On Ideals in H^{∞} Whose Closures are Intersections of Maximal Ideals

新潟大・理 泉池敬司 (Keiji Izuchi) Faculty of Science Niigata University

§1. Introduction

Let H^{∞} be the Banach algebra of bounded analytic functions on the open unit disk D. We denote by $M(H^{\infty})$ the set of non-zero multiplicative linear functionals of H^{∞} endowed with the weak*-topology of the dual space of H^{∞} . Identifying a point in D with its point evaluation, we think as $D \subset M(H^{\infty})$. For $\varphi \in M(H^{\infty})$, put $Ker \varphi = \{f \in H^{\infty}; \varphi(f) = 0\}$. Then $Ker \varphi$ is a maximal ideal in H^{∞} , and for a maximal ideal I in H^{∞} there exists $\psi \in M(H^{\infty})$ such that $I = Ker \psi$. Usually $M(H^{\infty})$ is called the maximal ideal space of H^{∞} . For $f \in H^{\infty}$, the function $\hat{f}(\varphi) = \varphi(f)$ on $M(H^{\infty})$ is called the Gelfand transform of f. We identify f with \hat{f} , so that we think of H^{∞} the closed subalgebra of continuous functions on $M(H^{\infty})$. Let L^{∞} be the Banach algebra of bounded measurable functions on ∂D . We denote by $M(L^{\infty})$ is the Shilov boundary of H^{∞} , that is, the smallest closed subset of $M(H^{\infty})$ on which every function in H^{∞} attains its maximal modulus. A nice reference on this subject is [3].

For $f \in H^{\infty}$, there exists a radial limit $f(e^{i\theta})$ for almost everywhere. Let h be a bounded measurable function on ∂D such that $\int_0^{2\pi} \log |h| d\theta/2\pi > -\infty$. Put

$$f(z) = \exp\Big(\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log|h(e^{i\theta})| \, d\theta/2\pi\Big), \quad z \in D.$$

A function of this form is called outer, and $|f(e^{i\theta})| = |h(e^{i\theta})|$ almost everywhere. A function $u \in H^{\infty}$ is called inner if $|u(e^{i\theta})| = 1$ a.e. on ∂D . For a sequence $\{z_n\}_n$ in D with $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$, there corresponds a Blaschke product

$$b(z) = \prod_{n=1}^{\infty} \frac{-\overline{z}_n}{|z_n|} \frac{z - z_n}{1 - \overline{z}_n z}, \quad z \in D.$$

A Blaschke product is called interpolating if for every bounded sequence of complex numbers $\{a_n\}_n$ there exists $h \in H^{\infty}$ such that $h(z_n) = a_n$ for every n. For a non-negative bounded singular measure $\mu, \mu \neq 0$, on ∂D , let

$$\psi_{\mu}(z) = \exp\Big(-\int_{\partial D} \frac{e^{i\theta}+z}{e^{i\theta}-z} d\mu\Big), \quad z \in D.$$

Then ψ_{μ} is inner and called a singular function. It is well known that every function in H^{∞} is factored as an inner function times an outer function, and an inner function is factored as a Blaschke product times a singular function.

For a subset E of $M(H^{\infty})$, let $I(E) = \bigcap\{Ker \varphi; \varphi \in E\}$ be the intersection of maximal ideals associated with points in E. For $f \in H^{\infty}$, let $Z(f) = \{\varphi \in M(H^{\infty}); \varphi(f) = 0\}$ be the zero set of f. In this paper, we mean that an ideal is a non-zero proper ideal in H^{∞} . For an ideal I in H^{∞} , put $Z(I) = \bigcap\{Z(f); f \in I\}$, then $I \subset I(Z(I))$. An ideal I is called prime if for any $f, g \in H^{\infty}$ with $fg \in I$, then $f \in I$ or $g \in I$. There are many studies of prime ideals in H^{∞} , see [4, 14, 15, 16]. Recently, Gorkin and Mortini [6, Theorem 1] proved that a closed prime ideal I is an intersection of maximal ideals, that is, I = I(Z(I)). And they pointed out that if I is an intersection of maximal ideals, that is, $\overline{I} = I(Z(I))$.

Let E be a closed subset of $M(H^{\infty}) \setminus D$ such that $E \cap M(L^{\infty}) = \emptyset$. Let J = J(E) be the ideal of H^{∞} which consists of functions in H^{∞} vanishing on some open subsets Uof $M(H^{\infty}) \setminus D$ such that $E \subset U$. In [7, Theorem 4.2], Gorkin and Mortini also showed that $\overline{J} = I(Z(J))$. It is a very interesting problem to determine the class of ideals Isatisfying $\overline{I} = I(Z(I))$. But it seems difficult to give a complete characterization of these ideals.

