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1. Introduction

The cumulants in the usual probability theory are given by the log-
arithm of Fourier transformation of aprobability density function and
linearize the usual convolution. They are some invariant for proba-
bility distributions and the several important distributions, indeed, are
explicitly characterized by them. It is known as the s0-called moments-
cumulants formula that the $n\mathrm{t}\mathrm{h}$ moment $\mu_{n}$ can be given by the cumu-
lants $\alpha:(1\leq i\leq n)$ that

$\mu_{n}=\sum_{+k_{1}+2k_{2}\cdots nk_{n}=n}k_{1},k_{2}k_{n}\geq 0\dotplus\cdots$

,

$n!’.. \frac{(\frac{a}{1}[perp])^{k_{1}}(\frac{\alpha}{2}\mathrm{a})^{k_{2}}\ldots(_{n’}^{\alpha_{\mathrm{R}}}-)^{k_{n}}}{k_{1}!k_{2}!\cdots k_{n}!},.$,

which can be written in terms of the set partitions as

$\mu_{n}=\sum_{\pi\in \mathcal{P}(\{1,2,\ldots,n\})}\prod_{\dot{l}=1}^{k}\alpha_{|B|}$: $(n\geq 1)$ , (U)

$\pi=\{B_{1},B_{2},\ldots,B_{k}\}$

where $\prime P(\{1,2, \ldots, n\})$ is the set of all the partitions of the ordered set
$\{1, 2, \ldots, n\}$ .

In the free probability theory, Voiculescu invented the R-transform
in [Vo] as the free analogue of the cumulants, which linearizes the free
additive convolution. His canonical random variable is given of the
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$T= \ell^{*}+\sum_{i=1}^{\infty}\alpha_{i}\ell^{i-1}$

on the full Fock space $\mathcal{F}_{0}(\mathcal{H})$ , where $\ell$ is the creation operator and $\ell^{*}$

is its adjoint, the annihilation, operator. Combinatorial descriptions of
the free convolution and the $R$-transform have been deeply studied by
Nica and Speicher in, for instance, [Ni3], [Spl] and [Sp2]. Namely Spe-
icher has given the free analogue of the moments-cumulants formula in
[Sp2] using the noncrossing partitions (the notion was first introduced
in [Kr] $)$ that

$\mu_{n}=$
$\sum_{\prime,\pi=\{\begin{array}{lll}(\{ B_{1},B_{2} \cdots ,B_{k}\end{array}\}}\prod_{i\pi\in NC1,2,\ldots n\})=1}^{k}\alpha_{|B|}$: $(n\geq 1)$ , (F)

which is the same as of the usual formula (U) but the partitions should
be restricted to noncrossing ones, that is, $NC(\{1,2, \ldots, n\})$ is the set of
the noncrossing partitions of the ordered set $\{1, 2, \ldots, n\}$ .

Furthermore, Nica has found in [Nil] anice $q$-analogue of the cu-
mulant generating function $R_{q}(z)$ which takes Voiculescu’s R-transform
for the free convolution in case of $q=\mathrm{O}$ and it corresponds to arelative
of the logarithm of the Fourier transform, if one takes the limit $qarrow 1$ .
He has adopted as the canonical random variable by the operator

$T_{q}=a_{q}+ \sum_{i=1}^{\infty}\alpha:(a_{q}^{*})^{i-1}$

on the $q$-Fock space $\mathcal{F}_{q}(\mathcal{H})$ , where $a_{q}$ and $a_{q}^{*}$ is the $q$-annihilation and
$q$-creation operators, respectively. He has also introduced the set par-
tition statistics, the left-reduced number of crossings $c_{o}(\pi)$ , in order
to evaluate the moments of his canonical random variable $T_{q}$ . The
left-reduced number of crossings has the $q$-counting which interpolates
between usual crossing and noncrossing (See also [Ni2]). If we replace

$\alpha_{n}$ by $\frac{\alpha_{n}}{[n-1]_{q}!}$

. [Nil, Theorem 1.2] then we have the q-deformed

moments-cumulants formula that

$\mu_{n}=\sum_{\pi\in P(\{1,2,\ldots,n\})}q^{c_{\mathit{0}}(\pi)}\prod_{\dot{\iota}=1}^{k}\alpha_{|B|}$: $(n\geq 1)$ , (N)

$\pi=\{B_{1},B_{2},\ldots,B_{k}\}$

which interpolates between the formula for the usual case (U) at $q=1$

and one for the free case (F) at $q=0$ , exactly. The above q-deformed
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formula (N) suggests us another $q$-deformations by replacing the set
partition statistics.

