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1 Introduction
Recently, mathematical techniques for non-perturbative way to analyze models in quantum electrodynam-
ics (QED) are developing gradually. In the development, we face some cases so that we cannot analyze
the ground state energy of models in QED by the regular perturbation theory [LL, Hi, $\mathrm{H}\mathrm{S}$]. Especially,
Lieb and Loss showed in [$\mathrm{L}\mathrm{L}$ , Theorem 1.1] the curious results on the upper and lower estimates of theground state energy of s0-called Pauli-Fierz model describing electrons interacting with the radiation field.Their result means that the renormalized mass of the model cannot be calculated by the perturbation
theory not only in the case of large coupling length but also small one. They showed that the order inthe coupling length is less than the order of the square derived by the regular perturbation theory. Itsphysical reason has not clarified yet to author’s best knowledge. Moreover, Griesemer, Lieb, and Lossshowed in [GLL] that the Pauli-Fierz model has aground state for all values of the coupling length. Thus,
Their result$\mathrm{s}$ mean that the Pauli-Fie$\mathrm{r}\mathrm{z}$ model has anon-perturbative ground state for the all coupling
length. Considering the history of physics, we should have succeeded in the mass renormalization for
non-relativistic treatment by Pauli and Fierz. What on physics may have happened to the Pauli-Fierz
models We are much interested in the physical reason for the existence of such aground state refusingthe perturbation theory, and also we are interested in the influence on the renormalizable field theory.

On the other hand, for the Weisskopf-Wigner (WW) model (i.e., the Dicke model in the rotatingwave approximation), we know that a non-perturbative ground state appears in the case with the largecoupling length [Hi], and the ground state energy is so low that the regular Perturbation theory cannotgive it. Here WW model describes atwo level system coupled with aBose field, and it was actively
argued as asimple version of the L$\mathrm{e}\mathrm{e}$ model [Le], the Dicke model for superradiance [Di], asimple modelof spin-photon model of quantum optics and NMR, and the model describing the elementary process ofthe decay from neutron to proton and $\pi^{-}$ -meson. And also it is to argue the spontaneous emission inthe Weisskopf-Wigner theory [WW]. For the emission and absorption $\circ \mathrm{f}$ photons between the tw0-levelsystem, we face the difficulty of the resonance scattering in the regular perturbation theory. So, theWeisskopf-Wigner theory is for the higher order revision for the regular perturbation theory, and WWmodel has the effect of this revision. Then, the ground state energy with the order in the coupling lengthis less than the order of square coming from the regular perturbation theory. For WW model this orderless than the order of square $\mathrm{i}$ available even for the sufficiently small coupling length i.e., in the regionof the perturbation theory. But in [Hi, Lemma 2.2] we knew that growing the coupling length restore thesame order as the regular perturbation theory.

As mentioned above the WW model is a simplification $\circ \mathrm{f}$ the Lee model, and moreover the Leemodel can be decomposed into a direct sum of the Hamiltonian $H_{1}$ equivdent to WW model and afree
Hamiltonian $H_{2}$ (see (2.4) below), so we can expect that Lee model has the similar non-perturbative
ground state in the $\mathrm{c}\mathrm{a}\mathrm{e}$ with the large coupling length. Moreover, it is well known that, for the Lee
model, renormalizations with perturbative way and non-perturbative way imply the same result. Thus,in this paper, we reconsider the Lee model in th$\mathrm{e}$ light of the renormalizable field theory in the earlystage and quantum optics for the case including the large coupling length. More precisely, we returnto the early stage of the renormalizable field theory developed by Lee, K\"all\’en, and Pauli, and we showthe limit of the successful result of renormalizations with perturbative and non-perturbative ways. Weshow also the existence of anon-perturbative ground state when we are beyond perturbation theory. Asfor the ground state energy of the Lee model, as well as WW model, the ground state energy for thesmall coupling length has the order less than that of square because of the higher order revision for theregular perturbation theory following the Weisskopf-Wigner theory. But the non-perturbative ground
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state energy recovers the order of the square, which is the same order as that by regular perturbation
theory, in the coupling length when the Lee model is outside the region of the regular perturbation theory.
We investigate the behavior of the ground state energy with the Jaynes-Cummings model [Mi, \S 6.4] in
quantum optics.

As to such alow energy of the non-perturbative ground state beyond the regular perturbation theory,

asimilar non-perturbative ground state is shown in physics by Preparata [Pr90, Pr95] and Enz [En].

It is called superradiant ground state from the point of view of superradiance of soft photons. The
superradiance was, of course, found by Dicke in [Di]. Its existence is proved with the path-integral
method by Preparata, and with another manner by Enz. But it has not yet been clarified whether
the ground state showed in [Hi] is superradiant or not. By the way, in [Hi] we had adhered to the
coupling length. But, following the recent result [BiOl] by Billionnet, we should consider the condition of
physical parameter $B_{g,\mu}$ which represents arelation of the coupling length and an infrared or ultraviolet
singularity condition. We apply the same method as [Hi] to aspecial Lee Model and prove there also
exists the similar non-perturbative ground state being still in the standard state space. Thus, we show
that the non-perturbative ground state is stable, and moreover the ground state energy is also lower than
the normal renormalized mass showed in [Le] by Lee.

In Lee’s renormalization argument, there is the possibility that such aground state becomes aghost.
Actually, Lee noted briefly in [Le, footnote 4] the existence of another state from the state with the
normal renormalized mass. And moreover, in the process of developing the renormalizable field theory,

Kallen and Pauli investigated precisely in [KP] the existence of another state than the normal state,
and they showed concrete form of the state and it has lower energy than the normal renormalized mass.
But we cannot understand their extra ground state in the standard Hilbert space theory because it has
negative ‘norm’ coming from complex renormalization constant. We are interested in the relation among
the states which we show in this paper, Preparata found, and Lee, K\"all\’en and Pauli found.

For awhile, let us review Lee’s renormalization argument [Le], Kallen and Pauli’s [KP] renormalization
argument, and the Weisskopf-Wigner model [Hi].

1.1 Lee’s Renormalization Argument
The Lee model describes the interacting system between two neutral fermion fields $V$ and $N$ and a
neutral scalar boson field 0. In this paper, we use the natural units, $\hslash=c=1$ . Let $\psi_{v}$ , $\psi_{V}^{1}$ and
$\psi_{N}$ , $\psi_{N}\dagger$ be annihilation and creation operators of $V$-particle and $N$-particle, respectively, and let $\alpha.$ , $\alpha_{\theta}^{1}$

be annihilation and creation operators of $\theta$-particle, respectively. Then, the Hamiltonian of the Lee model
is given by

$H:=H_{0}+gH_{I}$ , (1.1)

$H_{0}:=m_{V} \int_{\mathrm{B}^{\mathrm{d}}}d^{d}p\psi_{V}^{1}(p)\psi_{V}(p)+m_{N}\int_{\mathrm{B}^{\mathrm{d}}}d^{d}p\psi_{N}^{1}(p)\psi_{N}(p)$

$+ \int_{1\mathrm{B}^{\mathrm{d}}}d^{d}k\omega(k)\alpha_{l}^{1}(k)\alpha,(k)$ (1.2)

$H_{I}:= \int_{\mathrm{R}^{\mathrm{d}}\mathrm{x}\mathrm{R}^{\mathrm{d}}}d^{d}pd^{d}k\frac{\rho(\omega(k))}{\sqrt{2\omega(k)}}(\psi_{V}^{\uparrow}(p)\psi_{N}(p-k)\alpha, (k)$

$+\psi_{V}(p)\psi_{N}^{1}(p-k)\alpha_{\theta}^{1}(k))$ , (1.3)

where $\omega(k)$ gives the dispersion relation defined by $\omega(k):=\sqrt{k^{2}+\mu^{2}}(\mu\geq 0)$ , and $m_{V}>0$ , $m_{N}>0$ , and
$\mu\geq 0$ are bare masses of $V$-particle, $N$-particle, and $\theta$-particle, respectively. And $g$ is the bare coupling
constant, $\rho$ is introduced as acutoff function of energy. We note that the following: although V-particle
and $N$-particle have momenta, they do not have kinetic energies. Thus, we here understand that the
masses $m_{V}$ and $m_{N}$ are so heavy that we can ignore the kinetic energies.

The interaction Hamiltonian $H_{I}$ represents the reaction

$V=N+\theta$ . (1.4)

Namely, a $V$-particle emits a $\theta$-particle, and changes into an $N$-particle. On the other side, an $\mathrm{i}\mathrm{V}$-particle
absorbs a $\theta$-particle, and changes into a $V$-particle. Moreover, $m_{V}$ has arenormalization because of the
process of $Varrow N+\thetaarrow V$ , and the process of $N+\thetaarrow Varrow N+\theta$ means the scattering of $\theta$-particle
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by \^A-particle. Thus, the physical system described by H possesses two conservation laws:

$N_{V}+N_{N}$ $=$ constant, (1.5)
$N_{V}+N_{\theta}$ $=$ constant, (1.6)

where $N_{V}$ , $N_{N}$ , and $N_{\theta}$ are the total number of $V$-particles, V-particles, and O-particles, respectively.
Because of thes$\mathrm{e}$ conservation laws (1.5) and (1.6), the eigenstate of $H$ contains only afinite number of
particles. So, the eigenstate can be solved directly, and Lee performed that in [Le].

