On aperiodic tilings by the projection method

高知大学・理学部 小松 和志(Kazushi Komatsu)
Faculty of Science,
Kochi Univ.

In 1982 quasi-crystals with icosahedral symmetry were discovered. (published in 1984). It had been axiomatic that the structure of a crystal was periodic, like a wallpaper pattern. Periodicty is another name for translational symmetry. Icosahedral symmetry is incompatible with translational symmetry and therefore quasi-crystals are not periodic. Most famous 2-dimensional mathematical model for a quasi-crystal is a Penrose tiling of the plane. In 1981 de Bruijn introduced projection methods to construct aperiodic tilings such as Penrose tilings.

We recall the definition of tilings by the projection method.

L : a lattice in \mathbb{R}^d with a basis $\{b_i|i=1,2,\cdots,d\}$.
E : a p-dimensional subspace of \mathbb{R}^d,
E^\perp : its orthogonal complement.
$\pi : \mathbb{R}^d \rightarrow E$, $\pi^\perp : \mathbb{R}^d \rightarrow E^\perp$: the orthogonal projections.
A : a Voronoi cell of L

For any $x \in \mathbb{R}^d$ we put

$$W_x = \pi^\perp(x) + \pi^\perp(A) = \{\pi^\perp(x) + u|u \in \pi^\perp(A)\}$$

$$\Lambda(x) = \pi((W_x \times E) \cap L).$$

The Voronoi cell of a point $v \in \Lambda(x)$

$$V(v) = \{u \in \mathbb{R}^n||v-u| \leq |y-u|, \text{forally} \in \Lambda(x)\}.$$

$\mathcal{V}(x)$: the Voronoï tiling induced by $\Lambda(x)$, which consists of the Voronoï cells of $\Lambda(x)$.

For a vertex v in $\mathcal{V}(x)$

$$S(v) = \bigcup\{P \in \mathcal{V}(x)|v \in P\}.$$

The tiling $T(x)$ given by the projection method is defined as the collection of tiles $\text{Conv}\ (S(v) \cap \Lambda(x))$, where $\text{Conv}\ (B)$ denotes the convex hull of a set B. Note that $\Lambda(x)$ is the set of the vertices of $T(x)$.
In order to state theorems we recall several definitions. The dual lattice L^* is defined by the set of vectors $y \in \mathbb{R}^d$ such that $\langle y, x \rangle \in \mathbb{Z}$ for all $x \in L$, where $\langle \, , \, \rangle$ denotes standard inner product. A lattice L is called integral if all its vectors satisfy that $\langle x, y \rangle \in \mathbb{Z}$ for all $x, y \in L$. The standard lattice is both integral and self dual.

For $L = \mathbb{Z}^d$, C. Hillman characterized the number of periods of the tilings. He also constructed periods for given tilings.

One of Hillman's results is extended to the case that L is integral.

Theorem. Let $T(x)$ be the tiling by the projection method and assume that L is integral. Then, rank $\text{Ker}(\pi^\perp|L)$ is equal to the dimension of the linear space of the periods of $T(x)$.

For the general lattices Theorem is not true. We have the following example;
L : a lattice in \mathbb{R}^2 with a basis $\{(1, \sqrt{2}), (1, -1)\}$,
E : the x-axis of \mathbb{R}^2.

In this case it is easy to see that all tilings in \mathbb{R}^1 obtained by the projection method are periodic and rank $\text{Ker}(\pi^\perp|L) = 0$.

The following property is analogous to classical uniform distribution of sequences.

Theorem (de Bruijn and Senechal, 1995)
Assume that $\pi^\perp(L)$ is dense in E^\perp.
K_1, K_2 : $(d - p)$-dimensional cubes in E^\perp
$J \subset E$: a p-dimensional cube centered at the origin.
For any positive real number λ, we set
$P_\lambda^1 = K_1 \times \lambda J, P_\lambda^2 = K_2 \times \lambda J$.

Then,
$$\lim_{\lambda \to \infty} \frac{\text{card} P_\lambda^1 \cap L}{\text{card} P_\lambda^2 \cap L} = \frac{Vol(K_1)}{Vol(K_2)}$$
A tiling space $T(E)$ is defined by a space of tilings consisting of all translates by $E = \mathbb{R}^p$ of the tilings $T(x)$ for all $x \in E^\perp$. Tiling spaces are topological dynamical systems, with a continuous \mathbb{R}^p translation action and a topology defined by a tiling metric on tilings of \mathbb{R}^p.

Let $\text{Orb}(T(x))$ denote the orbit of $T(x)$ in $T(E)$ by the \mathbb{R}^p translation action and $\text{span}(A)$ denote the \mathbb{R}-linear span of a set A.

Uniform distribution of the projection method is closely related to the ergodicity of the tiling space.

Theorem Let $T(E)$ be the tiling by the projection method in terms of a p-dimensional subspace E of \mathbb{R}^d and $p' : E^\perp \to \text{span}(L^* \cap E^\perp)$ be the orthogonal projection. Define $p : L \to \text{span}(L^* \cap E^\perp)$ by $p = p' \circ (\pi^\perp|L)$. We take a basis x_1, \ldots, x_k of the direct summand K such that $L = p^{-1}(\{0\}) \oplus K$. Then $T(E)$ decomposes into a k parameter family of orbit closures $\text{Orb}(T(t_1x_1 + \cdots + t_kx_k))$ for $t_1, \ldots, t_k \in \mathbb{R}$.

In particular, we obtain that k is equal to $\text{rank}(L^* \cap E^\perp)$.

Note that $\pi^\perp(L)$ is dense in E^\perp if and only if $E^\perp \cap L^* = \{0\}$. A. Hof (1988) proved that $E^\perp \cap L^* = \{0\}$ if and only if $T(E) = \overline{\text{Orb}(T(0))}$. Assume that L is integral. Then we see that $\text{rank}(L^* \cap E^\perp) = \text{rank}(L \cap E^\perp) = \text{rank Ker}(\pi|L)$ because $L \subset L^*$ and L^*/L is finite. The number of independent periods of the tiling space $T(E^\perp)$ is equal to $\text{rank Ker}(\pi|L)$.

We immediately obtain the following theorem in the case that L is integral:

Theorem Let $T(E)$ (resp. $T(E^\perp)$) be the tiling space by the projection method in terms of a p-dimensional subspace E (resp. $(d-p)$-dimensional subspace E^\perp) of \mathbb{R}^d and assume that L is an integral lattice. Then $T(E)$ decomposes into a k parameter family of orbit closures, where k is equal to the number of independent periods of the tiling space $T(E^\perp)$.

\[176\]