On the $q$-Fock space, the combinatorics of the operator $(a_{q}+a_{q}^{*})$

with respect to the vacuum expectation have been studied in [BS1, 3]
and [BKS], and it was found that the $q$-Gaussian distribution can be
given as the orthogonalizing probability measure for the continuous q-
Hermite polynomials. Inspired by this, we have introduced in [SY1] the
$q$-deformed Poisson distribution of the parameter $\lambda>0$ as the orthog-
onalizing probability measure for the $q$-deformed Charlier polynomials,
$\{C_{n}(X)\}_{n=0}^{\infty}$ defined by the following recurrence relations:

$C_{0}(X)=1$ , $C_{1}(X)=X-\lambda$ ,
$C_{n+1}(X)=(X-(\lambda+[n]_{q}))C_{n}(X)-\lambda[n]{}_{q}C_{n-1}(X)$ $(n\geq 1)$ ,

where $[n]_{q}$ is the $q$-number. In subsequent paper [SY2], we gave the q-
deformed Poisson random variable as an operator on the $q$-Fock space
which is alinear combination of a $q$-number operator, aq-Gaussian
random variable, and ascalar operator,

$a_{q}^{*}a_{q}+\sqrt{\lambda}(a_{q}^{*}+a_{q})+\lambda\cdot 1$ ,

where $a_{q}$ and $a_{q}^{*}$ is the $q$-annihilation and $q$-creation operators, respec-
tively. It has the same form as in [HP] on the symmetric $(q=1)$ Fock
space, and interpolates between their operator and one of Speicher on
the full $(q=0)$ Fock space in [Spl].

Using the results on the generating function related to the above q-
deformed Charlier polynomials in [Bi], it follows that the $n\mathrm{t}\mathrm{h}$ moment
of the $q$-deformed Poisson distribution, $\mu_{n}(\mathrm{P}\mathrm{o}_{q}(\lambda))$ , can be given in the
form

$\mu_{n}(\mathrm{P}\mathrm{o}_{q}(\lambda))=\sum_{k=1}^{n}\mathrm{S}_{q}(n, k)\lambda^{k}$,

where $S_{q}(n, k)$ is akind of the $q$-Stirling number defined by

$S_{q}(n,$ $k)=$ $\sum$ $q^{\tau \mathrm{c}(\pi)}$ .
$\pi\in P(\{1,2,\ldots,n\})8.\mathrm{t}$ .

$\pi$ has precisely
$k$ blocks

Here $rc(\pi)$ denotes the number of restricted crossings for the partition $\pi$

introduced in [Bi], of which $q$-counting also interpolates between usual
crossings and noncrossings.

It is natural to consider that the $q$-deformed Poisson distribution
of the parameter Ashould be characterized as the distribution all of
which cumulants are equal to $\lambda$ , just as for the usual case. Hence, the
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above result on the moments of the $q$-deformed Poisson distribution
derives the following another $q$-deformed moments-cumulants formula:

$\mu_{n}=\sum_{\pi\in P(\{1,2,\ldots,n\})}q^{rc(\pi)}\prod_{i=1}^{k}\alpha_{|B:|}$ $(n\geq 1)$ , (A)

$\pi=\{B_{1},B_{2},\ldots,B_{k}\}$

where the difference can be found only on the set partition statistics,
that is, the number of restricted crossings $rc(\pi)$ is adopted instead of
$c_{o}(\pi)$ . Of course, it also interpolates between formulae for the usual
case (U) at $q=1$ and for the free case (F) at $q=0$ , exactly.

Recently, Anshelevich has defined in [An] a $q$-convolution related
to the above formula (A) for alarge class of probability measures
($q$-infinitely divisible families). He also introduced the combinatorial
cumulants as the canonical self-adjoint operators for the q-deformed
moments-cumulants formula (A).

In this talk, we are going to give another canonical random variable
for the $q$-deformed moments-cumulants formula (A). Our canonical
operator is not self-adjoint but it is arelative of ones for Voiculescu’s R-
transform and for Nica’s $R_{q}$-series. Furthermore, it can be regarded as
an extension of the $q$-deformed Poisson random variable on the q-Fock
space and more straightforward one for the combinatorial structure of
restricted crossings.

2. Set partition statistics

Let $S$ be an ordered set. Then $\pi=\{B_{1}, B_{2}, \ldots, B_{k}\}$ is apartition
of $S$ , if $B_{i}\neq\phi$ are ordered and disjoint sets, of which union is $S$ . We
shall call $B_{i}\in\pi$ ablock of the partition $\pi$ .

For $n\geq 1$ , we denote by $P(\{1,2, \ldots, n\})$ the set of partitions of the
ordered set $\{1, 2, \ldots, n\}.$ For $\pi\in P(\{1,2, \ldots, n\})$ and $1\leq m_{1},$ $m_{2}\leq n$ ,
we will write $m_{1}\sim\pi m_{2}$ for the fact that $m_{1}$ and $m_{2}$ are in the same
block of $\pi$ .

Apartition $\pi$ of $\{1, 2, \ldots, n\}$ is said to be noncrossing if there is no
4-tuple $(m_{1}, m_{2}, m_{3}, m_{4})$ such that $1\leq m_{1}<m_{2}<m_{3}<m_{4}\leq n$ and
$m_{1} \sim\pi m_{3}\oint\pi m_{2}\sim\pi m_{4}$ . This notion of noncrossing partition was first
introduced in [Kr]. We denote the set of noncrossing partitions of the
ordered set $\{1, 2, \ldots, n\}$ by $NC(\{1,2, \ldots, n\})$ .

The various kinds of set partition statistics have been introduced
related to inversions or crossings of partition. Here, we shall recall the
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number of restricted crossings, which was investigated by Biane in [Bi]
related to the combinatorial theory of continued fractions.

