the most probable
cell where $n_{0}$ is the count in the nuisance cell. When $n$ is large, they gave an approximate
minimum sample size needed to satisfy requirement (1.2) as $n_{0}^{(1)}=[u_{1}^{2}/c_{1}^{2}]+1$ , where $[x]$

denotes the greatest integer less than $x$ . Here, $u_{1}>0$ is $u_{1}=u_{1}(p_{0}, k, \delta^{\star}, P^{\star})$ such that

$\int_{-\infty}^{\infty}\Phi^{k-1}(\frac{x\sqrt{\rho_{1}}+u_{1}}{\sqrt{1-\rho_{1}}})d\Phi(x)=P^{\star}$

with
$\rho_{1}=\frac{p_{0}(\delta^{\star}-1)^{2}+(1+k)\delta^{\star}-1}{p_{0}(\delta^{\star}-1)^{2}+\delta^{\star}(2+k)-2+k}$ ,

and

$c_{1}= \{\frac{(1-p_{0})(\delta^{\star}-1)^{2}}{p_{0}(\delta^{\star}-1)^{2}+\delta^{\star}(2+k)-2+k}\}^{1/2}=c_{1}(p_{0}, k, \delta^{\star})$, (say). (2.3)

Since $u_{1}$ depends on $p_{0}$ through $\rho_{1}$ , they gave an upper bound for $n_{0}^{(1)}$ as $n_{1}^{(1)}=$

$[u_{1}^{\star 2}/c_{1}^{2}]+1$ where $u_{1}^{\star}>0$ is $u_{1}^{\star}=u_{1}^{\star}(k, \delta^{\star}, P^{\star})$ such that

$\int_{-\infty}^{\infty}\Phi^{k-1}(\frac{x\sqrt{\rho_{1}^{\star}}+u_{1}^{\star}}{\sqrt{1-\rho_{1}^{\star}}})d\Phi(x)=P^{\star}$ with $\rho_{1}^{\star}=\frac{-1+\delta^{\star}+k\delta^{\star}}{-2+k+2\delta^{\star}+k\delta^{\star}}$.

The following table was given by Aoshima, Chen and Panchapakesan (2001).

Table 2.1. Values of $u_{1}^{\star}$ when $P^{\star}=0.90$
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When $p_{0}$ is unknown, we need to estimate $n_{1}^{(1)}$ through an estimate po based on apilot

sample.

2.2 Procedure $R_{2}$

If acomplete data set (without cesoring) is available, we can give another rule (R2)

which is based on the marginal distribution. The distribution of $X_{i\mathrm{r}}$ is the exponential

distribution with parameter $\lambda_{i}+\lambda_{0}$ . The selection problem with respect to $\lambda_{i}$ is equivalent

to that to $\lambda_{i}+\lambda_{0}$ . Let $\overline{X}_{in}=\sum_{r=1}^{n}X_{i\mathrm{r}}/n$, then $\overline{X}_{in}$ is an unbiased estimate of $1/(\lambda_{i}+\lambda_{0})$ .
Proschan and Sullo (1976) showed that $\overline{X}_{in}$ is also the INT estimator. Then, the rule
$R_{2}$ is described: Take asample of $n$ observations. Detect the component associated with
$\overline{X}_{jn}=\min(\overline{X}_{1n}, \ldots, \overline{X}_{kn})$ as the worst component.

It is easy to see that under the LFC, the PCD is written for $n$ large that

$P^{\star}(CD|R_{2})=P(\overline{X}_{kn}<\overline{X}_{in}, i=1, \ldots, k-1)$

$\simeq\int_{-\infty}^{\infty}\Phi^{k-1}(\frac{x\sqrt{\rho_{2}}+c_{2}\sqrt{n}}{\sqrt{1-\rho_{2}}})d\Phi(x)$ , (2.4)

where $\rho_{2}=\rho_{2}(p_{0}, k, \delta^{\star})>0$ is defined as

$\rho_{2}=\{2(1+\delta^{\star})+p\mathrm{o}(-13+\delta^{\star}4+k(7+\delta^{\star}+\delta^{\star}2+\delta^{\star}3))$

