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0. Introduction

We refer to survey papers Shorey $(1999, 2002)$ for an account of the topics

under discussion. This article may be considered as acontinuation of section

2of Shorey (2002). An exhaustive list of references is enclosed at the end.

Apaper which is not yet published is referred as (2003). Ishall restrict

only to squares in arithmetic progressions in my talk. Ishall divide this talk

in two sections. The first section is on consecutive integers. Observe that

consecutive integers are arithmetic progressions with common difference one.
Ishall consider arithmetic progressions with common difference greater than

one in section 2. First, we introduce some notation. For an integer $\nu>1$ , we

denote by $P(\nu)$ and $\omega(\nu)$ the greatest prime factor and the number of distinct

prime divisors of $\nu$ , respectively. Further we put $P(1)=1$ and $\omega(1)=0.$ Let
$d\geq 1,$ $n\geq 1$ and $k\geq 3$ be integers such that $\mathrm{g}\mathrm{c}\mathrm{d}(n, d)=1$ . We write

$\triangle(n, k, d)=n(n+d)\cdots(n+(k-1)d)$

and
$\triangle(n, k)=\triangle(n, k, 1)$ .
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1. Consecutive integers
An old result of Sylvester (1892) states

Theorem 1. We have

$P(\triangle(n, k))>k$ for $n>k$ .

Thus aproduct of $k$ consecutive positive integers each greater than $k$

is divisible by aprime exceeding $k$ . The assumption $n>k$ in Theorem 1is
necessary since

$P(\triangle(1, k))=P(1\cross 2\cdots\cross k)\leq k$.
Erd\"os (1934) gave another proof of Theorem 1. The proof admits the follow-
ing refinement due to Saradha and Shorey (2003a).

Theorem 2. Let $n>k\geq 3$ . Then the inequality

$\omega(\triangle(n, k))\geq\pi(k)+[\frac{1}{3}\pi(k)]+2$

holds unless

$n\in\{4,6,7,8,16\}ifk=3;n\in\{6\}$ if $k=4$ ;
$n\in\{6,7,8,9,12,14,15,16,23,24\}$ if $k=5$ ;
$n\in\{7,8,15\}$ if $k=6$;
$n\in\{8,9,10,12,14,15,24\}$ if $k=7$;
$n\in\{9,14\}$ if $k=8$.

According to Theorem 2, $\triangle(n, k)$ is divisible by at least $[ \frac{1}{3}\pi(k)]+2$ distinct
primes exceeding $k$ . We record the following consequence of Theorem 2.

Corollary 1. Let $n>k\geq 3.$ Then

$\omega(\triangle(n, k))\geq\pi(k)+2$
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$n\in\{4,6,7,8,16\}$ if $k=3;n\in\{6\}$ if $k=4;n\in\{6,8\}$ if $k=5$ .

The next result gives more information on the assertion of Theorem 1.

Theorem 3. Let $(n, k)\neq(48,3)$ . There nists a prime $p>k$ such that

$\mathrm{o}\mathrm{r}\mathrm{d}_{p}(\triangle(n, k))\not\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 2)$

whenever

(1) $P(\triangle(n, k))>k$ .

Theorem 3with (1) replaced by $n>k^{2}$ implies Theorem 3. For showing

this, we may suppose that there exists aprime $q>k$ such that $q^{2}|\triangle(n, k)$

otherwise the assertion follows. Since $q>k$ , there is unique $i$ with $0\leq i<k$

such that $q|(n+i)$ . Therefore $q^{2}|(n+i)$ . Thus

$n+k-1\geq n+i\geq q^{2}\geq(k+1)^{2}$

which implies that $n>k^{2}$ . The assumption $(n, k)\neq(48,3)$ is necessary. For

this, we observe that

$48=3.2^{4},49=7^{2},50=2.5^{2}$ .

Thus, in this example, there is no prime $>3$ dividing $\triangle(n, k)$ to an odd

power. Theorem 3with $p\geq k$ was proved by Erd\"os and Selfridge (1975)

developing on the method of Erd\"os (1939) and Rigge (1939). The conclusion
$p\geq k$ was replaced by $p>k$ by Saradha (1997).