Let $\pi=\{B_{1}, B_{2}, \ldots, B_{k}\}$ be apartition in $P(\{1, \ldots,n\})$ . If the
block $B_{j}$ has more than one elements (i.e. $|B_{j}|=m_{j}\geq 2$), put $B_{j}=$

$\{b_{j,1}, b_{j,2}, ..., b_{j,m_{\mathrm{j}}}\}$ where $b_{j,1}<b_{j,2}<\ldots<b_{j,m_{j}}$ , then we make $(m_{j}-1)$

connections like bridges $(bj,1, bj,2),$ $(bj,2, bj,3),$
$\ldots,$

$(b_{j,m_{\mathrm{j}}-1}, b_{j,m_{j}})$ , succes-
sively. We have, of course, totally $\sum_{j=1}^{k}(|B_{j}|-1)$ connections and we
shall call them arcs of the partition $\pi$ .

The number of restricted crossings for apartition $\pi\in P(\{1, \ldots, n\})$

is the number:

$rc(\pi)=\#\{(m_{1},$ $m_{2},$ $m_{3},$ $m_{4})$
$\mathrm{o}\mathrm{f}\pi 1\leq m_{1}<m_{2}(m_{1},m_{3})\mathrm{a}\mathrm{n}\mathrm{d}(m_{2}, m_{4})\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{s}<m_{3}<m_{4}\leq n,$

$\}$ .

For the partition of the ordered set $\{1, 2, \ldots, n\}$ , we shall introduce
the notion of the parenthesis number and the depth of the block of size
$i$ , which play an important role in the construction of our canonical
random variable.

Let $\pi$ be apartition in $P(\{1,2, \ldots, n\})$ . We shall concentrate our
attention upon the blocks of the same size except singletons (blocks
of size 1). Suppose $\pi$ has $m$ blocks of size $i\geq 2$ and we denote them
by $\{f_{k}, \ldots, e_{k}\}_{k=1,2,\ldots,m}$ with the first element $f_{k}$ and the last element
$e_{k}$ of each block of size $i$ because we are interested only with the first
and the last elements in each block. Here we have numbered blocks in
increasing order of the first elements, that is, $f_{1}<f_{2}<\cdots<f_{m}$ .

We shall renumber all the first and the last elements of the blocks
of size $i,$ $\{f1, e_{1}, f_{2}, e_{2}, \ldots, f_{m}, e_{m}\}$ , in increasing order as $\{p_{j}\}_{j=1,2,\ldots,2m}$ .

The subscript $j$ in the above renumbering $p_{j}$ is called the parenthesis
number for the blocks of size $i$ .

For $k\in\{1,2, \ldots, n\}$ , we shall count the number of the blocks of
size $i$ , in which $k$ is contained as an intermediate element or the last
element. We call such anumber the depth of the blocks of size $i$ at $k$

and denote depth:(k), that is,

$\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{h}_{:}(k)=\{\# j|_{k\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{t}i\mathrm{e}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{n}- \mathrm{c}1\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}1(f_{j},e_{j}\mathrm{J}}^{\{f_{j},\ldots,e\}\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{b}1\mathrm{o}\mathrm{c}\mathrm{k}\mathrm{o}\mathrm{f}\mathrm{s}\mathrm{i}\mathrm{z}\mathrm{e}i\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}}\}$.
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3. Acanonical random variable

Let $\mathcal{K}$ be an infinite dimensional separable Hilbert space. We take
acomplete orthonormal basis $\{\eta_{j}\}_{j\geq 0}$ in C. We put the index set I as

$I=\{(i,j)\in \mathrm{N}\cross \mathrm{N}|i\geq 2,j\geq 1\}$

and consider the infinite tensor product

$\tilde{\mathcal{K}}=\otimes \mathcal{K}_{(i_{\dot{\theta}})}(i,j)\in I$
’

where each tensor factor $\mathcal{K}_{(:,j)}$ is acopy of C.
For an operator $x\in B(\mathcal{K})$ , we denote the operator

$1_{\mathcal{K}}\otimes\cdots\otimes 1_{\mathcal{K}}\otimes x\otimes 1_{\mathcal{K}}\otimes\check{(i_{\dot{\theta}})\mathrm{t}\mathrm{h}}\ldots$

on the infinite tensor product $\overline{\mathcal{K}}$ as $\Gamma(i,j)(x)$ where $x$ acts only on the
$(i,j)\mathrm{t}\mathrm{h}$ factor. Let $\phi$ be the vector state given by $\phi(x)=\langle x\eta 0|\eta 0\rangle$ .
Then we can endow the infinite product state

$\tilde{\phi}=\otimes\phi_{(i,j)}(\dot{\iota},j)\in I$

on the infinite tensor product space $\tilde{\mathcal{K}}$ where $\emptyset(:,j)$ is acoPy of $\phi$ . We
define the shift operator $\ell$ on $\mathcal{K}$ by

$\ell\eta_{j}=\eta_{j+1}$ $(j\geq 0)$ ,

of which adjoint operator $\ell^{*}$ is given by

$\ell^{*}\eta_{j}=\{\begin{array}{l}\eta_{j-\mathrm{l}}\mathrm{i}\mathrm{f}j\geq \mathrm{l}0\mathrm{i}\mathrm{f}j=0\end{array}$

