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Abstract. Suppose that $\frac{662}{755}<\gamma<1$ . We prove atheorem of the Bombieri-Vinogradov type
for the Piatetski-Shapiro primes $p=[n^{1/\gamma}]$ and show that every sufficiently large even integer can
be written as asum of aPiatetski-Shapiro prime and an almost-prime.
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1. Introduction and Statement of the Results

In 1937, I. M. Vinogradov [23] solved the ternary Goldbach problem by proving that for
every sufficiently large odd integer n the equation

n $=p_{1}+p_{2}+p_{3}$ (1)

has solutions in prime numbers $p_{1}$ , $p_{2}$ , $p_{3}$ .
The binary Goldbach problem, which states that every even integer $N\geq 4$ can be rep-

resented as the sum of two primes, remains unsettled. An important approach for studying
this problem is by the use of sieve methods. Denote, as usual, by $P_{r}$ any integer with no
more than $r$ prime factors, counted according to multiplicity. In 1947, A. Renyi [19] was the
first to prove that there exists an $r$ such that every sufficiently large even $N$ is representable
in the form

N $=p+P_{f}$ , (2)

where $p$ is aprime number. The best result in this direction belongs to J.-R. Chen [3] who
proved, in 1973, that (2) holds for $r=2$ .

Let $\gamma$ be areal number such that $\frac{1}{2}<\gamma<1$ . Define

$\pi_{\gamma}(x):=|$ {p $\leq x:$ p $=[n^{1/\gamma}]$ for some n $\in \mathrm{N}$} |.

(here [t] is the integer part of t).
In 1953, I. I. Piatetski-Shapiro [18] showed that

$\pi_{\gamma}(x)\sim x^{\gamma}/\log x$ (x $arrow\infty)$ , (3)
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for $\frac{11}{12}<\gamma<1$ . The prime numbers of the form $p=[n^{1/\gamma}]$ are called Piatetski-Shapiro
primes of type 7. By using the close connection between the lower bound for $\gamma$ and the
estimates of the exponential sums over primes, anumber of authors obtained (3) for longer
ranges of $\gamma-\mathrm{G}$ . A. Kolesnik ([11], [12]), D. Leitmann [15], D. R. Heath-Brown [8], H.-Q. Liu
and J. Rivat [17] and Rivat [20]. The best known result $\frac{2426}{2817}<\gamma<1$ is due to J. Rivat and
P. Sargos [21].

J. Rivat [20] was the first to consider the problem for obtaining alower bound for $\pi_{\gamma}(x)$ .
By using asieve method he proved that

$\pi_{\gamma}(x)\gg x^{\gamma}/\log x$ (x $\geq x_{0})$ , (4)

for $\frac{6}{7}<\gamma<1$ . After that R. C. Baker, G. Harman and J. Rivat [1], C.-H. Jia ([9], [10])
and A. Kumchev [13] improved this result. Finally, J. Rivat and J. Wu [22] showed that (4)
holds for $\frac{205}{243}<\gamma<1$ .

In 1992 A. Balog and J. B. Priedlander [2] found an asymptotic formula for the number
of solutions of the equation (1) with variables restricted to the Piatetski-Shapiro primes.
An interesting corollary of their theorem is that every sufficiently large odd integer can be
written as the sum of two primes and aPiatetski-Shapiro prime of type 7, provided that
$\frac{8}{9}<\gamma<1$ . Later, A. Kumchev [14] extended this range to $\frac{64}{73}<\gamma<1$ .

Considering the above results, it is interesting to study the solvability of the equation
(2) when $p$ is aPiatetski-Shapiro prime. It is naturally expected that atheorem of the
Bombieri-Vinogradov type holds for the Piatetski-Shapiro primes. However, the only result
in this direction, due to D. Leitmann [16], gives avery low level of distribution which does
not allow us to determine the value of the parameter $r$ .

We should also mention the result of D. Fischer and T. Zhan [4], which states atheorem
of the Bombieri-Vinogradov type for almost all 76 $( \frac{1}{2}+\epsilon, 1)$ , where $\epsilon>0$ is asufficiently
small number.