Let $|V(p))$ and $|N(p))$ be the state of the bare $V$-particle and $N$-particle, respectively. We denote thestate of the corresponding physical particles by $|\mathrm{V}(p))$ and $|\mathrm{N}(p))$ . Then, by (1.4), (1.5), and (1.6), wehave

$|\mathrm{N}(p))=|N(p))$

$|\mathrm{V}(p)\rangle:=Z_{V}^{1/2}\{$

(1.7)

$|V(p))+g \int_{1^{\mathrm{d}}}d^{d}kf(k)\alpha^{1},(k)|N(p-k))\}$ , (1.8)

where $Z_{V}^{1/2}$ is anormalization constant, and the function, $f(k)$ , is determined latter for an ultravioletcutoff.
We now follow the theory of renormalization by the power series method [Dy, Sa, Wa] in the pertur-bative way. We denote the renormalized mass of $V$-particle, renormah.zed constant of wave function, and

renormalized coupling constant by $mc$ , $Z_{2}$ , and $g_{\mathrm{c}}$ . Then, as Lee proved in [Le], the self-energy is givenby

$\Sigma(p_{0})=g^{2}\int_{1^{d}}d^{d}k\frac{|\rho(\omega(k))|^{2}}{2\omega(k)}\frac{1}{(p_{0}-m_{N}-\omega(k))}$, (1.9)

where $p_{0}$ is -: times the fourth component $p_{4}$ of the momentum vector $\mathrm{P}$ , i.e., $p_{0}=-p_{4}$ . So, the
renormalized constant $Z_{2}$ is given by $Z_{2}^{-1}\equiv Z_{2}^{-1}(m_{\mathrm{c}})=d\Sigma(p_{0})/dp0$ at $p_{0}=m_{\mathrm{c}}$ on the mass shell
$p^{2}+m_{\mathrm{c}}^{2}=0$ . Namely,

$Z_{2}^{-1} \equiv Z_{2}^{-1}(m_{\mathrm{c}})=1+g^{2}\int_{\bullet \mathrm{d}}d^{d}k\frac{|\rho(\omega(k))|^{2}}{2\omega(k)}\frac{1}{(m_{\mathrm{c}}-m_{N}-\omega(k))^{2}}$. (1.10)

Following the way by [Sa], we put

$g_{\mathrm{c}}^{2}:=Z_{2}g^{2}$ . (1.11)
Then, by (1.10) we have

$g^{2}=g_{\mathrm{c}}^{2} \{1-g_{\mathrm{c}}^{2}\int_{\bullet\ell}d^{d}k\frac{|\rho(\omega(k))|^{2}}{2\omega(k)}\frac{1}{(m_{\mathrm{c}}-m_{N}-a/(k))^{2}}\}^{-1}$ , (1.12)

$Z_{2}=1-g_{\mathrm{c}}^{2} \int_{1^{\ell}}d^{d}k\frac{|\rho(\omega(k))|^{2}}{2\omega(k)}\frac{1}{(m_{\mathrm{c}}-m_{N}-\omega(k))^{2}}$ (1.13)

as shown in [Le, (26), (27)]. Thus, $g$ and $Z_{2}$ are dependent of $m_{\mathrm{c}}$ , $g_{\mathrm{c}}$ , and $\rho$ , i.e., $g=g(m_{\mathrm{c}},g_{\mathrm{c}},\rho)$ ,
$Z_{2}=Z_{2}(m_{\mathrm{c}}, g_{\mathrm{c}}, \rho)$ . Then, following the primal policy $\circ \mathrm{f}$ renormalization, we insert observed values into
$m_{\mathrm{c}}$ and $g_{\mathrm{c}}$ respectively, and $Z_{2}$ has to be finite as $\rhoarrow 1$ for the fixed $m_{\mathrm{c}}$ and $g_{\mathrm{c}}$ . Then, when we regard
$m_{c}$ and $g_{\mathrm{c}}$ as independent variables, we can define afunction, $Z_{2}^{r\mathrm{e}n}(m_{\mathrm{c}}.,g_{\mathrm{c}}, \rho)$, from $Z_{2}$ , i.e.,

$Z_{2}^{r\mathrm{e}n}(m_{\mathrm{c}},g_{\mathrm{c}},\rho)$ is defined by (1.13) for independent variables, $m_{\mathrm{c}},g_{\mathrm{c}}\in \mathrm{R}$ (1.10)

Since the physical meming of $Z_{2}^{r\mathrm{e}n}$ is the probabih.ty of existence of a state, we have to avoid aghost
$(Z_{2}^{ren}<0)$ . Thus, we cannot take such a limit freely, and we have to keep $(m_{\mathrm{c}},g_{\mathrm{c}},\rho)$ really so that $Z_{2}^{r\mathrm{e}n}$

can be between 0and 1(see the conclusion of [KP]). This is one of Lee’s statements in [Le, $\mathrm{K}\mathrm{P}$] as tothe non-unitary-equivalence between the bare particle states and physical particle states. Set

$g_{\mathrm{c}r}:\mathrm{c}$ $:= \{\int_{1^{\ell}}d^{d}k\frac{|\rho(\omega(k))|^{2}}{2\omega(k)}\frac{1}{(m_{\mathrm{c}}-m_{N}-\omega(k))^{2}}\}^{-1/2}$ (1.15)
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$Z_{2}^{ren}=1- \frac{g_{c}^{2}}{g_{cr\dot{|}t}^{2}}$ . (1.16)

And the renormalized coupling constant, $g_{c}$ , has to satisfy $|g_{c}|\leq g\mathrm{c}rii$ to $Z_{2}^{ren}$ lies between zero and one.
On the other hand, we have

$g_{c}=g \{1+g^{2}\int_{\mathrm{B}^{\mathrm{d}}}d^{d}k\frac{|\rho(\omega(k))|^{2}}{2\omega(k)}\frac{1}{(m_{c}-m_{N}-\omega(k))^{2}}\}^{-1}$ (1.17)

So, when we regard $g$ and $m_{c}$ as independent variables, we can define afunction, $g_{c}^{\mathrm{f}en}$ , from $g_{\mathrm{c}}$ , i.e.,

$g_{c}^{\mathrm{r}en}(m_{\mathrm{c}},g, \rho)$ is defined by (1.17) for independent variables $m_{\mathrm{c}},g\in \mathrm{R}$ . (1.16)

So, it is important to check the normal zone, $\mathcal{G}_{m_{\mathrm{c}},\rho}$ , which is given by the range of the function, $g_{\mathrm{c}}(g)=$

$g_{c}(m_{c},g, \rho)$ , of $g\in \mathrm{R}$ for fixed $m_{c}$ and $\rho$ arbitrarily, i.e., $\mathcal{G}_{m_{\mathrm{C}},\rho}:=\{g_{c}(m_{c},g,\rho)|-\infty<g<\infty\}$ . Because,

if the observed coupling constant, $g_{\mathit{0}}bs$ ’ is more than $g^{\uparrow}(g, \rho):=\sup_{g}g_{\mathrm{c}}(m_{c},g, \rho)(\mathrm{i}.\mathrm{e}., g_{obs}>g^{\uparrow}(g, \rho))$ ,

we cannot take $g_{\mathrm{c}}$ as $g_{c}=gob$ . For the fixed $m_{c}$ , by (1.17)

$|g_{c}|\leq\{$ 4 $\int_{\mathrm{p}\ell}d^{d}k\frac{|\rho(\omega(k))|^{2}}{2\omega(k)}$ (1.19)

$g_{\mathrm{c}}arrow 0$ as $|g|arrow\infty$ . (1.20)

Thus, $|g_{c}|<g_{ct}it$ now.
On the other hand, for the Lee model we can determine $m_{c}$ independently of the perturbative way.