Let $\mathcal{L}$ be an infinite dimensional separable Hilbert space and take a
doubly indexed orthonormal system (not necessary complete) $\{\zeta_{j,k}\}$ in
$\mathcal{L}$ (i.e. $\langle\zeta_{j_{1},k_{1}}|\zeta_{j_{2},k_{2}}\rangle=\delta_{j_{1\dot{\theta}2}}\delta_{k_{1},k_{2}}$ ). We also consider the infinite tensor
product

$\overline{\mathcal{L}}=\otimes \mathcal{L}_{i}i=2\infty$ ,

where each tensor factor $\mathcal{L}_{i}$ is acopy of $\mathcal{L}$ .
For an operator $x\in B(\mathcal{L})$ , we denote the operator

$1_{\mathcal{L}}\otimes\cdots\otimes 1_{\mathcal{L}}\otimes.x\otimes 1_{\mathcal{L}}\otimes\check{|\mathrm{t}\mathrm{h}}\ldots$
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on the infinite tensor product $\tilde{\mathcal{L}}$ as $\Lambda_{:}(x)$ where $x$ acts only on the ith
factor. Let $\psi$ be the unital linear functional given by $\psi(x)=\langle x\zeta_{0,0}|\zeta_{a}\rangle$

where $\zeta_{a}=\sum\zeta_{j,0}$ .

We
$\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}j\geq 0$

the product linear functional

$\tilde{\psi}=.\otimes\psi_{:}|=2\infty$

on the infinite tensor product space $\tilde{\mathcal{L}}$ where $\psi_{:}$ is acopy of $\psi$ .
Given vectors $\xi,$ $\eta\in \mathcal{L}$ , we denote by $t_{\xi,\eta}$ the rank one operator on

$\mathcal{L}$ defined by
$t_{\xi,\eta}\zeta=\langle\zeta|\eta\rangle\xi$, $\zeta\in \mathcal{L}$ .

Here we shall make special operators on $\mathcal{L}$ using the rank one operators.
We put the index sets $J_{0}$ and $J_{1}$ as

$J_{0}=\{(j, k)\in \mathrm{N}\cross \mathrm{N}|0\leq k\leq j\}$

and
$J_{1}=\{(j, k)\in \mathrm{N}\cross \mathrm{N}|1\leq k\leq j\}$ ,

respectively. For each $(j, k)\in J_{0}$ , we define the rank one operator $r_{j,k}$

on $\mathcal{L}$ as
$r_{j,k}=t_{\zeta_{\mathrm{j}+1,k+1},\zeta_{\mathrm{j},k}}$ ,

and make the operators

$r_{j}= \sum_{k=0}^{j}r_{j,k}$ , for $j\geq 0$ .

Of course, all of the operators $r_{j}(j\geq 0)$ are of finite rank.
For each $(j, k)\in J_{1}$ , we define the rank one operator $s_{j,k}$ as

$s_{j,k}=t_{\zeta_{\mathrm{j}+1,k-1},\zeta_{\mathrm{j},k}}$ .
Then we put the operator $s$ by

$s= \sum_{(j,k)\in J_{1}}s_{j,k}$
.

Let 7{ be an infinite dimensional Hilbert space and we take an or-
thonormal system $\{\xi_{1\dot{\theta}}.\}_{(:\mathrm{j})\in I}$ in ??. We make the $q$-Fock space $\mathcal{F}_{q}(H)$

and consider the $q$-annihilation operator $a(\xi_{\dot{l}}\dot{\theta})$ and the $q$-creation oper-
ator $a^{*}(\xi_{\dot{l}}\dot{\theta})$ . The vacuum state $\omega$ on $\mathcal{F}_{q}(H)$ is given by $\omega(x)=\langle x\Omega|\Omega\rangle_{q}$ ,
where 0is the vacuum vector. For the definition of the $q$-Fock space,
see, for instance, [BKS].
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Now we adopt the Hilbert space $\mathcal{F}_{q}(\mathcal{H})\otimes\tilde{\mathcal{K}}\otimes\tilde{\mathcal{L}}$ as the base space
on which our canonical random variable will act, together with the
expectation $\epsilon=\omega\otimes\tilde{\phi}\otimes\overline{\psi}$.

For each $(i,j)\in I$ , we define the operators $C_{i,j},$ $N_{i,j}$ , and $A_{i,j}$ on
the Hilbert space $\mathcal{F}_{q}\otimes\overline{\mathcal{K}}\otimes\overline{\mathcal{L}}$ as

$C_{1\dot{\theta}}.=$ $a^{*}(\xi:,j)\otimes\Gamma_{(i,j)}(i^{-1})\otimes\Lambda_{i}(r_{j-1})$ ,
$N_{\dot{l}}=a^{*}(\dot{\theta}\xi_{i,j})a(\xi_{\dot{\iota},j})\otimes\Gamma_{(\dot{\iota},j)(\ell^{*})}$ (& $\Lambda_{i}(1_{\mathcal{L}})$ ,
$A_{:\dot{o}}=$ $a(\xi_{i,j})\otimes\Gamma_{(i,j)(\ell^{*})}$ $\otimes\Lambda_{i}(s)$ ,

and call the $(i,j)$-creation, the $(i,j)$-number, and the $(i,j)$-annihilation
operator, respectively.