Theorem 3has been sharpened by Saradha and Shorey (2003a) as follows:
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Theorem 4. Let $k\geq 4$ and $n>k^{2}$ . Assume that

$(n, k)\not\in\{(24,4), (47,4), (48,4)\}$ .

Then there exist distinct primes $p_{1}>k$ and $p_{2}>k$ such that

$\mathrm{o}\mathrm{r}\mathrm{d}_{p:}(\triangle(n, k))\not\equiv \mathrm{O}(\mathrm{m}\mathrm{o}\mathrm{d} 2)$ for $i=1,2$ .

We consider Theorem 4with $k=3$ . We have

$\triangle(p-1,3)=(p-1)p(p+1)=p(p^{2}-1)=2py^{2}$

if

(2) $p^{2}-1=2y^{2}$

and the assertion of Theorem 4is not valid. We do not know whether (2)
has finitely or infinitely many solutions in $p$ and $y$ . Thus the case $k=3$ of
Theorem 4remains open.

Let $g$ be the number of $i$ with $0\leq i\leq k-1$ such that $n+i$ is divisible
by aprime exceeding $k$ to odd power. Thus $\triangle(n, k)$ is divisible by at least
$g$ distinct primes greater than $k$ to odd powers. The next sharpening of
Theorem 4has been obtained by Mukhopadhyay and Shorey (2003b) by
induction on $g$ .

Theorem 5. Let $k\geq 1\mathrm{O}$ and $n>k^{2}$ . Then

$g\geq 8$

unless

k–10:
$n=103-105,112,116-126,135,138-144,159-162,166-168,187-189$ ,
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191, 192, 216, 234-245, 247-250, 280, 285-288, 315, 334-336, 354-360,

375, 441, 477-484, 498-500, 503, 504, 667-672, 717-722, 726,

836-841, 959, 960, 1080, 1343-1344,1436-1440, 1443-1444, 1673-1681, $2016\mathrm{t}$

$2019$ -2023,2518-2520,2879-2883,3355-3360,4796-4800,5034-5041,
6718-6724,10077-10080,13447-13448,15116-15123,6375621;

k–11:
$n=122-126,140,144,158-162,165-168,188-192,215,216$,

235-243, 287, 288, 375, 440, 480, 719, 720, 837-840, 1680, 2880, 5036-5040,

6718-6720,15119, 15120;

k–12:
$n=158-160,165,189,239-242$ ;

$k$ –13:
$n=188,189,240$.

Since $x^{2}-2y^{2}=-1$ has infinitely many solutions in integers $x$ and $y$ ,

we observe that the assumption $k\geq 1\mathrm{O}$ in Theorem 5is necessary. Now we
state an immediate consequence of Theorem 5.

Corollary 2. Let $k\geq 1\mathrm{O}$ and $n>k^{2}$ . There are at least 8distinct prirnes

exceeding $k$ each dividing $\triangle(n, k)$ to odd power unless

$n\in\{103-105,112,116-126,144,159-162,166-168,188,189,191,192$ ,

234-243, 287, 288, 354-360, 482, 483, 672, 717-721, 837-841, 1444, 5039}
if $k=10$;

$n\in\{122-126,140,144,158-162,165-168,188-192,235,236,240,242$ ,

287, 288, 719, 720, 837-840, 1680} if $k=11$ ;

$n\in\{158-160,165,189\}$ if $k=12$ ;
$n\in\{188,189,240\}$ if $k=13$.
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Hence we have

Corollary 3. Let $k\geq 1\mathrm{O}$ if $n>5039$ and $k\geq 14$ othertnise. Assume that
$n>k^{2}$ . Then $\triangle(n, k)$ is divisible by at least 8distinct primes greater than $k$

to odd powers.
Sharper lower bounds for $g$ have been obtained whenever $k$ is sufficiently

large. Erd\"os (1955) observed that his proof for aproduct of two or more
consecutive positive integers is never asquare yields

