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T-system and thermodynamic Bethe ansatz
equations for solvable lattice models associated
with superalgebras
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Graduate School of Mathematical Sciences, University of Tokyo

Abstract

An analytic Bethe ansatz is carried out related to the Lie superal-
gebra osp(1|2s). We present an eigenvalue formula of a transfer matrix
in dressed vacuum form (DVF) labeled by a Young (super) diagram.
Remarkable duality among DVFs is found. A complete set of transfer
matrix functional relations (T-system) is proposed as a reduction of a
Hirota-Miwa equation. We also derive a thermodynamic Bethe ansatz
(TBA) equation from this 7-system and the quantum transfer matrix
method. This TBA equation is identical to the one from the string
hypothesis. '

1 Introduction

Solvable lattice models related to Lie superalgebras [1] have 1cceived much
attentions [2, 3, 4, 5, 6, 7, 8, 9]. To construct eigenvalue formulae of transfer
matrices for such models is an important problem in mathematical physics.
To achieve this program, the Bethe ansatz has been often used.

Nowadays, there is much literature (see for example, [4, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] and references thercin.) on Bethe
ansatz analysis for solvable lattice models related to Lie superalgebras. How-
ever, most of it deals only with models related to siinple representations like
fundamental ones. Only a few people (see for example, [15, 17]) tried to
deal with more complicated models such as fusion models [25] by the Bethe
ansatz; while there was no systematic study on this subject.

To address such situations, we have recently executed [26, 27, 28, 29, 30]
an analytic Bethe ansatz (31, 32, 33, 34] systematically related to the Lie
superalgebras si(r + 1|s + 1), B(r|s),C(s), D(r|s) cases. Namely, we have
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Figure 1: Dynkin diagram for the Lie superalgebra B(0|s) = osp(1]2s) (s >
1): white circles denote even roots; a black circle denotes an odd root.

proposed a set of dressed vacuum forms (DVFs) and a class of functional rela-
tions (T-system) for it. Moreover we have also studied thermodynamic Bethe
ansatz (TBA) equations [35] related to osp(1]2) [36, 37, 38] and osp(1]2s)
[39] from the point of view of the string hypothesis [40, 41] and the quantum
transfer matrix (QTM) method [42, 43, 44, 45, 46, 21].

In this paper, we briefly review the T-system and the TBA equation
related to the Lie superalgebra osp(1|2s) = B(0|s) based on [30, 39]. Af-
ter a brief review on the Lie superalgebra osp(1|2s), we introduce a QTM
for 0sp(1|2s) model[16] in section 3. In section 4, we carry out an analytic
Bethe ansatz based on the Bethe ansatz equation (BAE) (13) and obtain
the eigenvalue formula for the QTM. We define the dressed vacuum form
(DVF) Txcu(v) labeled by a skew-Young (super) diagram A C p as a sum-
mation over semi-standard tableaux. This DVF has a determinant expression
(quantum supersymmetric Jacobi-Trudi formula). In particular, for a rect-
angular Young (super) diagram, this DVF satisfies a kind of Hirota-Miwa
equation[47, 48]. By considering a reduction to this equation, we derive the
0sp(1|2s) version of the T-system. Based on this T-system, we derive the

TBA equation from the QTM method in section 5. Namely, we consider

a dependant variable transformation, and derive the Y-system from the 7-
system. Then we transform the Y-system with certain analytical conditions
into the TBA equation. Moreover we find that this TBA equation coincides
with the one from the string hypothesis. This indicates the va.hdlty of the
string hypothesis for the osp(1|2s) model.

2 The Lie superalgebra osp(1|2s)

In this section, we briefly mention the Lie superalgebra B(0|s) = osp(1|2s)
for s € Z>, (see for example [1, 49, 50]).