As we did in [AHOO, \S 6.2] and [Hi, (2.11)] we introduce afunction, $D(z;\alpha)$ , of $z$ by

$D(z; \alpha):=-z+m_{V}-\alpha^{2}\int_{\mathrm{J}\mathrm{B}^{\mathrm{d}}}d^{d}k\frac{|\rho(\omega(k))|^{2}}{2\omega(k)}\frac{1}{\omega(k)+m_{N}-z}$ (1.21)

defined for all $z\in \mathbb{C}$ and every $\alpha\in \mathrm{R}$ such that $|\rho(\omega(k))|^{2}/\omega(k)|z-m_{N}-\omega(k)|$ is Lebesgue integrable
on $\mathrm{R}^{d}$ . In the same way as [AHOO, \S 6.2], $D(z;\alpha)$ is defined in the cut plane $\mathbb{C}_{m_{N},\mu}:=\mathbb{C}\backslash [m_{N}+\mu, \infty)$ ,
$\mu\geq 0$ , and analytic there. It is easy to see that $D(x;\alpha)$ is monotone decreasing in $x$ $<m_{N}+\mu$ . Hence,

the limit $d_{\mu}( \alpha):=\lim_{x\uparrow m_{N}+\mu}D(x; \alpha)$ exists, and

$d_{\mu}( \alpha)=-\mu-m_{N}+m_{V}-\alpha^{2}\lim_{t\downarrow 0}\int_{1\mathrm{B}^{\ell}}d^{d}k\frac{|\rho(\omega(k))|^{2}}{2\omega(k)}\frac{1}{\omega(k)-m_{N}-\mu+t}$. (1.22)

In the case of $d_{\mu}(g)<0$ , $\mathrm{D}(\mathrm{z};g)=0$ has asolution, $z=m_{v_{c}}$ . Thus, by this solution, $m_{V_{\mathrm{C}}}$ , and (1.8),

we know that

$| \mathrm{V}(p))=Z_{V_{\mathrm{C}}}^{1/2}\{|V(p)\rangle+g\int_{\mathrm{B}^{\ell}}d^{d}k\frac{\rho(\omega(k))}{\sqrt{2\omega(k)}}\frac{1}{m_{V_{\mathrm{C}}}-m_{N}-\omega(k)}\theta^{\uparrow}(k)|N(p-k)\rangle\}$ (1.23)

is an eigenstate of $H$ with $H|\mathrm{V}(p))=m_{V_{\mathrm{C}}}|\mathrm{V}(p))$ , where we took $Z_{V}$ as $Z_{V}=Z_{V_{\mathrm{C}}}\equiv Z_{2}(m_{V_{\mathrm{C}}})$ . Therefore,

acandidate for $m_{c}$ is $m_{V_{\mathrm{C}}}$ , i.e., $m_{c}=m_{v_{e}}$ . Moreover,

$m_{V_{\mathrm{C}}}<m_{N}+\mu$
(1.24)

for every $|g|$ satisfying $D(0;g)<0$ .
By the way, using the fact that scattering state satisfies the Lippmann-Schwinger equation, it is known

that the scattering amplitude is given by

$g_{v_{e}}^{2} \frac{\rho(\omega(k))}{\sqrt{2\omega(k)}}\frac{\rho(\omega(k’))}{\sqrt{2\omega(k)}},\delta(p+k-p’-k’)\frac{1}{m_{N}+\omega(k)-m_{v_{e}}}$

$\mathrm{x}\{1-g_{\mathrm{v}_{\mathrm{c}}}^{2}\int_{\mathrm{n}^{\iota}}d^{d}k’\frac{|\rho(\omega(k’))|^{2}}{2\omega(k’)},\frac{m_{N}+\omega(k)-m_{V_{\mathrm{C}}}}{(\omega(k)-\omega(k)+i\epsilon)(m_{v_{\mathrm{c}}}-m_{N}-\omega(k’))^{2}}\}^{-1}$

209



(e.g., see [Ta, (53)]), where $p$ and $k$ denote the momenta of scattering state of $N$-particle and $\theta$-particle
respectively, $p’$ and $k’$ are those of $N$-particle and $\theta$-particle coming into a detector respectively, and
moreover $g_{V_{\mathrm{C}}}^{2}:=Z_{v_{\mathrm{c}}}g^{2}$ , $i\epsilon(\epsilon>0)$ comes from the adiabatic factor in the Lippmann-Schwinger equation,
and $i\epsilon$ means the outgoing plane wave. Thus, since differential cross-section is given by the square of the
absolute value of the scattering amplitude, (1.24) means that

$V$-particle is stable for every $g$ with $D(0;g)<0$ , i.e., (1.26)

V-particles do not decay into AT-particles and $\theta$-particles spontaneously beyond (1.24) because (1.5) holds
and the resonance scattering hardly occurs since $\omega$ $(k’)\geq\mu>m_{v_{\mathrm{c}}}-m_{N}$ , which comes from all higher
order revisions

$N+\thetaarrow Varrow N+\thetaarrow Varrow N+\thetaarrow\cdots$

for the regular perturbation theory following the Weisskopf-Wigner theory. On the other hand, even if
$m_{N}<m_{V}$ first, we have (1.24) as long as the coupling constant $g$ satisfies $D(0;g)<0$ . Thus, in the
process from $m_{N}<m_{V}$ to (1.24),

JV-particle is unstable for every $g$ satisfying $D(0;g)<0$ , i.e., (1.27)
$N$-particles decay into $V$-particles by absorbing $\theta$-particles.

1.2 K\"all\’en and Pauli’s Renormalization Argument
In this subsection, we review K\"all\’en and Pauli’s renormalzation argument in [KP] in terms of our
situation.

We set

$m_{V}=m_{N}=m>0$ , (1.28)
$\delta m$

$:=m_{V_{\mathrm{C}}}-m$. (1.29)

Then, by (1.11), (1.13), and (1.22) we know that $z=m_{V_{e}}$ is asolution of

$D(z;g)=-z+m- \delta m-\frac{g_{\mathrm{c}}^{2}}{2Z_{2}}\int_{1^{\ell}}d^{d}k\frac{|\rho(\omega(k))|^{2}}{\omega(k)}\frac{1}{\omega(k)-(z-m_{v_{e}}+\delta m)}=0$ .

(1.30)

K\"all\’en and Pauli derived

$h(z-m_{V_{\mathrm{C}}})$

$:=$ $(z-m_{v_{\mathrm{c}}})[1+ \frac{g_{\mathrm{c}}^{2}}{2}\int_{1^{\mathrm{d}}}d^{d}k\frac{|\rho(\omega(k))|^{2}}{\omega(k)}\frac{z-m_{v_{\mathrm{c}}}}{(\omega(k)-\delta m)^{2}(\omega(k)-\delta m-(z-m_{v_{e}}))}]$

$=$ 0. (1.31)

from (1.30) by using (1.29) and (1.16) in [KP]. Of course, $z=m_{\mathrm{v}_{e}}$ is asolution of (1.31), but K\"all\’en and
Pauli found that there exists another solution $z=\lambda_{KP}$ , living on the real axis with $\lambda_{KP}<m_{\mathrm{v}_{\mathrm{c}}}[\mathrm{K}\mathrm{P},$ \S II
and Appendix $\mathrm{I}$]. And, they gave the concrete form of the state with energy $\lambda_{KP}$ as

$| \mathrm{V}_{KP}(p)\rangle=\frac{1}{\sqrt{|h’(\lambda_{KP})|}}\{Z_{v_{e}}^{\mathrm{r}en1/2}|V(p))+g_{c}\int_{\bullet\ell}d^{d}k\frac{\rho(\omega(k))}{\sqrt{2\omega(k)}}$

$\mathrm{x}\frac{1}{\omega(k)-\lambda_{KP}-\delta m}\theta^{\uparrow}(k)|N(p-k)\}\}$ ,

where $|\mathrm{V}_{KP}(p)\rangle$ has not yet been normalized. Then, the normalization becomes negative because $Z_{V_{\mathrm{C}}}^{ren}$

makes a ghost (i.e., $Z_{v_{\mathrm{c}}}^{ren2}<0$ ) for so large coupling as to exist the solution. Here we regarded $Z_{V_{e}}$ as the
function 2 $V_{\mathrm{C}}ten$ of independent variables $m_{V_{\mathrm{C}}}$ , $g_{\mathrm{c}}$ running over $\mathrm{R}$ respectively, and $\rho$ in the sens$\mathrm{e}$ of (1.14).
So, such amathematically strange situation occurs. In order to cope with this trouble, they introduced
an indefinite metric in the Hilbert space [$\mathrm{K}\mathrm{P},$ \S III].

210



1.3 Wigner-Weisskopf Model
In this subsection, we review and modify the results on the Weisskopf-Wigner model in [Hi] to apply

them to physics of $7\mathrm{r}$-mes0n.

Nuclear force is the first example with the strong interaction between elementary particles. The

coupling length of the interaction between baryon and meson is in the region from 0.1 to 10, and it
is very large as compared with 1/137, that of quantum electrodynamics. As is well known, nuclear

force connects nucleus and nucleon. Nucleon is ageneric name of proton (p) and neutron (n), and is
constructed by $u$-quark and $d$-quark. The particle taking ajob of nuclear force is 7r-mes0n. Physics

for $\pi$-meson was investigated actively in $1940\mathrm{s}$ and $1950\mathrm{s}$ (see [HT]). On the other hand, as mentioned
in introduction, mathematics for the non-perturbative treatment of models with large coupling length
which physicists once argued such as $\pi$-meson is recently and gradually established. In this subsection,

by applying mathematical techniques developed recently to the theory of $\pi$-meson, we argue rigorously
existence and nonexistence of state in the elementary process of $n=p+\pi^{-}$ for each total charge $Q$ and
all coupling length $g$ . Here ‘state’ means that eigenvector of the Hamiltonian for our model is still alive
in the Hilbert space representing the statespace.

