新しい規則性を示す連分数展開 — TASOEVの連分数

三重大・教育 小松 尚夫 (Takao Komatsu)
Faculty of Education, Mie University

1. 序論

実数 \( \alpha \) に対して、その（単純、または正規）連分数展開を

\[
\alpha = [a_0; a_1, a_2, \ldots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}}
\]

によって与える。ここで、

\[
a = a_0 + \frac{1}{a_1}, \quad a_0 = [\alpha], \\
a_n = a_n + \frac{1}{a_{n+1}}, \quad a_n = [\alpha_n] \quad (n = 1, 2, \ldots).
\]

連分数においては、部分商の列 \( a_0, a_1, a_2, \ldots, a_n, \ldots \) がどんなパターンになるか、その規則性や法則性は最も興味ある話題である。また逆に、任意に与えられた部分商の列をもつような実数のclosed form (explicit form) を見出すことも大変興味があるところである。

二次無理数 \( \alpha \) と周期的連分数

\[
\alpha = [a_0; a_1, \ldots, a_m, a_{m+1}, \ldots, a_{m+s}]
\]

との関係はよく知られている。

定理 A. \( \alpha \) が周期的単純連分数展開を持つことの必要十分条件は、\( \alpha \) が二次無理数、すなわち係数が整数で判別式が平方数でない正数であるような二次方程式をみたす無理数であることである。

必要条件はEuler (1737)、十分条件はLagrange (1770) によって証明されている。もっともこれは大雑把な関係であり、より具体的なパターンについては今でも多くの研究がなされている。

次の Hurwitz の連分数(擬似周期的連分数)もよく知られている。

\[
[c_0; c_1, \ldots, c_n, Q_1(k), \ldots, Q_p(k)]_{k=1}^{\infty} \\
= [c_0; c_1, \ldots, c_n, Q_1(1), \ldots, Q_p(1), Q_1(2), \ldots, Q_p(2), Q_1(3), \ldots, Q_p(3), \ldots]
\]
ここで $c_0$ は整数、$c_1, \ldots, c_n$ は正整数であり、$Q_1(k), \ldots, Q_p(k)$ は $k = 1, 2, \ldots$ に対して正整数値を取る有理係数多項式で、多項式のうち少なくても一つは定数ではない。

\[
e = [2; 1, 2, 1, 4, 1, 1, 6, 1, \ldots] = [2; 1, 2k, 1]_{k=1}^\infty\]
\[
tanh 1 = \frac{e^2 - 1}{e^2 + 1} = [0; 1, 3, 5, 7, \ldots] = [0; 2k+1]_{k=1}^\infty
\]
\[
tan 1 = [1; 1, 3, 5, 7, \ldots] = [1; 2k+1]_{k=1}^\infty
\]

などのこのタイプの連分数のよく知られた例である。しかし、Hurwitzの連分数の一般的なclosed formは知られていないばかりか、多項式が二次以上になるような具体的例は未だに何一つ知られていない。

一般的に、与えられた実数に対して、その連分数展開の部分商列が規則性・法則性を持つかどうか、持つとすればどのタイプになるのかという問題はかなり難しく、例えば$2^{1/3}$ や$log 2$など多くの超幾何関数の具体的値の連分数展開についてはその規則性がほとんど知られていない（多くの実験結果はあるが）。また、部分商列を人工的に与えたもの、例えば

\[
[1; 1, 2, 3, 5, 8, \ldots] = [F_0; F_1, F_2, F_3, F_4, F_5 \ldots] \quad (F_n \text{は}_n \text{番Fibonacci数})
\]
\[
[a; b, a, b, a, b, a, b, a, b, \ldots] \quad (\text{Fibonacci word})
\]

のような連分数展開のclosed formを求めることも甚だ困難である。

2. TASOEVの連分数

上述した二種類のタイプ以外の規則性を保つ連分数展開の実例はほとんど知られていないのが1。これに対して、Tasoev [7], [8] は今までにない新しいパターンをもつ連分数展開

\[
[0; a, a^2, a^3, a^4, \ldots, a^m, \ldots] = [0; a^k, \ldots, a^k]_{k=1}^\infty
\]

を考え、その数論的諸性質を示した。Tasoevの連分数は、Hurwitzの連分数で多項式のところが指数関数の形になったものとも言えるが、全く新しいタイプのものであった。そればかりか、Tasoevはこの連分数展開を与える実数のclosed formをも与えた（$m = 1$の場合のみ。しかし残念ながらこれは間違っていた）。