In contrast to other Lie superalgebras, the simple root system of osp(1|2s) -

is unique and given as follows (see Figure 1):

a,-=5i—6,~.,.1 for 'i=1,2,...,$—1,
as = O (1)
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where 01, ..., 0, are the bases of the dual space of the Cartan subalgebra with
the bilinear form ( | ) such that

(6il65) = —bi; (2)

{a;}izs are even roots and o is an odd root with (as|as) # 0. Let A C p
be a skew-Young (super) diagram labeled by the sequences of non-negative
integers A = (A1, Ag,...) and p = (u1, p2,...)suchthat u; > A4 =1,2,..;
M > X > >0 > pp > > 0and 4 = (4, ph, . -.) be the conjugate
of 1. In particular, for A = ¢, u; < s case, the Kac-Dynkin label [b;, bo, . . ., bs]
is related to the Young (super) diagram with shape pu = (p,p2,...) as
follows:

bi = pi — Wit for 1€{1,2,...,5 -1},
bs = 245 (3)
An irreducible representation with the Kac-Dynkin label [b1, by, . .., bs] is fi-
nite dimensional if and only if
bj € Zxo for j€{L1,2,...,s — 1},
bs € 2Z>0. (4)

3 o0sp(1|2s) model and QTM method

In this section, we introduce an integrable spin chain[16, 18] associated with
the fundamental representation of osp(1|2s), and define a QTM. The R-
matrix([5, 8, 9, 18] of the model is given as

- 2v
R(v)=1+vP - gE’ v (5)
where g = 2s + 1; PS¢ = (—1)P@P1)§,,5,; B = aap(a™)ea; a,b,c,d € J =
{1,2,...,80,5,...,2T} 1 <2< <8<0=<3<--<2<1)ais
(2s+1) x (2s+ 1) anti-diagonal matrix whose non-zero elements are a5z = 1
fora € {1,2,...,s5,0}and gz = —1fora € {5,s —1,...,1};@2=a; p(a) =0
for a = 0; p(a) = 1 for a € {1,2,...,s}U{5S,...,2,1}. The Hamiltonian of
the present model for the periodic boundary condition is given by

L
: 2
H=7J E (Pk,lc+l + EEk,k+1> , (6)

k=1

where L is the number of the lattice sites; Py +1 and Ej x+1 act nontrivially
on the k£ th site and k + 1 th site. There are several formulations of QTM
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for graded vertex models. We consider the case where the transfer matrix is
defined as the ordinary trace of a monodromy matrix. The QTM is defined
as

Razk.j (u + iv)EGZk—luj(u - i’U), (7)

=

TV (u, v) = Tr;

k

where R%(v) = R (v); ﬁjk(v) ='*Ry;(v) (tk is the transposition in the k-th

space); N is the Trotter number and assumed to even. By using the largest

eigenvalue T\"(uy, 0) of the QTM (7), the free energy density is expressed
as

1

1 | (1)
f_—ﬂl\}grlmlong (un, 0), (8)

where uy = —JN@ (6 = 1/(kBT); kp: the Boltzmann constant; 7": the

temperature). From now on, we abbreviate the parameter u in 7; fl)(u, v).

4 Analytic Bethe ansatz and T-system for QTM

One can obtain the eigenvalue formulae of the QTM (7) by replacing the
vacuum part of the DVF for the row-to-row transfer matrix [16, 18] with
that of the QTM. Explicitly we have

TV(w) = (@], 9)

a€J
where the functions {[a],}acs are defined as

oy @ena(vF $a+1)Qu(v + §(a = 2))
@k = vel) =0 "o + e - 1)0ulv + 1a)
for a€{1,2,...,s},

s+ i(s—1)Qs(v+ 2(s+2
0L = w2 G G T o e 1o
Qus (v — §(a = 25))Qu(v — (a — 25 — 3))
=¥ G = (025 - 2)Qulv = Ha— 25— 1))
for a€{1,2,...,s},
where Qo(v) := 1; ¥4(v) is the vacuum part
(U o 4y
Ya(v) = ¢ G+ (v)P-(v) for 2<a=x2, (11)

¢—(v)p4 (v—i)p— (v+2E5Li) =
. CT ;-(v+-f-%"—1-i) 2 for a= 1,
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where ¢4 (v) = (v £ )% ; ¢, is a phase factor:

(—1)N-M if a=1
(=1)Ma1=Ma if g €{2,3,...,5}
G=14 1 if a=0 (12)
(—1)Ma-i=Mz if g {3,...,3,3)}
(=)N-M if a=1,

where @ = a. The complex variables {v,(c“)} are roots of the following Bethe
ansatz equation