Consequently, we obtain the operator

$T= \alpha_{1}1+\sum_{i=2}^{\infty}\sum_{j=1}^{\infty}(\alpha_{i}C_{i,j}+N_{\dot{\iota},j}+A_{i,j})$ ,

where 1is the identity operator on the Hilbert space $\mathcal{F}_{q}\otimes\tilde{\mathcal{K}}\otimes\overline{\mathcal{L}}$ .
The operators $N_{2,j}(j\geq 1)$ are not essential in evaluating the m0-

ments.
The operator $T$ is our desired canonical random variable, of which

moments are given by the $q$-deformed moments-cumulants formula (A)
as follows:

THEOREM 3.1. The $nth$ moment of the operator $T$ with respect to
$\epsilon$ can be given as

$\epsilon(T^{n})=$
$\sum_{\pi\in P(\{1,\ldots,n\}),\pi=\{B_{1},B_{2},\ldots,B_{k}\}}q^{rc(\pi)}\prod_{i=1}^{k}\alpha_{|B:|}$

,

where $rc(\pi)$ is the number of restricted crossings of a partition $\pi$ .

4. The proof of the Theorem

We shall start this section with seeing the role of the operators
$\Lambda_{:}(r_{j-1})$ and $\Lambda_{i}(s)$ on the infinite tensor product space $\overline{\mathcal{L}}$, which can
be used as the counter for the parenthesis number and the depth of
blocks of size i.

On the Hilbert space $\mathcal{L}_{i}$ , we consider the product of the operators
$r_{j,k}$ and $s_{j,k}$ ,

z $=y_{n}y_{n-1}\cdots y_{2}y_{1}$ ,
where $y_{m}\in\{r_{j_{0},k_{0}}, s_{j_{1},k_{1}}\}_{(j_{0},k_{0})\in J_{0},(j_{1},k_{1})\in J_{1}}$ for m $=1,$ 2, \ldots , n. Then it
is easy to see that $\psi_{:}(z)=\langle z\zeta_{0,0}|\zeta_{a}\rangle$ , will vanish if $z\zeta_{0,0}\neq\zeta_{n,0}$ because
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the product of the rank one operators $r_{j_{0},k_{0}}$ and $s_{j_{1},k_{1}}$ will induce the
transitions on an orthonormal family of vectors $\{\zeta_{j,k}\}_{(j,k)\in J_{0}}$ .

We assume the equality

$(y_{n}y_{n-1}\cdots y_{2}y_{1})\zeta_{0,0}=\zeta_{n,0}$

holds, which derives the path of steps $n$ on the square lattice started
from the origin $(0, 0)$ and ended at $(n, 0)$ by tracing the subscripts of
the vectors $\zeta 0,0,$ $y_{1}\zeta_{0,0},$ $(y_{2}y_{1})\zeta_{0,0},$

$\ldots,$
$(y_{n}\cdots y_{2}y_{1})\zeta_{0,0}$ as the coordinates

of the through points. It is obvious that the length of the product, $n$

is even, automatically.
Furthermore, from the definition of the operators $r_{j}$ and $s$ , it can be

said that the $\phi_{:}(z)$ would not be changed even if we replace the factors
$r_{j,k}$ and $s_{j,k}$ in the product $z$ by $r_{j}$ and $s$ , respectively.

Such apath is nothing but the Catalan path. This fact allows us to
use the subscripts of the orthogonal vectors $\zeta_{j,k}$ on the $i\mathrm{t}\mathrm{h}$ tensor factor
$c_{:}$ of the infinite tensor product $\overline{\mathcal{L}}$ as the indicators of the parenthesis
number and the depth of the blocks of size $i$ .

Indeed, we can use the first subscript of the vector $\zeta_{j,k}$ for the
counter of the parenthesis number and the second one for the indi-
cator the depth of the blocks because the operator $\Lambda_{:}(r_{j-1})$ makes 1-
increments both on the first and the second subscripts, and the operator
$\Lambda_{:}(s)$ makes 1-increment on the first subscript and 1-decrement on the
second subscript.

Next we shall see the role of the shift operator $\ell$ and its adjoint $\ell*$

on each factor of the infinite tensor product space C. On the Hilbert
space $\mathcal{K}$ , we consider aproduct of $\ell$ and $\ell*$ ,

$P=\ell^{\epsilon_{m}}\ell^{\epsilon_{m-1}}\cdots\ell^{\epsilon_{2}}\ell^{\epsilon_{1}}$ , $(\epsilon_{j}=\pm 1)$ ,

where we use the convention that $\ell^{-1}=\ell^{*}$ . It is rather well-known that
if the product $P$ has non-zero expectation with respect to the vector
state $\phi$ , that is, $\langle P\eta_{0}|\eta_{0}\rangle\neq 0$, then the sequence $\{\epsilon_{j}\}_{j=1}^{m}$ should satisfy
the condition for the Catalan path that

$\sum_{j=1}^{k}\epsilon_{j}\geq 0,$ $(k=1,2, \ldots, m)$ and $\sum_{j=1}^{m}\epsilon_{j}=0$

(see, for instance, [Nil], [VDN]). This fact allows us to use the operators
$\Gamma(:\dot{o})(i^{-1})$ and $\Gamma_{(:\dot{o})}(\ell^{*})$ on the infinite tensor product space $\tilde{\mathcal{K}}$ as the
counter for the elements of ablock of size $i$ , of which first element has
the parenthesis number $j$ .
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In order to evaluate the moments of the operator $T$ , we expand

$T^{n}=( \alpha_{1}1+\sum_{i=2}^{\infty}\sum_{j=1}^{\infty}(\alpha_{i}C_{i,j}+N_{i,j}+A_{i,j}))^{n}$

and consider the expectation in aterm wise.