In the present paper we use D. R. Heath-Brown’s approach of [8] to establish the following

Theorem. Suppose that $\gamma$ is a real number in the range $\frac{662}{755}<\gamma<1$ , $a\neq 0$ is a fixed
integer. Then for any given constant $A>0$ and any sufficiently small $\epsilon>0$ ,

$\sum_{\sigma\leq x^{\xi}}|$ $\sum_{p\leq x}$

$1- \frac{1}{\varphi(q)}\pi_{\gamma}(x)|\ll\frac{x^{\gamma}}{(\log x)^{A}}$ , (5)

$(a,q)=1$ $p=[n^{1/\gamma}]$

$\mathrm{p}\equiv a(\mathrm{m}\mathrm{o}\mathrm{d} q)$

where

$\xi=\xi(\gamma)=\{\begin{array}{l}\frac{755}{424}\gamma-\frac{331}{212}-\epsilon for\frac{662}{755}<\gamma\leq\frac{608}{675}\cdot\frac{5}{4}\gamma-\frac{\mathrm{l}3}{12}-\epsilon for\frac{608}{675}<\gamma<1\end{array}$ (6)

For convenience, we note that $\frac{662}{755}=0.8768\ldots$ , $\frac{608}{675}=0.9007\ldots$ .

An application of [6, Theorem 9.3] gives the following
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Corollary. In the notation of the $Theorem_{f}$ we put $r$ to be the least positive integer satisfying
the inequality

$r+1- \frac{\log(4/(\mathrm{l}+3^{-r}))}{1\mathrm{o}\mathrm{g}3}\geq\xi^{-1}+\delta$ ,

where $\delta>0$ is a sufficiently small number. Then every sufficiently large even integer $N$

can be represented in the $fom$ (2), where $p$ is a Piatetski-Shapiro prime number of type $\gamma$

and the least prime factor of $P_{f}$ $is\geq N^{\xi/4}$ .
Notice the two special cases: $r=7$ for $0.9854<\gamma<1$ and $r=24$ for $\gamma=\frac{608}{675}$ .
Throughout this paper $x$ is asufficiently large number, $p$ is aprime number. We write

$\{t\}$ and $||t||$ for the fractional part of $t$ and the distance from $t$ to the nearest integer,
correspondingly. As usual, $\varphi(n)$ and $\mathrm{A}(\mathrm{n})$ denote Euler’s function and von Mangoldt’s
function, respectively. We write $L= \log x;e(t)=\exp(2\pi it);\psi(t)=\{t\}-\frac{1}{2}$ . Instead of
$m\equiv n(\mathrm{m}\mathrm{o}\mathrm{d} q)$ we write for simplicity $m\equiv n(q)$ . The notation $n\sim X$ means that $n$

runs through asub-interval of $(X, 2X]$ , which endpoints are not necessary the same in the
different equations and may depend on the outer summation variables. For positive $X$ and
$\mathrm{Y}$ , we write $X_{\wedge}\vee \mathrm{Y}$ instead of $X\ll \mathrm{Y}\ll X$ .

2. Outline of the Proof of the Theorem

Step 1: Preliminaries. The first stage of the proof is to transform the problem of estimating
the sum in (5) into one involving exponential sums over primes.

For convenience, we put $Q=x^{\xi}$ . Clearly, the Theorem will follow, if we can prove that
for $X\leq x$ ,

$\sum_{(\begin{array}{l}qa,q\end{array})}|k_{-}^{-}\tilde{[n}^{1/\gamma}]k\equiv a(q)\sum_{kX}\Lambda(k)-\frac{1}{\varphi(q)}$
$k=[n^{1/\gamma}’] \sum_{k\sim X}\Lambda(k)|\ll x^{\gamma}L^{-A}$

(7)

For $1/2<\gamma<1$ it is easy to show that

$[-k^{\gamma}]-[-(k+1)^{\gamma}]=\{$ 1if $k=[n^{1/\gamma}]$ ;
0if $k\neq[n^{1/\gamma}]$ . (8)