実は、筆者によって証明されたようにTasoevの連分数は次のclosed formで与えられる。

定理B (Komatsu, [3]). $a$ を2以上の整数とする。$m = 1$のとき、

\[
[0; a, a^2, a^3, a^4, \ldots] = \frac{\sum_{s=0}^{\infty} a^{-(s+1)^2} \prod_{i=1}^{s} (a^{2i}-1)^{-1}}{\sum_{s=0}^{\infty} a^{-s^2} \prod_{i=1}^{s} (a^{2i}-1)^{-1}},
\]

$m = 2$のとき、

\[
[0; a, a^2, a^2, a^3, a^3, \ldots] = \frac{\sum_{s=0}^{\infty} a^{-(s+1)(s+2)} \prod_{i=1}^{s} (a^{2i}-1)^{-1}}{\sum_{s=0}^{\infty} a^{-s(s+1)} \prod_{i=1}^{s} (a^{2i}-1)^{-1}},
\]

1少しはあった。例えば、[1], [6]
\[ m \geq 3 \text{のとき、} \]
\[
\left[0; a, \ldots, a, \frac{a^2}{m}, \ldots, \frac{a^2}{m}, a, \ldots, \frac{a^2}{m}, \ldots \right] = \frac{\sum_{s=0}^{\infty} T_{1,s} a^{-2s-2} \prod_{i=1}^{s} (a^{2i} - 1)^{-1}}{\sum_{s=0}^{\infty} R_{0,s} a^{-2s} \prod_{i=1}^{s} (a^{2i} - 1)^{-1}}
\]
が成り立つ。ここで、
\[
T_{1,s} = \begin{cases} aR_{1,s} & (0 \leq s \leq m-1); \\ R'_{1,s} & (s \geq m), \end{cases}
\]
であり、\( l = 0, 1 \)に対して、\( R_{l,0} = 1, \ R_{l,1} = (m-l-1)a^{2} + a + l, \)
\[
R_{l,2} = \frac{(m-l-3)(m-l-2)}{2} a^{6} + \frac{(m-l-2)(m-l-1)(l+2)-2}{2} a^{4} \\
+ (m-l-1)a^{3} + \left( \frac{lm}{2} - \frac{(l+2)(l+3)}{2} + 4 \right) a^{2} + (l+1)a + \frac{l(l+3)}{2},
\]
\[
R_{0,3} = \frac{(m-5)(m-4)(m-3)}{6} a^{12} + \frac{(m-4)(m-3)}{2} a^{11} + \frac{(m-3)(m^{2} - 7)}{3} a^{10} \\
+ \frac{m^{2} - 3m + 1}{3} a^{8} + \frac{m^{2} + 3m - 8}{2} a^{5} + ma^{4} + (m-1)a^{3} + 2a^{2} + 2a,
\]
… などが成り立つ。

注. \( R_{l,s} \) と \( R'_{l,s} \) は次の漸化式を満たす。
\[
R'_{0,s} = R_{1,s-1} + a^{2} R'_{0,s-1} + \sum_{t=1}^{s-2} a^{2(t+1)} R'_{m-t,s-1} + a^{2s-1} \sum_{i=2}^{m-s+1} R_{l,s-1},
\]
\[
= a^{2} R'_{m-1,s} - (a^{2s} - 1) R_{1,s-1},
\]
\[
R_{l,s} = R_{l-1,s} - (a^{2s} - 1) R_{l+1,s-1} \quad (l = 1, 2, \ldots, m-s),
\]
\[
R'_{m-s+1,s} = a R_{m-s,s} - (a^{2s} - 1) R'_{m-s+2,s-1},
\]
\[
R'_{m-t,s} = a^{2} R'_{m-t-1,s} - (a^{2s} - 1) R'_{m-t+1,s-1} \quad (t = 2, 3, \ldots, s-2),
\]
\[
R'_{m-1,s} = a^{2} R'_{m-2,s} - (a^{2s} - 1) R'_{0,s-1}.
\]