Aproduct of operators $(\alpha_{i}C_{\dot{l}\dot{\beta}}),$ $(N_{i,j}),$ $(A_{i,j})$ , and $(\alpha_{1}1)$ is called
admissible if it has non-trivial expectation with respect to $\epsilon$ . The word
‘trivial’ means, of course, that it has zero expectation for any sequence
$\{\alpha:\}_{\dot{l}=1}^{\infty}$ . Here we will treat $(\alpha_{i}C_{i,j}),$ $(N_{\dot{\iota},j}),$ $(A:_{\dot{\beta}})$ , and $(\alpha_{1}1)$ as non-
commutative operators and, moreover, amultiplication of the scalar
operator $(\alpha_{1}1)$ should not be reduced any more.

First we shall make the partition of the ordered set of $n$ elements
$\{1, 2, \ldots, n\}$ from given an admissible product of length $n$ . It will be
required to control the several counters for an admissible product. As
we mentioned above, the counter $\Lambda_{i}$ on the $i\mathrm{t}\mathrm{h}$ factor in the infinite
tensor product Hilbert space $\tilde{\mathcal{L}}$ will control the parenthesis number and
the depth of ablock of size $i$ and the counter $\Gamma(i,j)$ on the $(i,j)\mathrm{t}\mathrm{h}$ factor
in the infinite tensor product Hilbert space $\overline{\mathcal{K}}$ will count the elements
in the block of size $i$ , of which first element has the parenthesis number
$j$ .

Now we assume that the product of length $n$ ,
$\mathrm{Y}=Z_{n}Z_{n-1}\cdots Z_{2}Z_{1}$

where
$Z_{m}\in\{(\alpha:C_{\dot{l}})\dot{\theta}, (N_{i,j}), (A:\dot{\mathit{0}})\}_{(i,j)\in I}\cup\{(\alpha_{1}1)\}$ $(m=1,2, \ldots, n)$

is given as an admissible product. In scanning the factors from right
side of the admissible product, if we encounter the $(i_{0}, j_{0})$-creation op-
erator $(\alpha:_{0}C_{i_{0},j\mathrm{o}})$ for some $(i_{0},j_{0})\in I$ at the $m_{1}\mathrm{t}\mathrm{h}$ factor, that is,

$\exists_{m_{1}}\mathrm{s}.\mathrm{t}$ . $Z_{m_{1}}=(\alpha:_{0}C_{i_{0},j_{0}})$ for some $(i_{0},j_{0})\in I$ ,

then it can be ensured by the counter $\Gamma_{(i_{0},j_{0})}$ and definitions of the
$q$-creation and the $q$-annihilation operators that there exist $(i_{0}-2)’ \mathrm{s}$

$(N_{\dot{l}_{0},j\mathrm{o}})$ operators in the subsequent factors in case of $i_{0}\geq 3$ , that is,

$\exists_{m_{2}}<m_{3}\exists<\cdots<:_{0}-1\exists_{m}\mathrm{s}.\mathrm{t}$ . $Z_{m_{2}}=Z_{m_{3}}=\cdots=Z_{m:_{0}-1}=(N_{\dot{l}_{0\dot{\theta}0}})$ ,

and we can find one $(A_{i_{0},j\mathrm{o}})$ operator after them, that is,

$\exists_{m:_{0}}\mathrm{s}.\mathrm{t}$ . $Z_{m:_{0}}=(A_{i_{0\prime}j\mathrm{o}})$ with $m_{i_{0}-1}<m:_{0}$ .

Here we can regard that the set $\{m_{1}, m_{2}, \ldots, m_{i_{0}}\}$ makes ablock of
size $i_{0}$ . As we remarked at the beginning of this section, the second
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subscript $j_{0}$ of the operator $(\alpha:_{0}C_{i_{0}j\mathrm{o}})$ corresponds to the parenthesis
number of the first element of the block $\{m_{1}, m_{2}, \ldots, m_{1}.\}0$ because, in
general, the operators $(\alpha:C_{\dot{l}})\dot{\theta}$ and $(A:,j)$ have $\Lambda_{:}(r_{j-1})$ and $\Lambda_{:}(s)$ as
the third tensor factor, respectively. Thus, the subscript $j$ will be
increased at every $(\alpha:C_{\dot{l}})\dot{\theta}$ and $(A:_{\dot{\theta}})$ that we will encounter. Of course,
any $(i,j)$-annihilation operator, $(A:_{\dot{\theta}})$ or $(i,j)$-number operator, $(N_{1\dot{\theta}}.)$

would not appear without the corresponding $(i,j)$-creation operator
$(\alpha:C_{\dot{\iota}\mathrm{j}})$ before their appearance.