Therefore, to prove (7) it is sufficient to demonstrate that

$\sum_{(\begin{array}{l}qa,q\end{array})}$ | $n \tilde{\equiv a}(q’)\sum_{nX}\Lambda(n)((n+1)^{\gamma}-n^{\gamma})-\frac{1}{\varphi(q)}\sum_{n\sim X}\Lambda(n)((n+1)^{\gamma}-n^{\gamma})|\ll x^{\gamma}L^{-A}$ , (9)

$\sum_{(\begin{array}{l}qa,q\end{array})}|$ $n \equiv a(q’)\sum_{n\sim X}\Lambda(n)(\psi(-n^{\gamma})-\psi(-(n+1)^{\gamma}))|\ll x^{\gamma}L^{-A}$
(10)

and

$\sum_{q\leq Q}\frac{1}{\varphi(q)}|\sum_{n\sim X}\Lambda(n)(\psi(-n^{\gamma})-\psi(-(n+1)^{\gamma}))|\ll x^{\gamma}L^{-A}$ (11)
$(a,q)=1$
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The inequality (9) can be obtained from the Bombieri-Vinogradov theorem by using

partial summation and it holds for every $\gamma\in(\frac{1}{2},1)$ and Q $=x^{1/2-\epsilon}$ , where $\epsilon>0$ is $\mathrm{a}$

sufficiently smal number. The inequality (11) follows from the arguments in [8]. Hence, we
only have to show (10).

Let $\eta>0$ be asufficiently small number. We may assume that $x^{1-\eta}\leq X\leq x$ ,

otherwise (10) is trivial. Consequently, we have

$X^{\xi}\leq Q\leq X^{\xi+\eta/2}$ ,

for $\xi\leq(1-\eta)/2$ .

We now use the well-known expansions

$\psi(t)=-$ $\sum$ $\frac{e(th)}{2\pi ih}+O(g(t, H))$ , (12)
$0<|h|\leq H$

where
$g(t, H)= \min(1,$ $\frac{1}{H||t||})=\sum_{h=-\infty}^{\infty}b_{h}e(th)$

a $\mathrm{d}$

$b_{h} \ll\min$ ( $\frac{\log 2H}{H}$ , $\frac{1}{|h|}$ , $\frac{H}{|h|^{2}}$).
We insert (12) into the left-hand side of (10) and evaluate first the contribution of the error
tem

$\sum$ $\sum\Lambda(n)(g(n^{\gamma}, H)+g((n+1)^{\gamma},H))=R_{1}+R_{2}$ ,

$(\begin{array}{l}qa,q\end{array})\leq Qn\equiv a(q)nX$

say. We treat only $R_{1}$ , the estimate of $R_{2}$ is similar. We have

$R_{1}$ $\ll$ $L$

$\sum_{(\begin{array}{l}qa,q\end{array})}$ $\sum_{n^{nX}\equiv a(q)},g(n^{\gamma}, H)$

$\ll$ $L$
$\sum_{(\begin{array}{l}qa,q\end{array})}\sum_{h=-\infty}^{\infty}|b_{h}||$ $n \equiv a(q’)\sum_{nX}e(hn^{\gamma})|$

.

We now require the next estimate, which is an analogue of [8, Lemma 1] for arithmetic
progressions.

Lemma 1. Let $1\leq q\leq X$ , $X<X_{1}\leq 2X$ . Then

$\sum_{X<n<X_{1}}e(hn^{\gamma})\ll\min(q^{-1}X, |h|^{-1}q^{-1}X^{1-\gamma}+|h|^{1/2}X^{\gamma/2})$
.

$n\equiv a\mathit{7}q)$
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We now find

$R_{1}$ $\ll$
$L \sum_{q\leq Q}(|b_{0}|q^{-1}X+\sum_{h\neq 0}|b_{h}|(|h|^{-1}q^{-1}X^{1-\gamma}+|h|^{1/2}X^{\gamma/2}))$

$\ll$

$L^{3}H^{-1}X+LX^{1-\gamma} \sum_{q\leq Q}q^{-1}\sum_{h\neq 0}|h|^{-2}$

$+LX^{\gamma/2}Q( \sum_{0<|h|\leq H}|h|^{-1/2}+H\sum_{|h|>H}|h|^{-3/2})$

$\ll$ $L^{3}H^{-1}X+L^{2}X^{1-\gamma}+LH^{1/2}X^{\gamma/2}Q$

$\ll x^{\gamma}L^{-A}$ ,

on taking
$H=X^{1-\gamma}L^{2A}$

and

$\gamma\geq\frac{1}{2}+\xi+\eta$ . (13)