$+p_{0}^{2}(25-16\delta^{\star}+8\delta^{\star}2-6\delta^{\star}3+\delta^{\star}4+4k(-6+2\delta^{\star}-2\delta^{\star}2+\delta^{\star 3})+k^{2}(5+3\delta^{\star}2))$

$+p_{0}^{3}(-2(7-6\delta^{\star}+\delta^{\star^{2}})+k(17-3\delta^{\star}-5\delta^{\star^{2}}+\delta^{\star}3)+k^{2}(-5-6\delta^{\star}+3\delta^{\star^{2}})+2k^{3}\delta^{\star})\}$

$(2-3p_{0}+kp0+\delta^{\star}p_{0})^{-1}(1+\delta^{\star}-3p_{0}+2kp\mathrm{o}+\delta^{\star}p_{0})^{-1}(1+\delta^{\star^{2}}-2p_{0}+kp_{0}+k\delta^{\star}p\mathrm{o})^{-1}$

and

$c_{2}= \{\frac{(1-p\mathrm{o})(\delta^{\star}-1)^{2}(1+\delta^{\star}-2p_{0}+kp_{0})}{(1+\delta^{\star}-3p0+2kp0+\delta^{\star}p\mathrm{o})(1+\delta^{\star^{2}}-2p_{0}+kp_{0}+k\delta^{\star}p\mathrm{o})}\}^{1/2}$

$=c_{2}(p_{0}, k, \delta^{\star})$ , (say). (2.5)

So, if we solve for $li_{2}$ $=u_{2}(p_{0}, k, \delta^{\star}, P^{\star})>0$ from the equation

$\int_{-\infty}^{\infty}\Phi^{k-1}(\frac{x\sqrt{\rho_{2}}+u_{2}}{\sqrt{1-\rho_{2}}})d\Phi(x)=P^{\star}$,

an approximate minimum sample size needed to satisfy requirement (1.2) is given by
$n_{0}^{(2)}=[u_{2}^{2}/c_{2}^{2}]+1$ .

Since $u_{2}$ depends on $P\mathrm{o}$ through $\rho_{2}$ , we consider some upper bounds for $n_{0}^{(2)}$ . Noting

that $722=\rho_{2}(p_{0}, k, \delta^{\star})$ is increasing in $p_{0}$ for any fixed $\delta^{\star}>1$ , we have

$\rho_{2}=\rho_{2}(p_{0}, k, \delta^{\star})>\rho_{2}(0, k, \delta^{\star})=\frac{1}{1+\delta^{\star^{2}}}=\rho_{2}^{\star}$ (say).
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By using Slepian’s inequality, the integral in (2.4) is bounded below by

$\int_{-\infty}^{\infty}\Phi^{k-1}(\frac{x\sqrt{\rho_{2}^{\star}}+c_{2}\sqrt{n}}{\sqrt{1-\rho_{2}^{\star}}})d\Phi(x)$ .

Then, we have an upper bound for $n_{0}^{(2)}$ as $n_{1}^{(2)}=[u_{2}^{\star 2}/e]+1$ where $u_{2}^{\star}>0$ is given freely
ffom $P\mathrm{o}$ by solving the equation

$\int_{-\infty}^{\infty}\Phi^{k-1}(\frac{x\sqrt{\rho_{2}^{\star}}+u_{2}^{\star}}{\sqrt{1-\rho_{2}^{\star}}})d\Phi(x)=P^{\star}$ .

The following table gives values of $u_{2}^{\star}$ for $k=3(1)10$ and $\delta^{\star}=1.5(0.5)3.0$ when $P^{\star}=0.90$ .

Table 2.2. Values of $u_{2}^{\star}$ when $7”=0.90$

When $p_{0}$ is unknown, we need to estimate $n_{1}^{(2)}$ through an estimate $\mathrm{p}\mathrm{O}$ based on apilot
sample.