N (@ (@) ; s+1 (a) L
H (Uk — W, * 4 "50,1) = —(_1)N[a—1—Mo‘(a+1) Qa(d)(vka * %Bad)’ (13)

i=1 v - w 50a1 21 Qo@ (0" — §Baa)

where k € {1,2,...,M,}; a € {1,2,...,s}; o(d) =d for 1 <d < s;0(s+
]-) = S, Ba = 25ad - 6ad+1 - 5ad 15 Qa( ) = k= 1('U - U]E:a)) M € Z>O)
My = N. The parameter o expresses an effect of ‘a peculiar two-body self-
interaction for the root {v{”}’ [18], which originates from the odd simple root
o, with (as|as) # 0. One may interpret the QTM as a transfer matrix of
an mhomogeneous vertex model. In our case, the inhomogeneity parameters

) € C take the values: wg %) — juby for JjE2Z>y; w (-a) = (—iu + —9)(5,11 for
j € 2Z>o + 1. The dress part of the DVF (9) is free of poles under the BAE
(13). This is a requirement from the analytic Bethe ansatz [31].

Now we will present a DVF T)c,(v) for a ‘fusion QTM’. We can derive
the explicit expression of Thc,(v) by modifying the vacuum part of the DVF
in Ref. [30] so that the vacuum part is compatible with the left hand side of
the BAE (13). We assign coordinates (,j) € Z? on the skew-Young (super)
diagram X C p such that the row index ¢ increases as we go downwards and
the column index j increases as we go from the left to the right and that
(1,1) is on the top left corner of . We define an admissible tableau b on the
skew-Young (super) diagram X\ C 4 as a set of elements b(3, j) € J labeled by
the coordinates (4, j) mentioned above, with the following rule (admissibility
conditions). '

bi,5) < bling + 1), blEsd) 2 b(i + 1, 9). (14)

Let B(A C p) be the set of admissible tableaux on A C u. For any skew-
Young (super) diagram A C p, define Thcu(v) as follows

T/\CM Z H b(-]’k> ,__( “1+#‘1—2]+2;€) ‘ (15)

beB(ACu) (4,k)€(ACp)
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(1,1) [Zl (2,2) @ (2,3) E] (1,4)

Figure 2: The Bethe-strap structure of T\"(v) for 0sp(1]4): The pair (a, b)
denotes the common pole v,(ca) — £b of the pair of the tableaux connected by
the arrow. This common pole vanishes under the BAE (13). The leftmost
tableau corresponds to the ‘highest weight ’, which is called the top term.
This term carries the osp(1]4) weight &;.

where the product is taken over the coordinates (j,k) on A\ C u. Let

T ) := Tam)(v). The following determinant formula (quantum super-
symmetric Jacobi-Trudi formula) should be valid (cf. [34]).
Tacu(v) = detigjucu (T (0 -
i / / / . V :
5(mh+p + b+ X — 5 = k+1))). (16)

We may think of (15) as an 0sp(1]2s) version of the Bazhanov and Reshetikhin’s

eigenvalue formula (32]. In particular, for A = ¢, u; < s case, the ‘top term’
of T,(v) will be the term corresponding to the tableau b(%, ) = j (1 < i < K,
1 <j < s). This term carries the osp(1|2s) weight with the Kac-Dynkin label
(3) (in the sense in Ref. [33]). DVFs have so called Bethe-strap structures
[33] and we confirmed, for several examples, that Thc,(v) coincides with
the Bethe-strap of the minimal connected component which includes the top
term as the examples in Figure 2, Figure 3 and Figure 4. T)c,(v) may be
viewed as a prototype of a ‘g-supercharacter’ (cf. [51]).

Now we introduce the functional relations among DVFs. The following
relation follows from the determinant formula (16).

T + HTO( - 1) = TELOTE, ) + TEDOTLEIw), (7)

where a, m € Z5,. This functional relation is a kind of Hirota-Miwa equation
[47, 48] and can be proved by the Jacobi identity. The following theorem
follows from the admissible condition (14).