In Section 2, we introduce the following condition on ideals I in H^{∞} to study ideals I satisfying $\overline{I} = I(Z(I))$. We prove that if an ideal I of H^{∞} satisfyies condition (α) , then $\overline{I} = I(Z(I))$. We also give some examples of ideals I satisfying condition (α) .

In Section 3, we study an ideal I(f) of H^{∞} which is generated by a noninvertible outer function f. There exist noninvertible outer functions f and g satisfying $\overline{I(f)} = I(Z(I(f)))$ and $\overline{I(g)} \neq I(Z(I(g)))$. As an application of the theorem given in Section 2, we characterize noninvertible outer functions f satisfying $\overline{I(f)} = I(Z(I(f)))$.

(α) For any $0 < \sigma < 1$ and a subset E of D such that $Z(I) \cap cl E = \emptyset$, there exists $h \in I$ such that $||h||_{\infty} \leq 1$ and $|h| \geq \sigma$ on E, where cl E is the weak*-closure of E in $M(H^{\infty})$.

2. Closure of ideals

We introduce the following condition on ideals I in H^{∞} .

(α) For any $0 < \sigma < 1$ and a subset E of D such that $Z(I) \cap cl E = \emptyset$, there exists $h \in I$ such that $||h||_{\infty} \leq 1$ and $|h| \geq \sigma$ on E, where cl E is the weak*-closure of E in $M(H^{\infty})$.

The main theorem of this paper is the following.

THEOREM 2.1. Let I be an ideal in H^{∞} satisfying condition (α). Then $\overline{I} = I(Z(I))$.

Generally the converse of Theorem 2.1 does not hold, but it holds for some ideals. Let G be the set of point φ in $M(H^{\infty})$ such that $\varphi(b) = 0$ for some interpolating Blaschke product b. By Hoffman's work [11], G is an open subset of $M(H^{\infty})$ and for each $\varphi \in G$ there exists a continuous one to one map L_{φ} from D into $M(H^{\infty})$ such that $L_{\varphi}(0) = \varphi$ and $f \circ L_{\varphi} \in H^{\infty}$ for every $f \in H^{\infty}$. Put $P(\varphi) = L_{\varphi}(D)$, and this set is called the Gleason part containing φ . Then we have

PROPOSITION 2.1. Let I be an ideal in H^{∞} such that $P(\varphi) \subset Z(I)$ for every $\varphi \in Z(I) \cap G$. Then $\overline{I} = I(Z(I))$ if and only if I satisfies condition (α).

By the proof of Theorem 2.1 and Proposition 2.1, we have

COROLLARY 2.1. Let I be an ideal in H^{∞} algebraically generated by countable functions. Suppose that $P(\varphi) \subset Z(I)$ for every $\varphi \in Z(I) \cap G$. Then I(Z(I)) is a closed ideal generated by countable functions.

Examples of ideals satisfying condition (α) are given in the following.

PROPOSITION 2.2. The following ideals I in H^{∞} satisfy condition (α).

(i) I is a prime ideal in H^{∞} which does not contain any interpolating Blaschke product.

(ii) Let f be a function in H^{∞} which does not vanish on D. Let I be the ideal in H^{∞} algebraically generated by functions $f^{1/n}, n = 1, 2, ...$

(iii) Let E be a closed subset of $M(H^{\infty}) \setminus D$ such that $E \cap M(L^{\infty}) = \emptyset$. Let I be the ideal of functions in H^{∞} which vanish on some open subsets U of $M(H^{\infty}) \setminus D$ such that $E \subset U$.

(iv) Let S be a set of non-negative bounded singular measures $\mu, \mu \neq 0$, on ∂D . Suppose that S satisfies the following conditions.

(a) For $\mu, \nu \in S$, there exists $\lambda \in S$ such that $\lambda \leq \mu \wedge \nu$, where $\mu \wedge \nu$ is the greatest lower bound of μ and ν ,

(b) For every $\mu \in S$ and a positive integer n, there exists $\lambda \in S$ such that $n\lambda \leq \mu$. Let I be the ideal algebraically generated by singular functions $\psi_{\mu}, \mu \in S$.