$g \geq C_{1}\frac{k}{\log k}$

where $C_{1}>0$ is an effectively computable absolute constant. Further Shorey
(1987) improved the above inequality to

(3) $g \geq C_{2}\frac{k1\mathrm{o}\mathrm{g}1\mathrm{o}\mathrm{g}k}{\log k}$

where $C_{2}>0$ is an effectively computable absolute constant. The constant
$C_{2}$ turns out to be small and therefore (3) is of interest only if $k$ is large.
Apart from the elementary arguments of Erd\"os and Rigge, the improvement
(3) depends on atheorem of Baker (1969) that ahyper-elliptic equation,
under necessary assumptions, has only finitely many solutions and an explicit
bound for the magnitude of the solutions can be given. This is the first time
that result proved by banscendence methods has been applied in the topic
under consideration in this section. As an immediate consequence of the
theorem of Baker (1969) stated above, we have

$g\geq k-2$

whenever $n\geq n_{0}(k)$ and $n_{0}(k)$ is sufficiently large.
The proof of Theorem 5is elementary and combinatorial. The elliptic

equattons

$X(X+p)(X+q)=by^{2}$ with $1\leq p<q\leq 12,$ $P(b)\leq 7$
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are solved by using SIMATH in the proof of Theorem 5. We remark that this

package depends on the theory of elliptic logarithms as developed by Noriko

Hirata -Kohno and Sinnou David. SIMATH has been applied for the first

time in asimilar context by Filakovszky and Hajdu (2001).

2. Arithmetic progressions with common dif-

ference greater than one

We consider arithmetic progressions with common difference $d>1$ . Ti-

jdeman and Shorey (1990), improving on the results of Sylvester (1892) and

Langevin (1976), showed that

$P(\triangle(n, k,d))>k$ if $(n, k, d)\neq(2,3,7)$ .

We compare this inequality with the one given in Theorem 1and we see that

the situation between consecutive integers and arithmetic progressions with

common difference greater than one is quite different. Let $b$ be apositive

integer such that $P(b)<k$ and $d>1$ . We consider the equation

(4) $\triangle(n, k, d)=by^{2}$ in integers $n>0,y>0,$ $k\geq 3$ with $\mathrm{g}\mathrm{c}\mathrm{d}(n,d)=1$ .

We begin with aconjecture on (4) due to Erd\"os.

Conjecture 1. Equation (4) implies that k is bounded by an absolute con-
stant.

Astronger conjecture states

Conjecture 1’. Equation (4) implies that k $=4$ .
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On the other hand, it is known that (4) with $k=4$ has infinitely 1

solutions in $n,$ $d$ and $y$ , see Tijdeman (1988). Shorey and Tijdeman (1
proved that (4) implies that $k$ is bounded by an effectively computable]
$\mathrm{b}\mathrm{e}\mathrm{r}$ depending only on $\omega(d)$ . Thus conjcture 1is confirmed whenever $\omega|$

bounded.
Next we consider (4) with $\omega(d)=1$ . Let $k=3$ and $b=1$ . We have

I II

$n=y_{0}^{2}$ $n=2y_{0}^{2}$

$n+d=y_{1}^{2}$ or $n+d=y_{1}^{2}$

$n+2d=y_{2}^{2}$ $n+2d=2y_{2}^{2}$

First we exclude the possibility I. Let $d$ be odd. We have

$d=y_{1}^{2}-y_{0}^{2}=(y_{1}-y_{0})(y_{1}+y_{0})$ .

Thus
$y_{1}-y_{0}=1$

implying that
$d=2y_{0}+1$ .

Similarly
$d=2y_{1}+1$ .

Thus $y_{0}.=y_{1}$ which is acontradiction. If $d=2^{\alpha}$ , we observe as above

$y_{0}=2^{\alpha-2}-1,$ $y_{1}=2^{\alpha-2}+1,$ $y_{2}=2^{\alpha-2}+3$

contradicting I. Next we consider 11. Then $d$ is odd. We have

$2d=2(y_{2}^{2}-y_{0}^{2})$
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$d=y_{2}^{2}-y_{0}^{2}$

implying that
$y_{2}-y_{0}=1,$ $d=2y_{0}+1$ .