Furthermore, if we encounter the scalar operator $(\alpha_{1}1)$ then we
should consider it makes asingleton.

In order to evaluate the expectation of an admissible product with
respect to $\epsilon$ , we introduce the cards arrangement technique which is
similar as in [ER] for juggling patterns but we will use considerably
different kinds of cards. Depending on the factors in an admissible
product, we will arrange the cards in reverse order, that is, the position
number of cards should be counted from left side, and concatenate the
flow lines drawn on the cards.
The $(i,j)$ -creation card.

If we encounter the operator $(\alpha:C_{\dot{l}})\dot{\theta}$ in an admissible product then
we put the following $(i,j)$-creation card: The $(i,j)$-creation card has
1more many outflow lines than inflow ones. Hence, anew line will
be created, which is started ffom the middle point on the ground and
flows out at the first lowest level. We shall give the label $(i,j)$ to this
newly created line. If there are some inflow lines then they will flow
out at the 1-increased level without any crossing, respectively, that is,
the line inflowed at the Zth level flows out at the $(\ell+1)\mathrm{s}\mathrm{t}$ level, and
none of their labels will be changed. Moreover, we shall give the weight
to the card by the coefficient $\alpha:$ .

The card

The $(i,j)$ -annihilation card.
If we encounter the operator $(A:,j)$ in an admissible product then we

put the following $(i,j)$-annihilation card: It has 1less many outflow
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lines than inflow ones, thus one line will be deleted. In this case, we
can find the unique $(i,j)$-labelled inflow line because if there is no
$(i,j)$-labelled line then the operator $(A_{i,j})$ will not be allowed to use
there in an admissible product. Now we assume the $(i,j)$-labelled line
has been inflowed at the $m\mathrm{t}\mathrm{h}$ level then we make it go down to the
middle point on the ground and it will be deleted. The lines inflowed
at lower than the ynth level go in horizontally parallel and keep their
levels. Hence $(m-1)$ crossings will occur. The lines inflowed higher
than the $m\mathrm{t}\mathrm{h}$ level will flow out at the 1-decreased level without any
crossing, respectively, that is, the line inflowed at the $\ell(>m)\mathrm{t}\mathrm{h}$ level
flows out at the $(\ell-1)\mathrm{s}\mathrm{t}$ level. Any labels of lines on the card will not
be changed. We shall give the weight to the card by $q$ to the number
of the crossings, hence this card has the weight $q^{m-1}$ .

The card

REMARK 4.1. The $(i,j)$-creation and the $(i,j)$-annihilation cards
represent the relations of the definition for the $q$-creation and the q-
annihilation operators, respectively. Indeed, on the $q$-creation operator,
we have

$a^{*}(\xi:_{0},j\mathrm{o})\Omega=\xi:0,j_{0}$
’

$a^{*}(\xi:_{0,j_{0}})\xi_{\dot{l}_{1},j_{1}}\otimes\cdots\otimes\xi_{i_{n},j_{n}}=\xi:_{0},j_{0}\otimes\xi_{\dot{\iota}_{1},j_{1}}\otimes\cdots\otimes\xi:_{n},j_{n}$

Each flow line corresponds to the vector $\xi_{i_{l},j_{\ell}}$ and its label indicates
the subscripts of the vector. The set of the inflow lines and one of the
outflow lines represent the tensor product vector of the operand and
the result for the creation operator $a^{*}(\xi_{\dot{\iota}0\dot{\theta}0})$ , respectively. The order of
piled lines corresponds to one of factors in the tensor product vector.
The vacuum vector can be expressed as no flow line.
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On the $q$-annihilation operator, we have
$a(\xi_{\dot{\iota}\mathrm{o}i\mathrm{o}})\Omega=0$ ,

$a(\xi_{10\dot{\theta}0}.)\xi_{11\dot{\theta}1}.=\{\begin{array}{l}0,\mathrm{i}\mathrm{f}(i_{0},j_{0})\neq(i_{1},j_{1})\Omega,\mathrm{i}\mathrm{f}(i_{0},j_{0})=(i_{1},j_{1})\end{array}$

$a(\xi_{1\mathrm{o}\mathrm{j}_{0}}.)\xi_{11}.\mathrm{j}_{1}\otimes\cdots\otimes\xi_{1_{\hslash}i\cdot*}$.

$=\{\begin{array}{l}0,\mathrm{i}\mathrm{f}(i_{0},j_{0})\neq(i_{\ell},j_{\ell})\mathrm{f}\mathrm{o}\mathrm{r}\ell=\mathrm{l},2,\ldots,nq^{m-1}\xi_{\dot{l}_{1\dot{\theta}}}..\otimes\cdots\otimes\xi_{\dot{l}_{m\dot{\theta}m}}\otimes\cdots\otimes\xi_{|}.n\dot{\theta}\cdot*Y,\mathrm{i}\mathrm{f}(i_{0},j_{0})=(i_{m},j_{m})\end{array}$

where the symbol $\xi_{:_{m}\mathrm{j}_{m}}Y$ means that $\xi_{1_{m\dot{\theta}m}}$. has to be deleted in the
tensor product and, of course, the number $m$ for $(i_{0},j_{0})=(i_{m},j_{m})$ is
unique if it exists. The right hand side to be 0means that we can not
use the operator $(A_{10\dot{\theta}0}.)$ there for an admissible product.