Remark 1. When we note that $\delta^{\star}\geq\rho 2(1-\hslash)^{-1}\geq\delta^{\star-2}$ in (2.4), another upper bound
for $n_{0}^{(2)}$ is obtained as $n_{2}^{(2)}=[(1-\rho_{2})\tilde{u}_{2}^{2}/d]+1$ where $\tilde{u}_{2}>0$ is given freely from $p_{0}$ by
solving the equation

$\int_{-\infty}^{0}\Phi^{k-1}(x\sqrt{\delta^{\star}}+\tilde{u}_{2})d\Phi(x)+\int_{0}^{\infty}\Phi^{k-1}(\frac{x}{\delta^{\star}}+\tilde{u}_{2})d\Phi(x)=P^{\star}$.

3. TWO-STAGE PROCEDURES

Before considering tw0-stage procedure for dealing with the case when $p_{0}$ is unknown,
let us compare the efficiencies of the procedures $R_{1}$ and $R_{2}$ in terms of the required
sample size for given $p_{0}$ . We calculated the values of the ratios $n_{1}^{(1)}/n_{1}^{(2)}$ and $n_{1}^{(1)}/n_{2}^{(2)}$ for
$p_{0}=0.1(0.1)0.9$ when $k=3(1)10$, $\delta^{\star}=1.5(0.5)3.0$ and $P^{\star}=0.90$ . The findings of such
survey were as follows: The ratio $n_{1}^{(1)}/n_{1}^{(2)}$ is increasing in $k$ for $p_{0}<0.4$ , decreasing in $k$ for
$p_{0}\geq 0.5$ and decreasing in $\delta^{\star}$ and $p_{0}$ . The ratio $n_{1}^{(1)}/n_{2}^{(2)}$ is increasing in $k$ and decreasing
in $\delta^{\star}$ and $p_{0}$ . When $\delta^{\star}=1.5$ , $n_{1}^{(1)}/n_{1}^{(2)}>1$ for $P\mathrm{o}\leq 0.4$;then $n_{1}^{(1)}/n_{1}^{(2)}>n_{1}^{(1)}/n_{2}^{(2)}$ except
for the cases that $k=9$ and 10 for $p_{0}=0.4$ . When $\delta^{\star}=2.0$ and 2.5, $n_{1}^{(1)}/n_{1}^{(2)}>1$

for $p_{0}\leq 0.3$ except for the cases that $k=3$ and 4for $p_{0}=0.3$ when $\delta^{\star}=2.5$;then
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$n_{1}^{(1)}/n_{1}^{(2)}>n_{1}^{(1)}/n_{2}^{(2)}$ . When $\delta^{\star}=3.0$ , $n_{1}^{(1)}/n_{1}^{(2)}>1$ for $p_{0}\leq 0.2$ ; then $n_{1}^{(1)}/n_{1}^{(2)}>n_{1}^{(1)}/n_{2}^{(2)}$ .

Consequently, when $p_{0}$ is small (say, $p_{0}\leq 0.4$ for $\delta^{\star}=1.5$ , $p_{0}\leq 0.3$ for $\delta^{\star}=2.0$ and 2.5,

and $p_{0}\leq 0.2$ for $\delta^{\star}=3.0$), the procedure $R_{2}$ with $n_{1}^{(2)}$ seems to be the most preferable for

consideration to start thinking atw0-stage procedure. Then, for other cases, that is $p_{0}$ is

moderate or large, the procedure $R_{1}$ with $n_{1}^{(1)}$ might be considered. We will compare $R_{2}$

with $R_{1}$ later by estimating $p_{0}$ in the tw0-stage procedure described below.

For Procedure $R_{1}$

We apply one of the procedures given by Aoshima, Chen and Panchapakesan (2001),

which is to select the most probable cell of amultinomial distribution in the presence of

anuisance cell, for the present problem. The following procedure $(S_{1})$ is based on $n_{1}^{(1)}$ :

First, take asample of size $m$ , which is moderately large. Let $m\circ$ denote the count of
$\{x_{1}=\ldots=x_{k}\}$ . Compute $\hat{c}_{1}=c_{1}(\hat{p}_{0}, k, \delta^{\star})$ with $\hat{p}_{0}=m_{0}/m$ as in (2.3). Define $N^{(1)}$ by

$N^{(1)}= \max\{m$ , $[u_{1}^{\star 2}/\hat{c}_{1}^{2}]+1\}$ . (3.1)

Next, take an additional sample of size $N^{(1)}-m$ . On the basis of the total sample of

size $N^{(1)}$ , let $N_{i}^{(1)}$ be the count of $\{x_{i}<x_{i’}\}$ for $i=1$ , $\ldots$ , $k$ . Then, detect the component

that attained the largest count among $(N_{1}^{(1)}, N_{2}^{(1)}, \ldots, N_{k}^{(1)})$ as the worst component; use

randomization to break ties for the first place.