It remains to show that

$\sum_{(\begin{array}{l}qa,q\end{array})}\sum_{0<|h|\leq H}|h^{-1}$ $n \tilde{\equiv a}(q’)\sum_{nX}\Lambda(n)(e(-hn^{\gamma})-e(-h(n+1)^{\gamma}))|\ll x^{\gamma}L^{-A}$

Working similarly to [8, \S 2], we see that in order to establish the last inequality it is
sufficient to prove that

$| \sum_{k\sim X}\Lambda(k)G(k)|\ll XL^{-A}$ , (14)

where

$G(k)= \sum_{0<h\leq H}\Theta_{h}(k)e(hk^{\gamma})$ (15)

and

$\Theta_{h}(k)=(aq|’ k-aq<Q\sum_{\gamma q=1}c(q, h),$

$|c(q, h)|=1$ .

Step 2: Combinatorial decomposition. By applying Heath-Brown’s identity [7, Lemma 1],
we can express $\sum_{k\sim X}\Lambda(k)G(k)$ in terms of sums

$\sum_{m\sim M}\ldots.\cdot\sum_{\sim m_{1}\ldots m_{2\mathrm{j}}X}\mu(m_{1})\ldots\mu(m_{j})\log m_{2j}G(m_{1}\ldots m_{2j})$

,
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where $1\leq j\leq 3$ , $M_{1}$
\ldots $M_{2j}\sim X$ , $M_{1}$ , \ldots ,

$M_{j}\leq X^{1/3}$ . By dividing the $M_{j}$ into two
groups we obtain

$| \sum_{k\sim X}\Lambda(k)G(k)|\ll\prime X^{\eta}\max|\sum_{mn,m\sim}\tilde,\sum_{u^{X}}a(m)b(n)G(mn)|$
, (16)

where the maximum is taken over all bilinear forms with coefficients satisfying one of

$|a(m)|\leq 1$ , $|b(n)|\leq 1$ (17)

or
$|a(m)|\leq 1$ , $b(n)=1$

or
$|a(m)|\leq 1$ , $b(n)=\log n$

and in all cases

M $\leq X$ . (18)

We refer to the case (17) as being Type II sums and to the other cases as being Type $I$

sums. Denote them by $\sum_{II}$ and $\sum_{I}$ , respectively.

The following statement belongs to Balog and Friedlander [2, Proposition 1].

Lemma 2. If we have real numbers $0<u<1$ , $0<v<z<1$ satisfying the inequalities
$v< \frac{2}{3}$ , $1-z<z-v$ and $1-u< \frac{1}{2}z$ , then (16) still holds when (18) is replaced by the
conditions

$M\leq X^{u}$ for $\mathbb{R}pe$ I sums

and
$X^{v}\leq M\leq X^{z}$ for $\Phi pe$ $II$ sums.

$\square$

Step 3: Estimate of $\Phi pe$ I Sums. We have the following

Lemma 3. Let $(\kappa,l)$ be an exponent pair for which

$4\kappa-2l+1>0$ . (19)

Suppose that $M$ is such that

$M \ll\min(X^{1-e},$ $X^{(2\kappa-2l+2-4\xi-3\eta)/(4\kappa-\mathfrak{U}+1)}$ , $X^{(2l+1+4\xi)/(2l-2\kappa+2)})$

where

$e= \frac{6\kappa+5-\gamma(4\kappa+6)+4\xi+24\eta}{4\kappa-2l+1}$ . (20)
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Suppose also that
$\gamma\geq\frac{7\kappa+3l+14}{10\kappa+2l+20}+\frac{5\kappa+l+12}{5\kappa+l+10}\xi+5\eta$ ,

$\gamma\geq\frac{5\kappa+3l+11}{6\kappa+2l+14}+\frac{l-\kappa+3}{3\kappa+l+7}\xi+5\eta$

and
$\gamma\geq\frac{5}{6}+\xi+5\eta$ .