\( m \geq 3 \)の場合、Tasoevの連分数は厳密な意味ではexplicit な形を持たないことになる。

\( m = 1 \)と\( m = 2 \)の場合、Tasoevの連分数には様々な拡張形が存在する。

定理 1. \( a (> 1) \)を整数、\( u \)を\( ua \)の正整数となる有理数とする。このとき、
\[
[0; ua^k]_{k=1}^{\infty} = \frac{\sum_{s=0}^{\infty} u^{-2s-1} a^{-(s+1)^2} \prod_{i=1}^{s} (a^{2i} - 1)^{-1}}{\sum_{s=0}^{\infty} u^{-2s} a^{-s^2} \prod_{i=1}^{s} (a^{2i} - 1)^{-1}}.
\]
例1. $ua$を$a, a$を$r$とおき、分子と分母をひっくり返すと次を得る。

[幾何級数列]
$$[a; ar, ar^2, ar^3, \ldots, ar^n, \ldots] = \frac{\sum_{s=0}^{\infty} a^{-2s} r^{-s^2 + 2s} \prod_{i=1}^{s} (r^{2i} - 1)^{-1}}{\sum_{s=0}^{\infty} a^{-2s - 1} r^{-s^2} \prod_{i=1}^{s} (r^{2i} - 1)^{-1}}.$$  


[算術級数列]
$$[a; a + d, a + 2d, a + 3d, \ldots, a + nd, \ldots] = \frac{I_{(a/d) - 1}(\frac{2}{d})}{I_{a/d}(\frac{2}{d})}$$
ここでは、
$$I_{\lambda}(z) = \sum_{\nu=0}^{\infty} \frac{(z/2)^{\lambda + 2\nu}}{\nu!\Gamma(\lambda + \nu + 1)}$$
は第一種変形Bessel関数である。

定理2. $a(>1)$を整数、$u$を$ua$が正整数となる有理数とする。このとき、
$$[0; ua - 1, 1, ua^{k+1} - 2]_{k=1}^{\infty} = \frac{\sum_{s=0}^{\infty} (-1)^{s} u^{-s-1} a^{-(s+1)^2} \prod_{i=1}^{s} (a^{2i} - 1)^{-1}}{\sum_{s=0}^{\infty} (-1)^{s} u^{-s} a^{-s^2} \prod_{i=1}^{s} (a^{2i} - 1)^{-1}}.$$  

Theorem 3. $a(>1)$を整数、$u, v$を$ua, va$が正整数となる有理数とするとき、
$$[0; ua^{k}, va^{k}]_{k=1}^{\infty} = \frac{\sum_{s=0}^{\infty} u^{-s-1} v^{-s} a^{-(s+1)/(s+2)} \prod_{i=1}^{s} (a^i - 1)^{-1}}{\sum_{s=0}^{\infty} u^{-s} v^{-s} a^{-s(s+1)/2} \prod_{i=1}^{s} (a^i - 1)^{-1}}.$$  

例2. $v=1$とおくとき、$[0; ua^{k}, va^{k}]_{k=1}^{\infty} = R(a^{-1}; u^{-1}) - 1$を得る。ここで、$R(z; x)$は一般Rogers-Ramanujan連分数であり、
$$R(z; x) = 1 + \frac{zx}{1 + \frac{z^3x}{1 + \cdots}} = \frac{\sum_{s=0}^{\infty} x^s z^s \prod_{i=1}^{s} (1 - z^i)^{-1}}{\sum_{s=0}^{\infty} x^s z^{s(s+1)} \prod_{i=1}^{s} (1 - z^i)^{-1}}.$$  

によって定義される。

定理4. $a(>1)$を整数、$u, v$を$ua(>1), va(>2)$が正整数となる有理数とするとき、
$$[0; ua - 1, 1, va - 2, 1, ua^{k+1} - 2, 1, va^{k+1} - 2]_{k=1}^{\infty} = \frac{\sum_{s=0}^{\infty} (-1)^{s} u^{-s-1} v^{-s} a^{-(s+1)(s+2)/2} \prod_{i=1}^{s} (a^i - 1)^{-1}}{\sum_{s=0}^{\infty} (-1)^{s} u^{-s} v^{-s} a^{-s(s+1)/2} \prod_{i=1}^{s} (a^i - 1)^{-1}}.$$  