By Theorem 2.1 and Proposition 2.2, we have

COROLLARY 2.2. Let f be a function in H^{∞} which does not vanish on D. Let I be the ideal in H^{∞} algebraically generated by functions $f^{1/n}$, n = 1, 2, ... Then $\overline{I} = I(Z(I)).$

COROLLARY 2.3 [7, Theorem 4.2]. Let E be a closed subset of $M(H^{\infty}) \setminus D$ such that $E \cap M(L^{\infty}) = \emptyset$. Let I be the ideal of functions in H^{∞} which vanish on some open subsets U of $M(H^{\infty}) \setminus D$ such that $E \subset U$. Then $\overline{I} = I(Z(I))$.

We also have the following.

COROLLARY 2.4. Let I be a prime ideal in H^{∞} . Then $\overline{I} = I(Z(I))$.

In [6], to prove that I = I(Z(I)) for a closed prime ideal I Gorkin and Mortini used the following formula given by Guillory and Sarason [9, pp.177-178]. Let R be an open subset of D such that $\partial R \cap D$ is a system of rectifiable curves. Then

$$\int_{\partial D} \frac{F}{u} dz = \int_{\partial R \cap D} \frac{F}{u} dz$$
(2.1)

for $F \in H^{\infty}$ and an inner function u satisfying $|u(z)| < \beta$ for $z \in R$ and $|u(z)| \ge \alpha$ for $z \in D \setminus R, 0 < \alpha < \beta < 1$. Formula (2.1) is used in several papers, see [8, 12, 13]. When u is not inner, equation (2.1) does not holds.

To prove Theorem 2.1, we need another formula similar to (2.1). The following theorem is interesting in its own right.

THEOREM 2.2. Let $f \in H^{\infty}$, $||f||_{\infty} = 1$, and $0 < \varepsilon < 1/2 < \sigma < 1$. Let R be an open subset of D such that $\partial R \cap D$ is a system of rectifiable curves satisfying

(i) $|f(z)| < \varepsilon$ for $z \in R$.

We assign the usual orientation on ∂R . Put $\Gamma = \partial R \cap D$. Let $h \in H^{\infty}$ such that $\|h\|_{\infty} = 1$,

(ii) $0 < 1/2 \le |h(z)|$ for $z \in D \setminus R$,

(iii) $|h(e^{i\theta})| \ge \sigma$ for almost every $e^{i\theta} \in \partial D$ with $|f(e^{i\theta})| > \varepsilon$.

Then

$$\left|\int_{\Gamma} \frac{fF}{h} dz - \int_{\partial D} fF\overline{h} dz\right| \le 4(\varepsilon + 1 - \sigma) \|F\|_{1}$$

for every $F \in H^{\infty}$, where $||F||_1 = \int_0^{2\pi} |F(e^{i\theta})| d\theta/2\pi$.

As an application of Theorem 2.2, we shall prove Theorem 2.1. Our theorems owe to the deep theorems due to Bourgain [2] and Suárez [18, 19].

Let g(z) = (1 - z)/2. Then g is an outer function and is not invertible in H^{∞} . Let $I = gH^{\infty}$ be the ideal generated by g. Then it is not difficult to see that for $h \in I$,

$$\left\|h - hg\left(\sum_{k=0}^{n-1} \left(\frac{1+z}{2}\right)^k\right)\right\|_{\infty} = \left\|h - h\left(1 - \left(\frac{1+z}{2}\right)^n\right)\right\|_{\infty} \to 0 \text{ as } n \to \infty$$

Hence $\overline{I} = I(Z(I))$. One might ask whether $\overline{I} = I(Z(I))$ for an ideal I generated by a single outer function in H^{∞} which is not invertible in H^{∞} . To answer this question, we need to recall Jensen's equality. For a point $\varphi \in M(H^{\infty})$, there is a probability measure μ_{φ} on $M(L^{\infty})$ such that $\int_{M(L^{\infty})} f d\mu_{\varphi} = \varphi(f)$ for every $f \in H^{\infty}$. We denote by $supp \mu_{\varphi}$ the closed support set of μ_{φ} . Then the following Jensen inequality holds

$$\log |\varphi(f)| \leq \int_{M(L^{\infty})} \log |f| \, d\mu_{\varphi}, \quad f \in H^{\infty}.$$

When it holds that

1

$$\log |\varphi(f)| = \int_{M(L^{\infty})} \log |f| \, d\mu_{\varphi},$$

we say that f satisfies Jensen's equality for $\varphi \in M(H^{\infty})$. It is well known that every invertible function in H^{∞} satisfies Jensen's equality for every point in $M(H^{\infty})$, see [10, Chapter 10]. Our third theorem is

THEOREM 2.3. Let f be an outer function in H^{∞} which is not invertible in H^{∞} Let $I = fH^{\infty}$ be the ideal generated by f. Then $\overline{I} = I(Z(I))$ if and only if f satisfies Jensen's equality for every point m in $M(H^{\infty})$ with $m(f) \neq 0$.