Then
$\sum_{I}\ll X^{1-2\eta}$ .

$\square$

Step 4: Estimate of Type II Sums. The following statement holds.

Lemma 4. Suppose that
$X^{5-5\gamma+4\xi+15\eta}\leq M\leq X^{\gamma-15\eta}$

and
$\gamma\geq\max$ ( $\frac{1}{2}+2\xi+6\eta$ , $\frac{5}{6}+\frac{2}{3}\xi+6\eta$).

Then
$\sum_{II}<<X^{1-2\eta}$ .

0

Step 5: Conclusion. We now put, in the notation of Lemma 2,

$u=1-e$ ,

$v=5-5\gamma+4\xi+15\eta$ ,

$z=\gamma-15\eta$ ,

where the quantity $e$ is defined by (20) and $\eta>0$ is asufficiently small number. We take
the exponent pair

$\kappa=\frac{11}{53}$ , $l= \frac{33}{53}$ ,

which satisfies (19) and define the quantity $\xi$ as in (6) with $\epsilon=50\eta$ .
Then it is not difficult to show that the conditions of Lemma 2, 3and 4, as well as the

inequality (13), hold.
Hence we obtain (14), which suffices to complete the proof of the Theorem. $\square$

3. Proof of the Corollary

We shall show that the conditions of [6, Theorem 9.3] hold. Consider the sequence

A $=$ {N-p:p $\leq N$ , p $=[n^{1/\gamma}]$ for some n $\in \mathrm{N}$}
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$B$ $=\{p:p\mathrm{J}N\}$ .
Define

$X=\pi_{\gamma}(N)$ ,

$\omega(d)=\{$
$d\varphi(d)^{-1}$ if $(d,N)=1$ ,

0otherwise.
Now it is easy to prove that the conditions $(\Omega_{1})$ and $(\Omega_{2}^{*}(1))$ hold. The condition $(R(1,\alpha))$

folows directly from (5) after we get rid of the extra factor $3^{\nu}(d)$ using, for example,
Cauchy’s inequality. As to the condition (fi3), we see from the proof of [6, Theorem 9.3]

that it is sufficient to establish

$\sum$ $1 \ll\frac{N^{\gamma}}{p^{2}}$ , (21)

$m\equiv N(p^{2})m=[n^{1/\gamma}]m\sim M$

for $M\leq N$ and $p\leq N^{\zeta}\leq N^{1/6}$ . As in \S 2, first we apply the identity (8) and introduce the
function $\psi(.)$ . Then (21) $\mathrm{w}\mathrm{i}\mathrm{U}$ folow from

$\sum$ $((m+1)^{\gamma}-m^{\gamma}) \ll\frac{N^{\gamma}}{p^{2}}$ (22)
$m\sim M$

$m\equiv N(p^{2})$

and

$\sum$ $( \psi(-m^{\gamma})-\psi(-(m+1)^{\gamma}))\ll\frac{N^{\gamma}}{t}$ . (23)

$m\equiv N(\mathrm{p}^{2})m\sim M$

Obviously, the inequality (22) holds. As to (23), we use formulas (12) with H $=M^{1-\gamma}$ and
after that we estimate the contribution of the main term and the error term by applying
Lemma 1.

Finally, by [6, Theorem 9.3] we obtain

$| \{P_{r} : P_{f}\in A\}|\gg\frac{X}{1\mathrm{o}\mathrm{g}X}$ ,

which suffices to complete the proof of the Corollary. $\square$

Remark. The results in [1], [9], [10], [13], [17], [20] were obtained by an application of
the double large sieve, given by E. Fouvry and H. Iwaniec in [5, Theorem 3], which makes
use of the summation over $h$ in estimating the Type $II$ sums. We suppose that the same
technique can be used to improve the result of our Theorem. However, we are not able to
apply the method successfully, since the existence of the quantity $\Theta_{h}(k)$ in the definition
of the function $G(k)$ , given by (15), does not allow us to divide the summation over the
variables $m$ and $n$ in an effective way.
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