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On systems of linear inequalities
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Linear fll,fg,... fn € ROAQ)TY,Tx,... , T
HAfN-Afa#0
c(1),c(2),...,¢(n) €R
Fixed J € R and variable Q € R,

fi(Th,-. ., T)| < Q¢ (i=1,...,n)

Example (n=2) a€RNQ,c>6>0
ITy - aTy] < Q7% |Ty| < Q°~°

T;

[

T

Tl—aT2=O

We start with linear forms fi, fs,...,f, with
real algebraic coefficients in the indeterminates
T, T,,...,T,. We assume they are linearly
independent. = Namely, the volume form they
define is not 0. We consider real numbers

c(1),¢(2),...,c(n).

For an arbitrarily fixed real number ¢ and a vari-
able real number @ larger than 1, the following sys-
tem of linear inequalities is the theme of today’s
talk: ...

We give the most typical example: ...
We also give the picture: as @@ becomes large, the
parallelotope stretches.

We are interested in qualiﬁative aspect of the ra-
tional integer valued solutions. What can we say
about this classical type of inequalities?



FALTINGS’ pt of view
V=Ql,oQR: o ---&QT,, L:=RNQ
{w(l) <w(2) <--- <w(s)} = {c(1),... ,c(n)}

vvl) c Veel
= (fi] (i) > w(j))L

V®QL=V"’(1) QV“’("’) 2...21/'0(') 20

Example (continuation)

VeeL=V=<2V=L-(T,-aT2) 20

(9:d@)Em 2 (V)i € (fiseld))

= Essentially their solutions coincide.
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We follow FALTINGS.

V is the vector space of rational linear forms in
T\,...,Ta. We denote by L the field of real alge-
braic numbers.

The symbols w(1), w(2), ... ,w(s) are the strictly
increasing real numbers such that as a set, it is
identical with the set of c(1),...,c(n). V¥ is
the subspace over L of the scalar extension of V
to L, spanned by all f; such that c(i) is at least
w(j). Thus we obtain a descending filtration on V
tensored over Q by L.

In the case of the above example, ...

Our observation is that the qualitative nature is
determined by the filtration.

In fact, given another system of linear forms g;
and real numbers d(i) which define the same fil-
tration V¥ as f; and c(i), then essentially their
solutions coincide. To be more precise, one can see
easily that the set of solutions to one system is a set

of solutions to another system modulo replacement
of 4.

The classical theorem of SCHMIDT is concisely
stated in this context, for which we need some no-
tation.
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Def. (slope) We denote by M(V; V%)) the slope of the fil-
) tration. That is to say, the real number given b
M(V; VW(J)) ‘ . Y gt y
the following expression: ...
= dlmQ % Z wdimg gr* (V") We write it M (V) if there is no fear of confusion.
1 s—1
= i) di w(j) jyyw(i+1)
gV 2 ) dima (V0 [V )
1
: w(s)
+ dimg Vw(s) dim; V
_ o)+ ten)
n
= M({V)
(pt)=V* +dual— V = (lin. fn) Next, we introduce the dual vector space V* to

V over Q. The space V* is the set of points. The
space V is the set of linear functions.

. . For a non-zero subspace S* of V*, W is the or-
V725" #0ortho. to WGV thogonal subspace of V. The quotient space V/W
is dual to S*, that is, the space V/W is the set of
. linear functions on S*. We induce from the filtra-
Filtr. on V ®q L ~ filtr. on (V/W) ®q L tion on V ®q L a filtration on (V/W) ®q L, and
' define the slope of V//W by the slope of V/W with
the induced filtration.

S§* +dual—» V/W

M(V/W) := M(V/W;induced filtr.)



Thm (ScHMIDT) If for every W GV
MV/W)>M(\V)> -6
then

#{sols.} < 00

Tg *
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Using the notation, the subspace theorem of
SCHMIDT is restated as follows.

If for every proper subspace W of V, the slope of
V/W is at least the slope of V, and if the slope of
V is larger than —4, then the number of solutions
to the system of linear inequalities is finite.

Intuitively, the conditions of the theorem imply
that the volume of the convex body in S* cut out
by the given inequalities is small.

Ty

T, —aT; =0

Def. (FALTINGS) (V;V*()) semi-stable

& Forevery WGV
M(V/W) 2 M(V)
Example (continuation)

Vss&agQ

Now, FALTINGS found that the first condition of
the theorem is nothing but the semi-stability in Ge-
ometric Invariant Theory of Mumford. Namely, a
filtered vector space (V; V¥(9) is semi-stable if and
only if for every proper subspace W of V over Q
the slope of V/W is at least the slope of V.

The next assertion is an easy exercise: the V in
the example above is semi-stable if and only if the
number « is irrational.

As a consequence, the subspace theorem applied
to this example gives the famous ROTH’s theorem.



Def. (Cat. of lin. ineq.)

Obj(C) = { fin. dim. vect. sp V/Q }

with filtr. V- on V ®q L

Homg(V, S) = {Q-lin. ¢ | 4(V*) C ¥}

¢*: 5" = V*, sols. — sols. mod. replacement of §

Hom¢ = {Q-lin., preserving sols.}

Thm C%: full subcat. of C
Obj(CY’) = {s.-s. of slope 0}
There exists an affine gp scheme G /Q s.t.

Rep,(G) ~ CF

Lem. ([2] (5] (1] [6] [3])
V,5s-5 =V ®gS s.-s.

Recently a new proof is obtained [4]!
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What is interesting in our formulation? To men-
tion it, we take into account all the systems of linear
inequalities, or all the filtered vector spaces.

We propose to define the category C of linear

" inequalities as follows: an object is a finite dimen-

sional vector space V over Q with a filtration V-
on V ®q L, and a morphism in C of V to S is a
Q-linear map ¢ such that (V") is included in S¥
for every real number w.

The dual map ¢* of S* to V* sends the set of
solutions of inequalities to a set of solutions of in-
equalities modulo replacement of 4. So we can re-
gard a morphism in C as a Q-linear map preserving
solutions.

We get a theorem. Let Cf’ be the full subcate-
gory of C whose objects are the semi-stable ones of
slope 0. Then there exits an affine group scheme
G over Q such that the category of finite dimen-
sional representations over Q of G is equivalent to
the category C%.

For a proof of Theorem, thanks to the general
theory of Tannakian categories, we have only to
check several trivial conditions except the following
lemma, several proofs of which are already given by
some people: when two filtered vector spaces V' and
S are semi-stable, their tensor product V ®q S with
induced filtration is also semi-stable.

Recently a new proof is obtained by the speaker!
The proof is based on MINKOWSKI's theorem in
Geometry of Numbers and on the subspace theorem
of SCHMIDT.

We would like to close the speech by raising prob-
lems and making a remark.



Problem G =7

Problem (FALTINGS (1])

filtr. isocrys. + analogy — filtr. vect. sp

Rem.
C & C7’ indep. of Diophantine Approx. Theory!

34

First, simple question: what is the group scheme
G? Its meaning?

Second, originally addressed by FALTINGS at the
ICM in Munich 1994: how far can we go with
the analogy between filtered isocrystals and filtered
vector spaces in our sense? I'll attack this problem
in future

The concluding remark: as we see, the categories
C and C}’ are independent of the parameters § and
Q, hence independent of Diophantine Approxima-
tion Theory! We may well interpret them another
way!! '
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