$a = 2$かつ$v = 1$ならば、
$$[0; 2u - 1, 2, 2k+1u - 2, 1, 2k+1 - 2, 1]_{k=1}^{\infty} = \frac{\sum_{s=0}^{\infty} (-1)^{s} u^{-s-1} 2^{-s-1} a^{-(s+1)(s+2)/2} \prod_{i=1}^{s} (2^i - 1)^{-1}}{\sum_{s=0}^{\infty} (-1)^{s} u^{-s} 2^{-s} a^{-s(s+1)/2} \prod_{i=1}^{s} (2^i - 1)^{-1}}.$$  

以下で、$a$は2以上の整数、また$u$及び$v$は各部分商が正整数となるように取るものとする。
定理Iの証明. べき級数

\[ f_n(z) = r_{n,0} + r_{n,1}z + r_{n,2}z^2 + \cdots \]

が、\( n = 0, 1, 2, \ldots \) に対して関係式

\[ f_n(z) = u^n + f_{n+1}(z) + zf_{n+2}(z) \]

を満たすものとする。すると、

\[ \frac{f_n(z)}{f_{n+1}(z)} = u^n + \frac{z}{f_{n+1}(z)} \frac{f_{n+1}(z)}{f_{n+2}(z)} \]

より、

\[ \frac{f_1(1)}{f_0(1)} = [0; ua, ua^2, ua^3, \ldots] \]

が求める連分数となる。\( z \) の係数を両辺比較することにより、漸化式

\[ r_{n,0} = u^n + r_{n+1,0}, \]
\[ r_{n,s} = u^n + r_{n+1,s} + r_{n+2,s-1}. \]

を得る。最初の関係式より \( r_{0,0} = u^n + a^{\frac{n+1}{2}} \) となるが、一般性を失わず、\( r_{0,0} = 1 \) と仮定してよい。以下でわかるように、各 \( r_{n,s} \) が \( r_{0,0} \) 依存され、最終的に \( r_{0,0} \) が \( f_1(1)/f_0(1) \) の所で約分されて消えるからである。故に、

\[ r_{n,0} = u^{-n} a^{\frac{n+1}{2}}. \]
第二の関係式より、

\[ r_{0,s} = u^n a^{n(n+1)/2} r_{n,s} + \sum_{k=1}^{n} u^{k-1} a^{(k-1)k/2} r_{k+1,s-1} \]

を得る。\( s = 1 \)のとき、

\[ r_{0,1} = u^n a^{n(n+1)/2} r_{n,1} + \sum_{k=1}^{n} u^{k-1} a^{(k-1)k/2} u^{-k-1} a^{-1} = u^n a^{n(n+1)/2} r_{n,1} + u^{-2} \sum_{k=1}^{n} a^{-2k-1} \]

\[ = u^n a^{n(n+1)/2} r_{n,1} + u^{-2} a^{-1}(1 - a^{-2n})(a^2 - 1)^{-1} \]

より

\[ r_{n,1} = u^{-n-s-1} a^{-n(n+1)/2 - 2n - 1}.(a^2 - 1)^{-1} \]

を得る。\( s \)の帰納法により、

\[ r_{n,s} = u^{-n-2s} a^{-n(n+1)/2 - 2sn - s^2} \prod_{i=1}^{s}(a^{2i} - 1)^{-1} \]

が証明される。

定理9の証明. べき級数 \( f_n(z) = r_{n,0} + r_{n,1} z + r_{n,2} z^2 + \cdots \) を考え、

\[ f_{2n}(z) = u a^{n+1} f_{2n+1}(z) + z f_{2n+2}(z), \]

\[ f_{2n+1}(z) = v a^{n+1} f_{2n+2}(z) + z f_{2n+3}(z) \]

を満たすものとするとき、\( f_1(1)/f_0(1) = [0; u a, v a^k]_{k=1}^{\infty} \) である。\( z^4 \) の係数を両辺比較することにより、

\[ r_{2n,0} = u a^{n+1} r_{2n+1,0}, \]

\[ r_{2n+1,0} = v a^{n+1} r_{2n+2,0} \]

また \( s \geq 1 \)に対して

\[ r_{2n,s} = u a^{n+1} r_{2n+1,s} + r_{2n+2,s-1}, \]

\[ r_{2n+1,s} = v a^{n+1} r_{2n+2,s} + r_{2n+3,s-1} \]