The model with the interaction between $\pi$-meson and nucleon considering all elementary processes,
$p=p+\pi^{0}$ , $p=n+\pi^{\mathfrak{j}}$ , and $n=p+\pi^{-}$ , is described by the following Hamiltonian (see [HT]):

$H$ $=$ $H_{0}+H’$ , (1.32)

$H_{0}$ $=$ $\sum\int_{0}^{\infty}d^{3}k\omega(k)a_{\ell}^{|\alpha m}(k)a_{\ell}^{\alpha m}(k)$, (1.33)
$\ell,m,\alpha$

$H’$ $=$ $\frac{f}{\mu}\sum_{m\alpha}\int_{0}^{\infty}\frac{d^{3}kk^{2}}{(12\pi^{2}\omega(k))^{1/2}}\lambda(k)\tau_{\alpha}\sigma_{m}\{a_{1}^{\alpha m}(k)+a_{\ell}^{|\alpha m}(k)\}$ , (1.34)

where $\tau_{\alpha}$ and $\sigma_{m}$ are the standard $\tau$-matrices and Pauli’s c-matrices.
We now assume $\omega(k)=\sqrt{k^{2}+m^{2}}$, where $m$ is the mass of $\pi$ meson We set

$H_{\alpha m}= \int_{0}^{\infty}d^{3}k\omega(k)a_{\ell}^{|\alpha m}(k)a_{\ell}^{\alpha m}(k)+\frac{f}{\mu}\int_{0}^{\infty}\frac{d^{3}kk^{2}}{(12\pi^{2}\omega(k))^{1/2}}\lambda(k)\tau_{\alpha}\sigma_{m}\{a_{1}^{\alpha m}(k)+a_{\ell}^{|\alpha m}(k)\}$ .

Then, regarding $\mathcal{H}$ @ $F_{\pi}$ , $A$ and $B_{j}$ in [AH97, (1.6)] as $\mathbb{C}^{2}$ @ $\mathbb{C}^{2}\otimes F_{\pi}$ , 0 and raam, respectively, where
$\mathcal{F}_{\pi}$ is the boson Fock space representing the state space for $\pi$-meson, we know that Ham is an example
of the generalized spin-boson model we called in [AH97]. By [AH97, Theorem 1.2 and Remark 1.2], $H_{\alpha m}$

has aground state, which implied that if $\lambda(k)$ is continuous, and $\int_{\mathrm{B}^{3}}d^{3}kk^{4}\lambda(k)^{2}<\infty$ , then there is $a$

ground state for $H$ .

Unfortunately, the only thing we can say for $H$ now is the above assertion with the estimates of the
ground state energy in [AH97, Proposition 1.4], and we do not have physical properties for $H$ . In order
to argue physical properties for $\pi$-meson more precisely in this paper, we treat the elementary process
$n_{\vee}-p+\pi^{-}$ without $p=p+\pi^{0}$ and $p=n+\pi^{+}$ from now on.

We express nucleon coupling $\pi$ meson by $|p$) and $|n$ ) as $|p$) $=(\begin{array}{l}10\end{array})$ $\Omega_{\pi}$ aanndd $|n$) $=(\begin{array}{l}01\end{array})$ $\Omega_{\pi}$ be the

bare state of proton and neutron respectively, where $\Omega_{\pi}$ is the vacuum of $\pi$ meson Set

$\tau_{+}=(\begin{array}{ll}0 10 0\end{array})$ , $\tau_{-}=(\begin{array}{ll}0 01 0\end{array})$ , $\tau_{3}=(\begin{array}{ll}1 00 -1\end{array})$ . (1.35)

Thus, the operation of $\tau\pm \mathrm{a}\mathrm{n}\mathrm{d}$
$\tau_{3}$ acting on nucleon are

$\tau_{-}|p)=|n)$ $\tau_{-}|n)=0$ ,
$\tau_{+}|n)=|p)$ $\tau_{-}|p)=0$ , (1.36)
$\tau_{3}|p)=|p)$ $\tau_{3}|n)=-|n)$ .

Then, following [HT], we employ the interaction which occurs $n=pf$ $\pi^{-}$ with the form,

$(\tau_{+})$ . (creation operator of $\pi^{-}$ -meson) $+(\tau_{-})$ . (annihilation operator of $\pi^{-}$ -meson).
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So, the Hamiltonian describing the process, $n-arrow p+\pi^{-}$ , is given by

$H_{\pi^{-}}$ $=$ $H_{\pi^{-},0}+H_{\pi^{-}}’$ , (1.37)
$H_{\pi^{-},0}$ $=$ $\frac{1-\tau_{3}}{2}E_{0}+\int_{1^{\theta}}d^{3}k\omega(k)a^{\uparrow}(k)a(k)$ (1.38)

$H_{\pi^{-}}’$ $=$ $g \int_{\bullet S}d^{3}k\lambda(k)\{\tau_{-}a(k)+\tau_{+}a^{\uparrow}(k)\}$ , (1.39)

where \^a(k) and $a^{\mathrm{t}}(k)$ are the annihilation and creation operators respectively with
$[a(k), a^{\mathrm{t}}(k’)]$ $=$ $\delta(k-k’)$ , (1.40)
$[a(k), a(k’)]$ $=$ $[a^{\mathrm{t}}(k), a^{\mathrm{t}}(k’)]=0$ , (1.41)

$H_{\pi}-,0|p)=0$ and $H_{\pi}-,0|n$) $=E_{0}|n$). (1.42)
Moreover, the physical state $|\mathrm{p}\rangle$ of proton is same as its bare state, i.e., $|\mathrm{p}\rangle$ $=|p$), so we have

$H_{\pi^{-}}|\mathrm{p})=0$ . (1.43)
The point eigenvalues $\sigma_{p}(H_{\pi^{-},0})$ of $H_{\pi^{-},0}$ are 0and $E_{0}$ , i.e., $\sigma_{p}(H_{\pi^{-},0})=\{0, E_{0}\}$ .

We note here that Hw- is the same Hamiltonian as in [Hi, (2.10)]. Thus, for the Pauli matrix
$\sigma_{1}=(\begin{array}{ll}0 11 0\end{array})$ , we have that $\sigma_{1}H_{\pi^{-}}\sigma_{1}\mathrm{i}_{8}$ the Wigner- Weisskopf Hamiltonian called in [Hi, (2.4)] or the
spin-boson Hamiltonian with the rotating wave approximation called in [HS, 56].

The total charge $Q$ is given by

Q $= \frac{1}{2}\tau_{3}-\int_{1^{3}}d^{3}ka^{\uparrow}(k)a(k)$ . (1.44)

Then, Hr- conserves the total charge, $[H_{\pi^{-}}, Q]=0$ . Therefore, $H_{\pi^{-}}$ can be written as the direct sum
$\circ \mathrm{f}$

$H_{Q=-(2\nu-1)/2}’ \mathrm{s}(\nu=0,1,2, \cdots)$ , where $Hq=-(2\nu-1)/2$ is the restricted $H_{\pi^{-}}$ on the space of all states
with $Q=-(2\nu-1)/2$ . We note here that $\frac{1}{2}-U_{1}^{*}QU_{1}$ is written by $N_{P}$ in $[\mathrm{H}\mathrm{S}, (6.2)]$ and [Hi, (2.17)] asthe total number operator.

It is easy to check the states with $Q= \pm\frac{1}{2}$ , but it is well-known that it is difficult to show that
existence of states with $Q=- \frac{N}{2}$ for large odd number $N$ as Henley and Thirring wrote in their text
book [HT]. In this subsection, we prove that the existence of astate with $Q=- \frac{2(\nu-1)}{2}$ for $\mathrm{N}\ni\nu\geq 2$ ,and argue when the state appears. We know that the appearance is not standard one.

Here we introduce aphysical parameter Bgtm consisting of the coupling length and the self-energy ofboson part as follows:

$B_{g.m}:= \int_{\bullet 3}d^{3}kB_{g,m}(k)$ , $B_{g,m}(k):=g^{2} \frac{\lambda^{2}(k)}{\omega(k)}$ , (1.45)

which is amodification of the parameter introduced in [BiOl] by Billionnet. The importance of $\lambda^{2}(k)/\omega(k)$

was also pointed out in [$\mathrm{A}\mathrm{E}$ , IV.A]. And, in the same way as (1.21), we introduce afunction $D(z;g)$ of $z$

by

$D(z;g):=-z+ \mu_{0}-g^{2}\int_{\mathrm{I}^{5}}\oint k$ $\frac{|\lambda(k)|^{2}}{\omega(k)-z}$ . (1.46)
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And also, we obtain aparameter as the limit $d_{m}(g):= \lim_{x\uparrow m}D(x;g)$ because it exists. For fixed mass
$m$ , the parameter $d_{m}(g)$ becomes negative, $d_{m}(g)<0$ , when $|g|$ grows.