When $m$ is moderately large, it is shown that Procedure $S_{1}$ satisfies requirement (1.2).

For Procedure $R_{2}$

We propose the following tw0-stage procedure (S2) based on $n_{1}^{(2)}$ : First, take asample

of size $m$ , which is moderately large. Let $m_{0}$ denote the count of $\{x_{1}=\ldots=x_{k}\}$ . Compute
$\hat{c}_{2}=c_{2}(\hat{p}_{0}, k, \delta^{\star})$ with $\hat{p}_{0}=m_{0}/m$ as in (2.5). Define $N^{(2)}$ by

$N^{(2)}= \max\{m$ , $[u_{2}^{\star 2}/\hat{c}_{2}^{2}]+1\}$ . (3.2)

Next, take an additional sample of size $N^{(2)}-m$ . Then, on the basis of the total sample

of size $N^{(2)}$ , detect the component associated with the smallest sample mean among
$(\overline{X}_{1N^{(2)}},\overline{X}_{2N^{(2)}}, \ldots, \overline{X}_{kN^{(2)}})$ as the worst component.

It can be shown that Procedure $S_{2}$ also satisfies requirement (1.2) when $m$ is moder-

ately large.

Now, let us investigate into efficincies of Procedures $S_{1}$ and $S_{2}$ through several sim-

ulation studies. We estimated the PCS and the expected sample size by conducting the

simulation with 10,000 ($=R$ , say) trials for each procedure. The following result given by
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Proschan and Sullo (1976, Thorem 2.1) was used for generation of $k$-variate exponential
random number: Let $U_{0}$ , $U_{1}$ , $\ldots$ , $U_{k}$ be independent exponential random numbers with pa-
rameters $\lambda_{0}$ , $\lambda_{1}$ , $\ldots$ , $\lambda_{k}$ , respectively. Then, $(T_{1}, \ldots, T_{k})=(\min(U_{1}, U_{0})$ , $\ldots$ , $\min(U_{k}, U_{0}))$ has
the $k$-variate exponential distribution with parameters $(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k})$ . Now, we set $k=4$
and $\lambda_{4}=12$ . Then, under the $\mathrm{L}\mathrm{F}\mathrm{C}$ , the parameters are written as $(\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4})=$

( $\frac{12p\mathrm{o}(3+\delta^{\star})}{\delta^{*}(1-p\mathrm{o})}$, $12/\delta^{\star}$ , $12/\delta^{\star}$ , $12/\delta^{\star}$ , $12$). Set $\delta^{\star}=1.5,2.0$ and $P^{\star}=0.90$ Then, for every
case, we used the values of $u_{1}^{\star}$ and $u_{2}^{\star}$ respectively given in Tables 2.1 and 2.2. We started
$S_{1}$ and $S_{2}$ with apilot sample of size $m=[0.8 \min\{n_{0}^{(1)}, n_{0}^{(2)}\}]+1$ for $p_{0}=0.1(0.1)0.9$ ,
where $n_{0}^{(1)}$ and $n_{0}^{(2)}$ are considered as optimal fixed-sample sizes.