を得る。

定理2の証明. べき級数

\[ f_n(z) = r_{n,0} + r_{n,1} z + r_{n,2} z^2 + \cdots \]
が、定理1の
\[ f_n(z) = u a^{n+1} f_{n+1}(z) + z f_{n+2}(z) \]
の代わりに
\[ f_n(z) = u a^{n+1} f_{n+1}(z) - z f_{n+2}(z) \]
という関係式を満たすものとする。すると \( r_{n,l} \)は漸化式
\[
\begin{align*}
  r_{n,0} &= u a^{n+1} r_{n+1,0}, \\
  r_{n,s} &= u a^{n+1} r_{n+1,s} - r_{n+2,s-1}
\end{align*}
\]
を満たす。よって定理1の証明と同様にして、一般に
\[ r_{n,s} = (-1)^s u^{-n-2s} a^{n(n+1)/2 - 2sn - s^2} \prod_{i=1}^{s} (a^{2i} - 1)^{-1}. \]
を得る。

定理4の証明. 単純連分数展開の代わりに負の連分数展開を用いれば、定理2と同様にして証明される。

\[
[0; a_1, a_2, a_3, a_4, a_5, a_6, a_7, \ldots] = -[0; a_1 + 1, 2, \ldots, 2, a_3 + 2, 2, \ldots, 2, a_5 + 2, 2, \ldots, 2, a_7 + 2, \ldots]
\]
という関係を使う。ここで
\[
-[0; a_1', a_2', \ldots] = \frac{1}{a_1' - \frac{1}{a_2' - \frac{1}{a_3' - \ldots}}}
\]
は負の連分数展開を表す。

定理5の証明. 第一式では、\( z \)のべき級数
\[ f_n(z) = r_{n,0} + r_{n,1} z + r_{n,2} z^2 + \cdots \quad (n = 0, 1, 2, \ldots) \]
が漸化式
\[ f_n(z) = w_n a^{n+1} f_{n+1}(z) + (-1)^{n+1} f_{n+2}(z) \]
を満たすものとする。ここで,
\[
w_n = \begin{cases} 
  u & (n \text{が偶数}) \\
  v & (n \text{が奇数})
\end{cases}
\]
すると,
\[
\frac{f_0(z)}{f_1(z)} = u a - \frac{z}{f_1(z)} = u a - \frac{z}{va^2 + \frac{z}{ua^3 - \frac{z}{va^4 + \frac{z}{\cdots}}}}
\]
\[
\begin{align*}
\frac{1}{a'_1 - 1} = [0; a'_1 - 1, 1, a'_2 - 1, a'_3 - 1, 1, a'_4 - 1, \ldots].
\end{align*}
\]

という関係より
\[
\frac{f_1(1)}{f_0(1)} = [0; ua - 1, 1, va^2 - 1, 1, va^4 - 1, \ldots]
\]
を得る。さて、\( f_n(z) \) の漸化式において、\( z^s \) の係数を両辺比較し
\[
r_{n,0} = w_n a^{n+1} r_{n+1,0},
\]
\[
r_{n,s} = w_n a^{n+1} r_{n+1,s} + (-1)^{n+1} r_{n+2,s-1} \quad (s = 1, 2, \ldots)
\]
を得る。一般に
\[
r_{n,s} = \begin{cases} 
(-1)^s u^{n+1} - s v^{-\frac{n+1}{2}} - s a^{-\frac{n+1}{2} - 2sn - s^2} \prod_{i=1}^{s} (a^{2i} - (-1)^i)^{-1} & (n \text{ 偶数}); \\
u^{n+1} - s v^{-\frac{n+1}{2}} - s a^{-\frac{n+1}{2} - 2sn - s^2} \prod_{i=1}^{s} (a^{2i} - (-1)^i)^{-1} & (n \text{ 奇数})
\end{cases}
\]
が帰納法により証明される。
第二式を得るためには、
\[
\begin{align*}
\frac{1}{a'_1 + \frac{1}{a'_2 - \frac{1}{a'_3 + \frac{1}{a'_4 - \ldots}}}} = [0; a'_1, a'_2 - 1, 1, a'_3 - 1, a'_4 - 1, 1, a'_5 - 1, \ldots]
\end{align*}
\]
という関係を用い、それぞれ
\[
\begin{align*}
\frac{1}{ua - \frac{1}{va + \frac{1}{ua^2 - \frac{1}{va^2 + \ldots}}}} = [0; ua - 1, 1, va - 1, ua^2 - 1, 1, va^2 - 1, \ldots].
\end{align*}
\]
という関係に注意する。
REFERENCES