We treat now the case of $m>0$ , then the existence of the ground state comes from [AH97, Theorem
1.2]. In the case of $m=0$ , the existence is due to Gerard’s work [Ge], which is explained in Section 2.
We denote the ground state and ground state energy by $|\Psi_{grd}\rangle$ and $E_{grd}$ , respectively:

$H_{\pi^{-}}|\Psi_{grd}\rangle=E_{grd}|\Psi_{grd}\rangle$ . (1.47)

To restrain astate from appearing for $N_{P}\geq 2$ , we define adifferential operator $Dhs$ by

$D_{HS}:= \frac{1}{2}(\frac{1}{|\nabla_{k}\omega|^{2}}\nabla_{k}\omega\cdot\nabla_{k}+\nabla_{k}\cdot\nabla_{k}\omega\frac{1}{|\nabla_{k}\omega|^{2}})$ . (1.48)

The operator $Dhs$ was introduced by Hiibner and Spohn in $[\mathrm{H}\mathrm{S}, (2.9)]$ to apply the Mourre estimate,

and it is called conjugate operator by mathematicians.
Our $\omega(k)$ and $\lambda(k)$ satisfy the assumptions [$\mathrm{H}\mathrm{S}$ , (A.I) &(A.2)]. If $D(z;g)=0$ has a solution, then

we can make a state with $Q=- \frac{1}{2}$ . But, under $d_{m}(g)\geq 0$ , since it menas $[\mathrm{H}\mathrm{S}, (6.3)]$ , we cannot make
any state with $Q=- \frac{1}{2}$ as Hiibner and Spohn mentioned after $[\mathrm{H}\mathrm{S}, (6.3)]$ . Thus, with the result in $[\mathrm{H}\mathrm{S}$ ,
Proposition 15], we obtain the following:

$[Q=- \frac{1}{2}]$ Suppose that

$g^{2} \int_{\mathrm{E}^{3}}d^{3}k|D_{HS}\lambda(k)|^{2}<1$ and $\int_{\mathrm{B}^{3}}d^{3}k|D_{HS}^{2}\lambda(k)|^{2}<\infty$. (1.47)

Then, state with $Q= \frac{1}{2}$ exists for all $g$ with $d_{m}(g)\geq 0$ , and it is $|p$) of which energy is 0. There is no state
with $Q=- \frac{2\nu-1}{2}$ for $\nu\in \mathrm{N}$ . Moreover, the essential spectra of $H_{\pi^{-}}$ is given as $\sigma_{\mathrm{e}ss}(H_{\pi^{-}})=[m, \infty)$ .
Here ‘essential spectra’ means all continuous energy levels and point energies of infinitely degenerated
eigenstates. All the results about essential spectra in this paper are due to [ArOO]. In the case of $m=0$ ,
we can use Skibsted’s results instead of Hiibner and Spohn’s, which is explained in Section 2.

But, if $d_{m}(g)<0$ , then the condition $[\mathrm{H}\mathrm{S}, (6.3)]$ breaks. Namely, $D(z;g)=0$ has areal solution,
$z=E_{c}$ . So we can make an eigenvector with $E_{c}$ as its eigenvalue. Namely, the physical state of neutron
$|\mathrm{n}\rangle$ is given by

$| \mathrm{n}\rangle=Z_{\mathrm{c}}^{1/2}\{\tau_{-}+g\int_{\mathrm{J}\mathrm{B}^{3}}d^{3}k\frac{\lambda(k)}{E_{c}-\omega(k)}a^{\uparrow}(k)\}|p)$ (1.50)

with $H_{\pi^{-}}|\mathrm{n}$) $=E_{c}|\mathrm{n}\rangle$ , where $Z_{c}$ is the normalization. Then,

$E_{\mathrm{c}}<m$ for every $|g|$ satisfying $D(0;g)<0$ , (1.51)

which means that as to $E_{\mathrm{c}}$ the decay from neutron to proton and $\pi^{-}$ -meson is stable. $E_{c}$ does not have
the same order in the coupling length as $g^{2}$ following from the regular perturbation theory. We have that

$E_{c}\sim g\sqrt{\int d^{3}k|\lambda(k)|^{2}}$ as g $arrow\infty$ , (1.52)

where we note that the term with the order $g$ vanishes in the regular perturbation theory.
Since $H_{Q=-1/2}$ has astate, this is the different result from the result which H\"ubner and Spohn

mentioned after $[\mathrm{H}\mathrm{S}, (6.3)]$ and before [HS, Proposition 15]. But, if we assume the hypotheses in $[\mathrm{H}\mathrm{S}$ ,
Prosoition 15], then all $H_{Q=-(2\nu-1)/2}(\mathrm{N}\ni\nu\geq 2)$ have no state by [HS, Prosoition 15].

The following condition is to avoid the $\alpha$ decay in the meaning of the remark mentioned by Henley
and Thirring for $n=p+\pi^{-}$ in [HT]:

(Anti $\alpha$ ) The function $\frac{|\lambda(k)|^{2}}{|x-\omega(k)|}$

. not Lebesgue integrable for all $x\in(m, \infty)$ .

And set

$M_{g}:= \int_{\mathrm{B}^{3}}d^{3}k\lambda(k)^{2}\{\omega(k)-\mu_{0}+B_{g,m}\}^{-1}$ (1.53)

Then, we obtain the following (see [Hi, Theorem 2.1]):
$[Q= \pm\frac{1}{2}]$ Assume (Anti $\alpha$) and (L49). Then, for all $g$ with $d_{m}(g)<0$
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(i) State with $Q=- \frac{1}{2}$ exists, and it is $|\mathrm{n}\rangle$ of which energy is $E_{c}$ .
(ii) State with $Q= \frac{1}{2}$ exists, and it is $|p$) of which energy is 0.
(iii) There is no state with Q $=- \frac{2\nu-1}{2}$ for N $\ni\nu\geq 2$ .
(iv)

. If $B_{g,m}<E_{0}$ , then $|p$) is a unique ground state and $|\mathrm{n}\rangle$ a unique excited state.. If $B_{g,m}=E_{0}$ , then $|p$) and $|\mathrm{n}\rangle$ are 2-fold degenerate ground states.. If $B_{g,m}>E_{0}$ and

$2m-E_{0}>B_{g,m}-g^{2}M_{g}+M_{g}^{-1} \int_{13}d^{3}k\lambda(k)^{2}$ ,

then $|\mathrm{n}$) is a unique ground state and $|p$) a unique excited state. Moreover, the essential spectra of
$H_{\pi^{-}}$ is given as $\sigma_{ess}(H_{\pi^{-}})=[\min\{0, E_{\mathrm{c}}\}+m,$ $\infty)$

The hypotheses in the above statement requires that $B_{g,m}$ is not so large.
Avron and Elgart argued the complex solution in the lower half plane of the analytic continuation of

$D(z;g)=0$ , which is called ‘resonance pole’ by mathematicians, associated with the state with $Q=- \frac{1}{2}$

[AE, APPENDIX]. On the other hand, without (Anti $\alpha$) there is also a possibility of the $\alpha$ decay in the
meaning of the remark mentioned by Henley and Thirring [HT] for $n=p+\pi^{-}$ . Consider the following
$\lambda_{\alpha}(k)$ instead of $\lambda(k)$ so that $\lambda_{\alpha}(k)$ breaks (Anti $\alpha$):

$\lambda(k)=0$ for $|k|\geq\kappa$ with aconstant $\kappa>0$ . (1.54)
Let $\mu(\kappa):=\sup|k|\leq\kappa\omega(k)$ . Suppose that

$\lim_{x1\mu(\kappa)}\int_{|k|\leq\kappa}d^{3}k\frac{|\lambda(k)|^{2}}{|x-\omega(k)|}=+\infty$ . (1.55)

Then, $D(x;g)$ restricted in $x\in(\mu(\kappa), \infty)$ has aunique simple zero $E_{\mathrm{c}}’$ in $(\mu(\kappa), \infty)$ , which means that
the neutron becomes unstable for the decay into proton and $\pi$-meson. Thus, we have another physical
state $|\mathrm{n}’$) given by

$| \mathrm{n}’)=Z_{\mathrm{c}}^{\prime 1/2}\{\tau_{-}+g\int d^{3}k\frac{\lambda(k)}{E_{\mathrm{c}}’-\omega(k)}a^{\uparrow}(k)\}|p)$ , (1.56)

and it is the resonance state caused by the scattering between proton and $\pi$-meson. The state $|\mathrm{n}’$ ) is
also an eigenstate of $H_{\pi^{-}}$ with $H_{\pi^{-}}|\mathrm{n}’$) $=E_{\mathrm{c}}’|\mathrm{n}’\rangle$ , where $Z_{\mathrm{c}}’$ is the normalization (see [AHOO, Remark6.4]
and [Bi98] $)$ . Therefore, in the same way as the previous result we have the following result, which is arigorous proof of the statement in [HT] on the at decay for $Q=- \frac{1}{2}$ :

[$\alpha$ Decay for $Q=- \frac{1}{2}$] If (1.54), (1.55), and (1.49) hold, then, concerning the state with $Q=- \frac{1}{2}$ ,
the two physical states of neutron always exist, and they are $|\mathrm{n}\rangle$ and $|\mathrm{n}’$). There is no state besides
$|p)$ , $|\mathrm{n})$ , and $|\mathrm{n}’$ }. The situation about the switch between the ground state and $ex$ cited state is same as
previous result about $Q=- \frac{1}{2}$ .