The $(i,j)$ -number card.
If we encounter the operator $(N_{1\dot{\theta}}.)$ in an admissible product then

we put the following $(i,j)$-number card: Similarly as for the $(i,j)-$

annihilation card, we can find unique $(i,j)$-labelled inflow line. Assume
that the $(i,j)$-labelled line has been inflowed at the $m\mathrm{t}\mathrm{h}$ level then we
make it go down to the middle point on the ground and its flow will
be continued as the first lowest line. The inflow lines of lower than the
$m\mathrm{t}\mathrm{h}$ level will flow out at the 1-increased level, respectively, that is,
the line inflowed at the Zth level flows out at the $(\ell+1)\mathrm{s}\mathrm{t}$ level, and
ones of higher than the $m\mathrm{t}\mathrm{h}$ level will keep their levels. Hence we have
$(m-1)$ crossings. Any labels of lines on the card will not be changed.
We shall also give the weight to the card by $q$ to the number of the
crossings, thus this card has also the weight $q^{m-1}$ .

The scalar card.
If we encounter the operator $(\alpha_{1}1)$ in an admissible product then we

put the following scalar card: The scalar cards has the short pole-like
segment of line at the middle point on the ground. If there are some
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inflow lines then they will go in horizontally parallel and keep their
levels, respectively. No label, of course, will be changed. The height of
the pole is smaller than the 1st level, thus we have no crossing on the
card. We shall give the weight to the card by $\alpha_{1}$ .

$\alpha_{1}$

.$\cdot$.

The scalar card

It is clear that given an admissible cards arrangement determines
the partition of the ordered set $\{1, 2, \ldots, n\}$ , of which blocks constituted
from the points connected by flow lines in the pattern of the arrange-
ment. Here we regard that the short poles at the middle points on the
scalar card will make singletons.

From the construction of the cards, it is also obvious that the cross-
ings which will appear in the cards arrangement are nothing else but
restricted crossings for the partition determined by the arrangement
because the flow line which makes aconnection between two elements
becomes an arc of the partition. Here we remind how to give the
weights to the cards then it follows that the expectation of an admis-
sible product can be evaluated by the product of all the weights of the
cards used in the arrangement.

Now we have reached that the expectation of the admissible product
$\mathrm{Y}$ of length $n$ can be evaluated as

$\epsilon(\mathrm{Y})=q^{rc(\pi\gamma)}\prod_{i=1}^{k}\alpha_{|B:|}$ ,

where $\pi_{\mathrm{Y}}=\{B_{1}, B_{2}, \ldots, B_{k}\}\in P(\{1,2, \ldots, n\})$ is the partition arisen
from the admissible product $\mathrm{Y}$ as we mentioned above.

EXAMPLE 4.2. For the admissible product

$\mathrm{Y}=(A_{3,1})(A_{3,2})(N_{3,2})(\alpha_{1}1)(N_{3,1})(\alpha_{3}C_{3,2})(\alpha_{3}C_{3,1})$ ,
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we have the following cards arrangement:

$(\alpha_{3}C_{3,1})(a_{3}C_{3,2})$ $(N_{3,1})$ $(\alpha_{1}1)$ $(N_{3,2})$ $(A_{3,2})$ $(A_{3,1})$

The above cards arrangement yields the partition
$\{\{1,3,7\}, \{2,5,6\}, \{4\}\}$ ,

and, on the expectation, we have $\epsilon(\mathrm{Y})=q^{2}\alpha_{1}\alpha_{3}^{2}$ .

Conversely, given apartition $\pi\in P(\{1,2, \ldots, n\})$ , we can make the
admissible product of the operators $(\alpha:C_{1\dot{\theta}}.),$ $(N_{1\dot{\theta}}.),$ $(A:_{\dot{\beta}})$ , and $(\alpha_{1}1)$

of the length $n$ as the following manner: For $k\in\{1,2, \ldots, n\}$ , we first
take the size $i$ of the block in which $k$ is contained. If $i=1$ , that is,
$\{k\}$ is asingleton in the partition $\pi$ , then we put the scalar operator
$(\alpha_{1}1)$ as the Ath factor in our product. Now we assume that $i\geq 2$ .
Then we seek the parenthesis number of the first element of the block
in which $k$ is contained, say $j$ . If $k$ is the first (resp. last) element of
the block then we use the operator $(\alpha:C_{\dot{l}i})$ (resp. $(A:_{\dot{\theta}})$ ) as the Ath
factor in our product. For the rest of the above cases, that is, $k$ is an
intermediate element of ablock, then we adopt the operator $(N_{1\dot{\theta}}.)$ as
the $k\mathrm{t}\mathrm{h}$ factor in our product. It should be noted that the position of
the factors is counted from right side.

Using the card arrangement again, it is easy to see that such aprod-
uct has non-trivial expectation with respect to $\epsilon$ , which can be obtained
as the product of the weights of the cards used in the arrangement. $[]$
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