For each procedure $S$ , let us write $n\circ$ as $n^{\star}$ . Let $n_{f}$ be the observed value of $N$ and
$p_{f}=1$ (or 0) according as acorrect decision occurs (or does not occur). We denote
$\overline{n}=\sum_{\mathrm{r}=1}^{R}n_{f}/R$, $s^{2}( \overline{n})=\sum_{f=1}^{R}(n_{f}-\overline{n})^{2}/(R^{2}-R),\overline{p}=\sum_{r=1}^{R}p_{f}/R$ and $s^{2}(\overline{p})=\overline{p}(1-\overline{p})/R$ .
The quantities $\overline{n}$ and $\overline{p}$ respectively estimate $E(N)$ and $P(CD)$ , while $s(\overline{n})$ and sffi) stand
for their corresponding estimated standard errors. In Table 3.1, we report the values of

$P\mathrm{o}$ , $n^{\star}$ , $m,\overline{p}$, $s(\overline{p})$ , $\overline{n}$ , $s(\overline{n})$ and $(\overline{n}-n^{\star})/n^{\star}$ for each $\delta^{\star}$ . For each $P\mathrm{o}$ , the upper line gives
those values for $S_{1}$ and the lower line gives for $S_{2}$ .

Table 3.1. Estimated $P(CD)$ and $E(N)$ for $S_{1}$ (the upper) and $S_{2}$ (the lower)
with 10,000 trials when $7”=0.90$ and $k=4$

$\underline{\delta^{\star}=1.5}$
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$\underline{\delta^{\star}=2.0}$

$p_{0}$
$n^{\star}$ $m$ $\overline{p}$

$s(\overline{p})$ $\overline{n}$ $s(\overline{n})$ $(\overline{n}-n^{\star})/n^{\star}$

0.1 44.38
24.23

20 0.9106 0.0029 45.25 0.0395 0.0194
0.9311 0.0025 26.15 0.0730 0.0792

0.2 50.22
34.81

28 0.9121 0.0028 51.16 0.0550 0.0187
0.9236 0.0027 38.17 0.1102 0.0965

0.3 57.73
48.84

40 0.9129 0.0028 59.14 0.0685 0.0243
0.9251 0.0026 54.51 0.1427 0.1161

0.4 67.74
67.99

55 0.9154 0.0028 69.58 0.0821 0.0272
0.9285 0.0026 76.74 0.1818 0.1288

0.5 81.76
95.22

66 0.9172 0.0028 84.22 0.1105 0.0301
0.9270 0.0026 108.4 0.2488 0.1379

0.6 102.8
136.6

83 0.9222 0.0027 106.3 0.1541 0.0340
0.9263 0.0026 156.6 0.3452 0.1470

0.7 137.8
206.0

111 0.9180 0.0027 142.7 0.2226 0.0352
0.9250 0.0026 239.3 0.5014 0.1619

0.8 207.9
345.5

167 0.9196 0.0027 215.9 0.3607 0.0388
0.9193 0.0027 404.0 0.8135 0.1694

0.9 418.1
765.4

335 0.9271 0.0026 434.7 0.7738 0.0396
0.9250 0.0026 904.7 1.742 0.1821

Prom these tables, we can observe that the proposed tw0-stage procedures $S_{1}$ and $S_{2}$

work well as expected. The arguments about the comparison of efficiencies of $R_{1}$ and $R_{2}$

seems to hold for $S_{1}$ and $S_{2}$ as well. We consequently recommend the experimenter that

once after taking apilot sample, examine the value of $\hat{p}0$ :If $\hat{P}0$ looks small, say $\hat{P}0\leq 0.3$ ,
proceed $S_{2}$ ;otherwise, even $S_{1}$ would be sufficient for such situation.

4. EXAMPLE

In the field of manufacturing of cellular phone, it is important to examine the durability

of products. Acellular phone might be accidentally exposed to various situations, such as
vibration and ashock, in many cases into alife. The consumers are easy to request that

the weight of acellular phone should be light, so no portions can be reinforced in order to

pursue durability. Now, the experimenters would conduct an oscillating experiment to test
durability of their products and to detect the lowest part of durability of the products.

Here, it is considered that acellular phone has four divided parts, that is “receiving

part” , “display part, “operation part” and “mouthpiece part”, which are controlled by

the “power supply part”. If the power supply part breaks, the function of the whole

cellular phone stops accordingly. We suppose that the lifetime model of acellular phone

follows the MVE distribution, where $k=4$ and $\lambda_{0}$ is considered as the hazard related to

failure of the “power supply part”.