We can prove that, for sufficiently large $B_{g,m}$ (i.e., $Bg\% m\gg 1$), there is astate with $Q=- \frac{2\nu-1}{2}$ for
$\mathrm{N}\ni\nu\geq 2$ , and it becomes the ground state $|\Psi_{grd}$). So, it is different ffom any state in the above two
results.

As to $B_{g,m}arrow\infty$ , when we ffix $m\geq 0$ , we have, of course, $B_{g,m}arrow\infty$ for $|g|arrow\infty$ . Moreover, we
consider the low energy limit (infrared catastrophe) or high energy limit (ultraviolet catastrophe) in thefollowing sense: set

$\mathrm{I}_{m}:=\int_{1^{3}}d^{3}k\frac{|\lambda(k)|^{2}}{\omega(k)}\nearrow \mathrm{o}\mathrm{o}$ (1.57)

as $m\downarrow 0$ for fixed $\lambda(k)$ or ae $\lambda(k)arrow 1$ for fixed $m$ . Then, we have $B_{g,m}arrow\infty$ when $m\downarrow \mathrm{O}$ as long as $g$ isfixed even if $|g|$ is small or when $\lambda(k)arrow 1$ for fixed $g$ and $m$ .
By using the manner to get [Hi, (2.73)] with alittle modification, we get

$B_{g.n} arrow\infty\lim\sup\frac{E_{c}}{B_{g,m}}=\lim_{B_{g.m}}\sup_{arrow\infty}\mathrm{I}_{m}^{-1}\int_{\mathrm{R}^{3}}d^{3}k\frac{|\lambda(k)|^{2}}{E_{\mathrm{c}}-\omega(k)}$ .
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And, we can prove that the right hand side of the above equality is zero in the same way as [Hi, (2.74)]
with divergent $\mathrm{I}_{m}$ by (1.57) or finite $\mathrm{I}_{m}$ because $E_{c}arrow \mathrm{o}\mathrm{o}$ as $B_{g,m}arrow \mathrm{o}\mathrm{o}$ , but the left hand side of the
above equality is not zero in the same argument as that about the inequality after[Hi, (2.74)]. This is a
contradiction. Therefore,

$E_{c}>E_{grd}$ for $B_{g,m}\gg 1$ . (1.58)

Since $E_{grd}\neq 0$ by (1.58), $|\Psi_{grd}\rangle$ is not astate with $Q= \frac{1}{2}$ . Suppose that $|\Psi_{g\tau d}\rangle$ is astate with
$Q=- \frac{1}{2}$ . Then, by [Hi, Lemma 2.1(b)] or by solving $|\Psi_{grd}\rangle$ with $Q=- \frac{1}{2}$ directly, we know that $|\Psi_{g\mathrm{r}d}$)
has the same form of (1.50) and (1.56). So, $E_{grd}$ must be asolution of $D(z;g)=0$ , since there is no
solution but $E_{c}$ and $E_{c}’$ , we have $E_{\mathrm{c}}=E_{g\mathrm{r}d}$ , which contradicts (1.58). Therefore, $|\Psi_{grd}\rangle$ is astate with
$Q=- \frac{2\nu-1}{2}$ for some $\mathrm{N}\ni\nu\geq 2$ .

It is easy check that $|p$) and $|\mathrm{n}\rangle$ (also $|\mathrm{n}$) if it exists) are still state of $H_{\pi^{-}}$ .
Namely, we obtain
[$Q$ $=- \frac{2\nu-1}{2}$ with $\mathrm{N}\ni\nu\geq 2$ ] If $B_{g,\mu}\gg 1$ , then there always exists a ground state $|\Psi_{grd}\rangle$ with

$Q=- \frac{2\nu-1}{2}$ for some $\mathrm{N}\ni\nu\geq 2$ different from $both|p$) $and|\mathrm{n}$). Moreover, $|p$) $and|\mathrm{n}\rangle$ (also $|\mathrm{n}’\rangle$ if it exists)
become excited states of $H_{\pi}$ , and the essential spectra of $H_{\pi^{-}}$ is given as $\sigma_{\mathrm{e}ss}(H_{\pi^{-}})=[E_{g\tau d}+m, \infty)$ .
We note here that if the hypotheses in the above statement satisfies, then the ground state, $\Psi_{gtd}$ , always
appears with $Q=- \frac{2\nu-1}{2}$ for some $\mathrm{N}\ni\nu\geq 2$ . In this sense, the appearance of $\Psi_{grd}$ is stable. We
conjecture that the $\nu$ in $Q$ gets large as $B_{g,\mu}\gg 1$ grows. Although we cannot prove that yet, we can see
the tendency in the Jaynes-Cummings model [Mi, \S 6.4] for our model as we show in the next section.

2Transition of Ground State of Lee Model
In this section, we use $\omega(k)=\sqrt{k^{2}+\mu^{2}}$ defined in $1.1 for the sake of simplicity though we can
treat more general $\omega(k)$ with certain mathematical conditions. For each $\mu>0$ we take $\rho(k)$ so that
$\rho(\omega(\mathrm{k}))/\sqrt{\omega(k)}$ gets independent of $\mu\geq 0$ . So, we set A(k) $:=\rho(\omega(k))/\sqrt{2\omega(k)}^{-}$ independent of $\mu\geq 0$ ,
and we assume that A $\in L^{2}(\mathrm{R}^{d})$ , real-valued and continuous.

We here employ special annihilation and creation operators for $\psi_{V}$ , $\psi_{V}^{1}$ , and $\psi_{N}$ , $\psi_{N}^{1}$ , namely we define
them by Pauli’s spin-flip matrices. Let state space $F$ for $H$ be the Hilbert space given by 1 $:=\mathbb{C}^{2}\otimes \mathbb{C}^{2}\otimes F_{b}$ ,
where $\mathcal{F}_{b}$ is aboson Fock space over $L^{2}(\mathrm{R}^{d})$ . For operators $A$ , $B$ on $\mathbb{C}^{2}$ and $C$ acting on $F_{b}$ , we denote
$A\otimes B\otimes C$ acting on $F$ by just $ABC$ with abbreviation. Then, we set

$\psi_{V}=\psi_{N}^{\uparrow}=\sigma_{-}\equiv$ $(\begin{array}{ll}0 01 0\end{array})$ and $\psi_{V}^{1}=\psi_{N}=\sigma+\equiv$ $(\begin{array}{ll}0 10 0\end{array})$ : (2.1)

where $\sigma_{\pm}$ are Pauli’s spin-flip matrices. So, the Hamiltonian $H$ in this section has the following form:

$H=H_{0}+gH_{I}$ ,

where

$H_{0}$ $=$ $m_{V} \psi_{V}^{\uparrow}\psi_{V}+m_{N}\psi_{N}^{1}\psi_{N}+\int_{\mathrm{R}^{\mathrm{d}}}d^{d}k\omega$ $(k)\alpha_{\theta}^{\uparrow}(k)\alpha_{\theta}(k)$ (2.2)

$H_{I}$ $=$ $\int_{\mathrm{B}^{\mathrm{d}}}d^{d}k\lambda(k)(\psi_{V}^{1}\psi_{N}\alpha_{\theta}(k)+\psi_{V}\psi_{N}^{\uparrow}\alpha_{\theta}^{1}(k))$ . (2.3)

So, $\lambda(k)$ is areal-valued ultraviolet cutoff function independent of $\mu$ . We note here the following: we
set $\mathcal{H}$ $=\mathbb{C}^{2}\otimes \mathbb{C}^{2}$ , $A=m_{V}\psi_{V}^{\mathrm{t}}\psi_{V}+m_{N}\psi_{N}^{1}\psi_{V}$ , $B_{1}=(\psi_{V}^{1}\psi_{N}+\psi_{V}\psi_{N}^{\mathrm{t}})/\sqrt{2}$, $B_{2}=i(\psi_{V}^{1}\psi_{N}-\psi_{V}\psi_{N}^{1})/\sqrt{2},\cdot$

$\lambda_{1}=\lambda$ , and $\lambda_{2}=i\lambda$ . Then, we know that the special Lee model is one example of the generalized
spin-boson (GSB) model which we defined in [AH97].