Axler and Shields [1, Proposition 5] showed that a function f in H^{∞} satisfying Re f > 0 on D satisfies Jensen's equality for every point in $M(H^{\infty})$. For an inner function q, the function q + 1 satisfies this condition. Put $QA = H^{\infty} \cap \overline{H^{\infty} + C}$, where C is the space of continuous functions on ∂D and $\overline{H^{\infty} + C}$ is the set of complex conjugates of functions in $H^{\infty} + C$. In [20], Wolff proved that for every $f \in L^{\infty}$ there exists an outer function $h \in QA$ such that $hf \in H^{\infty} + C$. When $f \notin H^{\infty} + C$, the function h is not invertible in H^{∞} . So that there are many outer functions in QA which are not invertible in H^{∞} . In [17], Sarason proved that if $f \in H^{\infty}$, then $f \in QA$ if and only if $f_{|supp \mu_{\varphi}}$ is constant for every $\varphi \in M(H^{\infty}) \setminus D$. Hence QA outer functions satisfy Jensen's equality for every $\varphi \in M(H^{\infty})$. We have following corollaries as applications of Theorem 2.3.

COROLLARY 2.5. Let $I = fH^{\infty}$ be an ideal in H^{∞} generated by a function f which is not invertible in H^{∞} and Re f > 0 on D. Then $\overline{I} = I(Z(I))$.

COROLLARY 2.6. Let $I = fH^{\infty}$ be an ideal in H^{∞} generated by an outer function in QA which is not invertible in H^{∞} . Then $\overline{I} = I(Z(I))$.

References

 S. Axler and A. Shields, Extensions of harmonic and analytic functions, Pacific. Math. 145(1990), 1-15.

- [2] J. Bourgain, On finitely generated closed ideals in $H^{\infty}(D)$, Ann. Inst. Fourier (Grenoble) 35(1985), 163-174.
- [3] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- [4] P. Gorkin, Prime ideals in closed subalgebras of L^{∞} , Michigan Math. J. 33(1986), 315-323.
- [5] P. Gorkin, K. Izuchi and R. Mortini, *Higher order hulls in H^{\infty} II*, J. Funct. Anal., to appear.
- [6] P. Gorkin and R. Mortini, Alling's conjecture on closed prime ideals in H[∞], J. Funct. Anal. 148(1997), 185-190.
- P. Gorkin and R. Mortini, A survey of closed ideals in familiar function algebras, Function spaces (Edwardsville, IL, 1998), 161-170, Contemp. Math., 232, Amer. Math. Soc., Providence, RI, 1999.
- [8] P. Gorkin and R. Mortini, Synthesis sets for $H^{\infty} + C$, Indiana Univ. Math. J., to appear.
- [9] C. Guillory and D. Sarason, *Division in* $H^{\infty} + C$, Michigan Math. J. 28(1981), 173-181.
- [10] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Englewood Cliffs, N.J., 1962.
- [11] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86(1967), 74-111.
- [12] K. Izuchi and Y. Izuchi, Inner functions and division in Douglas algebras, Michigan Math. J. 33(1986), 435-443.
- [13] K. Izuchi and Y. Izuchi, Inner functions and division in Douglas algebras II, J. London Math. Soc. 38(1988), 146-152.
- [14] R. Mortini, Finitely generated prime ideals in H^{∞} and A(D), Math. Z. 191(1986), 297-302.
- [15] R. Mortini, Closed and prime ideals in the algebra of bounded analytic functions, Bull. Austral. Math. Soc. 35(1987), 213-229.
- [16] R. Mortini, Closed and prime ideals of weak Bezout type in H[∞], J. Pure Appl. Alg. 75(1991), 63-73.
- [17] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207(1975), 391-405.
- [18] D. Suárez, Cech cohomology and covering dimension for the H[∞] maximal ideal space, J. Funct. Anal. 123(1994), 233-263.
- [19] D. Suárez, Trivial Gleason parts and the topological stable rank of H[∞], Amer. J. Math. 118(1996), 879-904.

[20] T. Wolff, Two algebras of bounded functions, Duke Math. J. 49(1982), 321-328.
 izuchi@math.sc.niigata-u.ac.jp