Thus
$2y_{0}^{2}+2y_{0}+1=y_{1}^{2}$

i.e.
$4y_{0}^{2}+4y_{0}+2=2y_{1}^{2}$

i.e.
$(2y_{0}+1)^{2}+1=2y_{1}^{2}$

i.e.
$d^{2}-2y_{1}^{2}=-1$ .

We do not know whether the above equation has finitely or infinitely many

solutions in $d$ and $y_{1}$ with $d$ prime. Thus the case $k=3$ of (4) is open.

For $k\geq 4$ , we have

Theorem 6. Equation (4) with $\omega(d)=1$ and $k\geq 4$ does not hold unless

$n=75,$ $d=23,$ $k=4$.
Theorem 6with $k>9$ was proved by Saradha and Shorey (2003b) and

with $4\leq k\leq 9$ by Mukhopadhyay and Shorey (2003a). The assumption $\mathrm{g}\mathrm{c}\mathrm{d}$

$(n, d)=1$ has been relaxed to $d\Lambda n$ which is necessary. Furthermore, the

assumption $d\chi n$ is not required if $b=1$ . We have

Theorem 7. A product of four or more terms in arithmetic progression

with comrnon difference a prime power is not a square.

Theorem 7was proved by Saradha and Shorey (2003b). We give aproof

of Theorem 7when $d|n$ . Let $d=p^{\alpha}$ . We have

$n(n+d)\cdots(n+(k-1)d)=y^{2}$ .
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$p^{\alpha k}n’(n’+1)\cdots(n’+k-1)=y^{2}$

where
$n’=n/d$.

As already stated aproduct of two or more consecutive positive integers is
never asquare. Therefore $k$ and $\alpha k$ are odd. Then

(5) $n’(n’+1)\cdots(n’+k-1)=py_{1}^{2}$

where $y_{1}>0$ is an integer. Let $n’>k$ . By Corollary 1, the left hand side of
(5) is divisible by at least two distinct primes $>k$ unless $(n’, k)=(6,5),$ $(8,5)$ .
Further we observe that (5) is not satisfied whenever $(n’, k)=(6,5),$ $(8,5)$ .
Therefore $n’>k^{2}$ by (5). Now we apply Theorem 4to conclude that the left
hand side of (5) is divisible by at least two distinct primes with odd powers.
This is not possible. Let $n’\leq k$ . We check that (5) does not hold when
$n’+k\leq 12$ . Thus we assume that $n’+k>12$ . Then

$n’ \leq\frac{n’+k}{2}\leq n’+k-1$

and there are at least 2distinct primes between $\frac{n’+k}{2}$ and $n’+k-1$ dividing
the left hand side of (5) to the first power. This is again not possible.

Let
$D=\{\chi p^{\alpha}|1<\chi\leq 12, \chi\neq 11, \mathrm{g}\mathrm{c}\mathrm{d}(\chi,p)=1\}$

where $p\geq 2$ prime. Let $k\geq 4$ if $d=7p^{\alpha}$ . The case $k=3,$ $d=7p^{\alpha}$ is again
an open problem as in the case $d=p^{\alpha}$ . Saradha and Shorey (2003b) showed
that (4) with $d\in D$ does not hold unless $(n, k, d)=(1,3,24)$ . Further we
observe that if $d\neq p^{\alpha},$ $d\not\in D$ , then $d\geq 105$ . Thus (4) does not hold whenever
$k\geq 4$ and $d\leq 104$ unless $(n, k, d)=(75,4,23)$ . The assumption $k\geq 4$ can
be relaxed to $k\geq 3$ in the preceding result if $(n, k, d)\neq(1,3,24)$ . Hence (4)
with $k\geq 3$ and $d\leq 104$ implies that $(n, k, d)=(1,3,24)$ or (75, 4, 23). This
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was already proved by Saradha (1998) for $d\leq 22$ and for $23\leq d\leq 30$ by

Filakovszky and Hajdu (2001).
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