The point eigenvalues $\sigma_{\mathrm{p}}(H_{0})$ of $H_{0}$ are 0, $m_{V}$ , $m_{N}$ , $m_{V}+m_{N}$ , i.e., $\sigma_{p}(H_{0})=\{0, m_{V}, m_{N}, m_{\mathrm{y}}+m_{N}\}$ .
The essential spectrum $\sigma_{ess}(H_{0})$ is $[0, \infty)$ , i.e., $\sigma_{ess}(H_{0})=[0, \infty)$ , where $\sigma_{ess}(T)$ for aHamiltonian $T$

is the set of spectrum (energies) of $T$ except simple or finitely degenerate discrete eigenvalues.
By the way, we can decompose $H$ into the direct sum of $H_{1}$ and $H_{2}$ ,

$H=H_{1}\oplus H_{2}$ , (2.4)
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$H_{1}:=m_{V}\psi_{V}^{1}\psi_{V}\psi_{N}\psi_{N}^{1}+m_{N}\psi_{V}\psi_{V}^{1}\psi_{N}^{1}\psi_{N}+(\psi_{V}^{1}\psi_{V}\psi_{N}\psi_{N}^{1}+\psi_{V}\psi_{V}^{1}\psi_{N}^{1}\psi_{N})H_{\theta}+H_{I}$

$H_{\theta}H_{2}. \cdot.\cdot==\int_{\bullet^{\iota}}d^{d}k\omega(k)\alpha^{1}.(k)\alpha.(k)m_{V}\psi_{V}^{1}\psi_{V}\psi_{N}^{1}\psi_{N}+m_{N}\psi_{V}^{1}.\psi_{V}\psi_{N}^{1}\psi_{N}+(\psi_{V}^{1}\psi_{V}\psi_{N}^{1}\psi_{N}+\psi_{V}\psi_{V}^{1}\psi_{N}\psi_{N}^{1})H_{\theta}$

,
(2.5)
(2.5)

(2.7)

Then, since the infimum of the energy of $H_{2}$ is zero, the ground state of $H_{1}$ becomes that of $H$ . Namely,
to investigate the ground state of $H$ we have only to study the ground state of $H_{1}$ . We denote the state
space which $H_{j}$ acts on by $\mathcal{F}_{j}$ for $j=1,2$ . Then, $F$ $=F_{1}\oplus F_{2}$ . Then, $H_{1}$ on $F_{1}$ is unitary equivalent
to the Weisskopf-Wigner model argued in \S 1.3 and given by [Hi, (3.11)] ( $\alpha$ , $\epsilon_{0}^{+}$ , $\epsilon_{1}^{+}$ in [Hi, (3.11)] are
our $g/2$ , $m_{V}$ , $m_{N}$ respectively). Therefore, we can understand that the regular renormalized mass $m_{v_{\mathrm{c}}}$

satisfying

$m_{v_{e}}=m_{V}+g^{2} \int_{\mathrm{R}^{\ell}}d^{d}k\frac{|\rho(\omega(k))|^{2}}{2\omega(k)}\frac{1}{m_{v_{e}}-(m_{N}+\omega(k))}$ (2.8)

represents the higher order revision for $H_{1}$ in Weisskopf-Wigner theory. Thus, $m_{v_{e}}$ does not have the
same order in the coupling length as $g^{2}$ following from the regular perturbation theory. We note here
that $m_{v_{e}}\sim g\sqrt{\int_{13}d^{3}k|\rho(\omega(k))|^{2}/(2\omega(k))}$ as $garrow\infty$ , and the term with the order $g$ vanishes in the
regular perturbation theory as remarked in (1.52).

By applying the argument in \S 1.3 for the case of $\mu>0$ , and by aPPlying [Sk, Theorem 3.1] for the cases
of $\mu=0$ , in the same way as [Hi, Proposition 2.1], we know that if $\lambda(k)$ has some proper mathematical
conditions, then the normal renormalized mass $m_{V_{\mathrm{C}}}$ is the ground state energy of $H$ for such small $|g|$

with fixed $\mu\geq 0$ as $d_{\mu}(g)<0$ , and moreover, other excited state energies are 0, $m_{N}$ , $m_{V}+m_{N}$ only. More
precisely, in the case of $\mu=0$ , let

$g_{nor}:= \{2\int_{\bullet\ell}d^{d}k|\mathrm{A}(k)|^{2}\}^{-1}$ , $\Lambda(k):=\frac{\partial\lambda(k)}{\partial|k|}+(d-1)\frac{\lambda(k)}{2|k|}$. (2.9)

If $d_{\mu}(g)<0$ and $\omega^{-1}\lambda\in L^{2}(\mathrm{R}^{d})$ , then the total number of bound states of $H_{1}$ defined by (2.5) is just 2
for $|g|<gnor$ . Thus, the ground state energy of $H$ is the normal renormalized mass $m_{\mathrm{v}_{e}}$ for $|g|<g_{nor}$

with $\mu=0$ .
By applying the argument \S 1.3 to the direct sum decomposition (2.4) to our special Lee model, for

sufficiently large $B_{g,\mu}\gg 1$ , we can prove mathematically the existence of the ground state different from
$|\mathrm{V}\rangle$ so that the ground state energy is less than the energy of $|\mathrm{V}\rangle$ . Of course, it is not strange state such
as Kallen and Pauli showed in [KP], namely our ground state lies in the standard Hilbert space $F$ .

Namely, if $B_{g,\mu}\gg 1$ , then there exists a ground state different from $|\mathrm{V}$), and $|\mathrm{V}\rangle$ becomes an excited
state of $H$ .

We have

$\sigma_{p}(H)$ :) $\{E_{grd}, m_{V_{\mathrm{C}}}, 0, m_{N}, m_{v}+m_{N}\}$

with $E_{grd}<m_{v_{e}}<0<m_{N}<m_{V}+m_{N}$ , (2.10)

$\min\{m_{V}, m_{N}\}-B_{g,\mu}\leq E_{grd}\leq\frac{m_{V}+m_{N}}{2}-\frac{1}{4}B_{g,\mu}$ (2.11)

for $B_{g,\mu}\gg 1$ . Moreover, by [ArOO], we have

$\sigma_{ess}(H)=[E_{grd}+\mu, \infty)$ (2.12)

for $B_{g,\mu}\gg 1$ .
Therefore, $H$ for $B_{g,\mu}\ll 1$ and $H$ for $B_{g,\mu}\gg 1$ are different physics respectively, which gives a

transition of ground state in the same way as $H$ in \S 1.3. Moreover, by (2.11) the non-perturbative
ground state energy recovers the order of the square in the coupling length when the Lee model is outside
the region of the regular perturbation theory. In order to get such aground state $|\Psi_{grd}\rangle$ , it is important
that we balance the coupling length with the inffared singularity $\mathrm{I}_{\mu}$ such that (1.57) holds. Namely, even
$\mathrm{i}\mathrm{f}|g|$ (resp. $\mathrm{I}_{\mu}$ ) is large, the very small $\mathrm{I}_{\mu}$ (resp. $|g|$ ) breaks (1.57), which is not enough to get $|\Psi_{grd}$). For
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the appearance of $|\Psi_{grd}\rangle$ , we have to add not only the coupling length but also the infrared singularity
$\mathrm{I}\mathrm{R}_{\mu}$ into sufficient condition.

In the case of $\mu=0$ with (1.57), we cannot prove the self-adjointness for $\mu=0$ by the Kato Rellich

theorem [$\mathrm{R}\mathrm{S}2$ , Theorem X.12], so we cannot apply the regular perturbation theory to this case. Of course,

we cannot employ the regular perturbation theory in the case $|g|\gg 1$ with the fixed $\mu\geq 0$ . Therefore,

$|\Psi_{grd}\rangle$ appears in the case beyond the perturbation theory.
As to the extra bound states with non-standard resonance, the recent Billionnet’s works [Bi98, BiOl]

are interesting and worth noting. As remarked in [AHOO, Remark 6.4] and [Hi, Remark 2.6], if we add

an extra condition to $\lambda(k)$ in the same way as the case of the $\alpha$ decay, then an extra eigenvalues appears

in $[m_{N}+\mu, \infty)$ , and it is different from $E_{grd}$ , $m_{V_{\mathrm{C}}}$ , 0, and $m_{V}+m_{N}$ . Billionnet showed in [Bi98, BiOl]

that the reason why such eigenvalues appear is not for the result of the preceding complex eigenvalue

of resonance turning into real eigenvalues when the coupling is continuously increased. We indeed knew

that $E_{grd}$ , $m_{V_{\mathrm{C}}}$ , 0, and $m_{V}+m_{N}$ are stable for $B_{g,\mu}\gg 1$ in our Lee model. Moreover, Billionnet clarified

in [BiOl] the way of appearance through the non-standard resonance.
Once we have the ground state $|\Psi_{grd}\rangle$ different from $|\mathrm{V}\rangle$ , by applying [AHOI, Theorem 3.1] in the

same way as [AHOI, Theorem 4.5], we obtain that there exist $(g_{0)}\mu_{0})$ in $A:=\{(g, \mu)|g\in \mathrm{R}$ and $\mu$ with
$-\infty\leq d_{\mu}(g)<0\}$ such that $H\lceil_{g=g_{0},\mu=\mu_{0}}$ which is $H$ with $g=g_{0}$ and $\mu=\mu_{0}$ has a degenerate ground

states. And, there exist $(g_{1}, \mu_{1})$ in $A$ such that $\inf\{\sigma(H\mathrm{r}g=g_{1},\mu=\mu_{1})\backslash \{E\mathrm{r}d\}g\}<\inf\sigma_{ess}(H\lceil_{g=g_{1},\mu=\mu_{1}})$ .
The conservation law (1.6) on the total number of $V$-particles and $\theta$-particles decomposes the state

space $\mathcal{F}$ into the direct sum of some sectors as follows:
For (1.6), we define the number operator $N_{V\theta}$ by