145



Let us apply atw0-stage procedure proposed in Section 3for data analysis in this
situation to detect the lowest part of durability. Survival time data $(x_{1}, x_{2}, x_{3}, x_{4})$ are
recorded in unit $\min$ . for (receiving part, display part, operation part, mouthpiece part).
From the experimental side, the difference was set as $\delta^{\star}=2$ and the confidence was set
as $7”=0.9$ . We start with apilot sample of size $m=30$ .

Table 4.1. Survival Data of Four Components (1st Stage)

(24.3 8.9 24.3, 7.3 ) 14.7 14.7 14.7, 14.7)
(25.3 4.6 15.3, 20.5 ) 27.3 33.7 12.9, 16.4)
(29.0 12.3 6.5, 21.4 ) 21.5 21.5 21.5, 21.5)
(5.4 5.4 5.4, 5.4 ) 22.9 26.2 47.6, 16.8)
(4.8 18.0 23.1 26.1 ) 30.1 8.6 36.1, 36.2)
(7.1 7.1 7.1 7.1 ) 16.5, 14.3, 14.4, 32.5)
(26.1 11.6 26.1 10.1 )20.9 15.3 13.0, 20.9 )
(14.4 10.1 14.4 14.4 )16.6 11.5 16.6, 12.2 )
(15.5 15.5 15.5 15.5 ) 14.4 14.4, 14.4, 14.4)
(18.2 11.8 15.5 12.2 ) 23.7 19.3, 10.1, 23.7)
(5.0 15.5 27.7 27.7 ) 21.2 17.5, 21.0, 10.0)
(16.9 16.9 16.9 16.9 ) 23.9 8.9, 11.8, 29.9)
(35.3 29.7 13.4, 35.3 ) 7.1 7.1, 6.5, 7.1)
(20.5 20.5 20.5, 20.5 ) 28.3 11.8, 19.0, 28.3)
(22.0 13.9 22.0, 22.0 ) 18.4 25.1, 29.7, 29.7)

We observe that the power supply part breaks $m_{0}=8$ times when $x_{1}=x_{2}=x_{3}=x_{4}$ .
Then, we have $\mathrm{p}0=8/30=0.2666$ . Let us proceed with Procedure $S_{2}$ . From Table 2.2,
we find that $u_{2}^{\star}=1.796$ for the present case when $(k, \delta^{\star})=(4,2)$ . Then, the observed
value of $N^{(2)}$ is given by

$n= \max\{30$ , $[ \frac{4.866\cross 7.666}{(1-0.2666)\cross 3.533}u_{2}^{\star}2]+1\}=47$

according as (3.2). We need to do 17 additional tests and then additional data are taken
as follows.

Table 4.2. Suvival Data of Four Components (2nd Stage)

(13.9 13.9, 13.9, 13.9)
(14.2 13.2, 4.6, 14.2)
(9.5 23.7 23.7 18.7)
( 9.3, 9.3, 9.3 6.5)
(21.7 22.6 28.8 28.8)
(15.5 9.3 20.5 21.8)
(7.5 18.2 18.2 18.2)
(18.0 12.2 18.0 10.1)
(14.4 9.7 12.2 25.1)

(13.9 12.3 15.1, 15.1)
( 4.3, 9.9 9.9, 9.9)
(14.6 14.6 14.6, 14.6)
(17.4 10.7 17.4, 17.4)
(17.1 10.7 25.5, 25.5)
( 7.8 7.8 7.8, 7.8)
(9.8 10.1 13.4, 13.4)
(14.6 14.6 14.6, 14.6)
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By combing the date of both the stages, we have the overall sample means (16.87, 14.33,

17.29, 18.13) for suvival time of each component. Then, the second component “display

part” is detected as the worst component for durability with confidence $P^{\star}=0.9$ .

Remark 2. If we apply $S_{1}$ incidentally for this data set, it comes to the same conclusion

to detect the display part. When $p_{0}$ is moderate or large, the experiment should be

reexamined in those cases. When $p_{0}$ is small, we use $S_{2}$ based on the sample means.
However, when we detect the component which has the minimum lifetime, in some cases
for such purpose, the experimenter might take some censoring once after recording the

minimum time along with the component number. Then, only incomplete data is available

for statistician. So, it would be necessary to consider such situation as well in the next

stage of this research.
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