$N_{V\theta}:=\psi_{V}^{1}\psi_{V}+N_{\theta}$ (2.13)

where $N_{\theta}$ denotes the number operator of $\theta$-particle, i.e.,

$N_{\theta}:= \int_{\mathrm{B}^{\ell}}d^{d}k\alpha_{\theta}^{\uparrow}(k)\alpha_{\theta}(k)$ . (2.14)

Then, the conservation law (1.6) is reflected in the relation,

$[H, N_{V\theta}]=0$ . (2.15)

We denote the orthogonal projection onto the $\ell-\theta$-particle space in $\mathcal{F}_{b}$ by $P_{\theta}^{(\ell)}$ for each $\ell\in \mathrm{N}$ . Then, we

get $N_{l}= \sum_{\ell=0}\ell P_{\theta}^{(\ell)}$ . Then, the spectral resolution of $N_{V\theta}$ is given by

$N_{V\theta}= \sum_{\ell=0}\ell P_{\ell}$
. (2.16)

Here we set $P_{\theta}^{(-1)}\equiv 0$ .
We set $\mathcal{F}_{j}(\ell)$ $:=PtTj$ for $j=1,2$ and $\ell=0,1,2$ , $\cdots$ . Then,

$F_{1}=\oplus_{0}F_{1}(\ell)\ell=\infty$ . (2.17)

We denote the vacuum by $|0$). Since $|V\rangle$ $=\psi_{V}^{1}|0\rangle$ and $|N\rangle$ $=\psi_{N}^{1}|0\rangle$ , we have

$|\mathrm{V}\rangle$ $=$
$Z_{2}^{1/2} \{\psi_{V}^{\uparrow}|0)+g_{0}\int_{1\mathrm{B}^{\mathrm{d}}}d^{d}k\frac{\lambda^{2}(k)}{m_{c}-m_{N}-\omega(k)}\psi_{N}^{1}\alpha_{\theta}^{1}(k)|0\rangle\}$ (2.18)

by (1.8). Therefore, it is clear that $|\mathrm{V}\rangle$ is an eigenstate of $H_{1}$ with

$|\mathrm{V}\rangle\in F_{1}(1)$ . (2.19)

Since our ground state $\Psi_{gtd}$ still lives in the standard state space $\mathrm{T}$ , $\Psi_{g\mathrm{r}d}$ has to belong to one of

the sectors $F_{1}(\ell)’ \mathrm{s}(\ell \in\{0\}\mathrm{U}\mathrm{N})$ . Of course, $\Psi_{g}$ has the positive norm because it is in the standard
state space, which is adifference from the K\"all\’en and Pauli’s state $|\mathrm{V}_{KP}\rangle$ . Moreover, their state $|\mathrm{V}_{KP}$ )

belongs to the sector $\mathcal{F}_{1}(1)$ , but our $\Psi_{grd}$ does not belong to $F_{1}(1)$ . Because, we can prove in the same
way as [Hi, Lemma 2.1(c)] that $|\Psi_{grd}$ ) $=c|\mathrm{V}$) for some complex constant $c$ contradicts the fact that the

the ground state energy is less than $m_{V_{\mathrm{C}}}$ . Therefore, $|\Psi_{grd}$ ) is different from $|\gamma_{KP}\rangle$ .
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3Superradiant Ground State(?)
In the previous section, we proved mathematically that the ground state $|\Psi_{grd}\rangle$ another from $|\mathrm{V}\rangle$ appears,
and $|\mathrm{V}\rangle$ becomes an excited state of $H$ . We are interested in the physical reason of the appearance of
such aground state $|\Psi_{g’ d}\rangle$ .

We have to note that the ground state of $H$ does not have the form of (1.23) in spite of (1.5), (1.6),
and (1.26). Moreover, since Egrd is much lower than $m_{v_{\mathrm{C}}}$ , $V$-particle has to emit so many $\theta$-particles. But
considering (1.5), (1.6), and (1.26), such a emission is not observable in the reaction (1.4), namely, the
emission is prohibited from breaking the conservation laws (1.5) and (1.6). Moreover, remember that the
infrared singularity (1.57) plays an important role for the existence of $\Psi_{grd}$ with fixed the coupling length
$g$ , and that for each concrete model the individual coupling constant is fixed. Thus, such $\theta$-particles may
be like soft photons. Although we cannot give concretely aform of the ground state, we can consider
the Jaynes-Cumnings model [Mi, \S 6.4] in the light of quantum optics, the case of $\theta$-particle for the mode
with $k$ (i.e., one mode), at very low energy (or mass).

We consider the following Hamiltonian $H(k)$ for the system of $V$-particle, $N$-particle, and $\theta$-particle
for the mode with $k$ :

$H(k)$ $:=$ $m_{V}\psi_{V}^{1}\psi_{V}+m_{N}\psi_{N}^{1}\psi_{N}$

$+\omega(k)\alpha_{\theta}^{1}(k)\alpha_{\theta}(k)+g\lambda(k)(\psi_{V}^{1}\psi_{N}\alpha.(k)+\psi_{V}\psi_{N}1\uparrow(\alpha_{\theta}k))$ , (3.1)

where we employed (2.1) again. $F_{b}^{1}(k)$ is the state space of one-mode $\theta$-particle with $k$ . Then, all
eigenvalues $E_{n_{k}}^{\pm}(n_{k}=0,1,2, \cdots)$ of $H(k)$ are given as

$E_{n_{k}}^{\pm}$ $=$ $(n_{k}$

$n=0,1,2$ , $\cdots$ ,

$g=10^{L}$ , $\omega(k)=10^{-L}$ , $n_{k}=10^{4L-2}$ or $g=1$ , $\omega(k)=10^{-3L}$ , $n_{k}=10^{4L-2}$

for sufficiently large $L\in \mathrm{N}$ . Then, we obtain

$E_{104L-2}^{-} \geq-B_{g,\mu}(k)=-\frac{g^{2}}{\omega(k)}$

with

$E_{10^{4L-2}}^{-}\sim-0.09$ x $10^{3L}$ , $- \frac{g^{2}}{\omega(k)}\sim-10^{3L}$ (3.2)

as $Larrow\infty$ . This means that the eigenvalue with the same order as $-g^{2}/\omega(k)$ is obtained as $n_{k}$ , $|g|\gg$
$1\gg\omega(k)$ or $n_{k}\gg 1\gg\omega(k)$ for ffixed $g$ . Moreover, the eigenstate with such an eigenvalue belongs to the
sector, $F_{1}(10^{4L-2}+1)$ , and switches to another sector with larger number of $\theta$-particle as $Larrow\infty$ .

4Conclusion
Following the renormalizable field theory by Lee, K\"all\’en and Pauli, in order to avoid aghost, $\mathrm{m}\mathrm{c}$ , $g_{\mathrm{c}}$ , and
$\rho$ are restricted as we know from (1.14). On the other hand, $m_{\mathrm{c}}g$ , and $\rho$ are chosen so that $g_{\mathrm{C}}$ can catch
$g_{obs}$ . For the large coupling, we cannot employ the perturbative way to get the renormalized constant
and renormalized coupling constant any longer. Even in the case $|g|$ is not so large, if we have the case
with the infrared singularity condition (1.57), then the effective mass is different from $m_{v_{\mathrm{c}}}$ . Moreover in
the case of $B_{g,\mu}\gg 1$ , we have to consider not only $Z_{V_{\mathrm{C}}}^{ren}$ but also the renormalized constant for $|\Psi_{grd}\rangle$ to
argue whether $|\Psi_{grd}\rangle$ is aghost or not
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The interaction Hamiltonian $H_{I}$ of the Lee model is given through the rotating wave approximation

$(\mathrm{R}\mathrm{W}\mathrm{A}))\mathrm{o}\mathrm{r}(2.\mathrm{l}2)\mathrm{a}\mathrm{r}\mathrm{e}$

$\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{f}\mathrm{R}\mathrm{W}\mathrm{A}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{s}g\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{B}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}$

’
$\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{t}\mathrm{o}\mathrm{s}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}$

prove the same results independent of RWA, and to develop the renormalizable field theory so that it can

include the case such as $B_{g,\mu}\gg 1$ .
Is the existence of $|\Psi_{grd}\rangle$ caused by the Rabi flopping? If it is correct, the phases may get harmonious

by revival with very small $|k|$ after they are disordered by the Cummings collapse in the Rabi flopping.

Namely, are there any relation between superradiant ground state by Preparata and the Rabi flopping?
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