Theorem 1 Tyc,(v) = 0 if A C p contains m x a rectangular subdiagram
(m: the number of row, a: the number of column) with a € Zys42 and
m € Z3,. In particular, we have

T,(,:‘)(v) =0 if ae€ ZZ23+2 and m € ZZI- (18)
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Figure 3: The Bethe-strap structure of Tz(l) (v) for osp(1|4): The topmost
tableau corresponds to the ‘highest weight ’, which is called the top term.
This term carries the osp(1|4) weight 24,
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Figure 4: The Bethe-strap structure of Tl(z) (v) for osp(1|4): The topmost
tableau corresponds to the ‘highest weight ’, which is called the top term.
This term carries the osp(1|4) weight 8; + ,



There is a remarkable duality for T3 ) (v).

Theorem 2 For any a € {1,...,s} and m € Zxo, we have
T (v) = MP ()T (v), (19)

where M (v) is given as

MO (y ﬁ{ Yi(v —§(m —a—2j+2))
wlv——m 25s+a—2j+1))

2 Ek 2 Pa(v - %(m—aﬂ—2j-|.—2k)) } (20)
o (v — 3(m —25+a—27+2k—1))

For a € {1,2,...,s} and m € Z;, we define a normalization function

17 [Ty 6- (v — B2ty g, (v — Pmesii®iy)

b (0= BE0)pr (v + B5%0)

We reset Ti) (v)/Ni? (v) to T (v), where T (v) is defined by (15). By
using the Theorem 1,2, we can obtain the T-system as a reduction of the
Hirota-Miwa equation (17).

N (y) = (21)

t - a a a— . a'
T (v + DT (v - 2) = Tl ()T (o) + TV )T ()

for a€1,2,...,5—1, | (22)
s s ’L S s S s~ s
TP+ TR - 5) = TEL T E) + 6 TS ITP),
where

TOW) = é(v+50)pe(v—31) for acZsy,

2
Tr(r?)(v) = ¢_(v— %i)dhr(v + %z) for m € Z», (23)
(s) I mistly)g, (v — PEEL) ¢ 7
Im ( ) ¢_(’U + m;-s’i)¢+(’l} _ m;_SZ,) or m € L>;.

For s = 1, ¢ ()T (v) coincides with the function T (v) in Ref. [37].
Since the dress part of the DVF 7o (v) is same as the row-to-row case,

this functional equation (22) has essentially the same form as the osp(1|2s)
T-system in Ref.[30].
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5 TBA equation

For m € Z,, we define the Y-functions:

T(a) T(a)
YrSza) (v) = (:—t; @) (a+11()v) for a€{l,2,...,s-1},
Tm '(v)Tm " ' (v) ‘
(s) (s)
Yrgs)(,u) Tm+1 (U)T l(v) (24)

(8)(v)T(3 U(’U)T(s)(’v).

By using the T-system (22), one can show that the Y-functions satisfy the
following Y'-system:

1L+ Y2, )0+ Y(a)l(v))
T+ (P @)y

where Yo(a) (v) =0,a€{1,2,...,s}andm € Zy;; I,y = 0a,d—11+00 d+1+0ad0as.
A numerical analysis for finite NV, u, s indicates that a two-string solution (for
every color) in the sector N = Mj = M, = --- = M, of the BAE (13) provides
the largest eigenvalue of the QTM (7) at v = 0. Moreover, we expect the
following conjecture is valid for this two-string solution.

YO+ )Y (- ) (25)

ConJecture 1 For small u (Ju| < 1) and a € {1,2,...,s}, every zero of

(v) is located outside of the physical strip Imv € [—-5, 3l

Based on this conjecture, we shall establish the ANZC property in some
domain for the Y-functions (24) to transform the Y-system (25) to nonlin-
ear integral equations. Here ANZC means Analytic NonZero and Constant
asymptotics in the limit |[v| — co. One can show that the Y-function has
the following asymptotic value

lim y(a)( ) = M) (26)
|v]~o0 a(g —a) ‘
which is identified to the solution of the constant Y -system
1+Y9)(1+Y

IS (1 + (YD) 1) aa

where Y(a) :=0,a€{1,2,...,s} and m € Z>,. From the Conjecture 1 and
(26), we find that the functlons 1+ YD), 1+ (Y (v))~! in the domain
Imv € [-4,4] (0 < 6§ <« 1) and Y(a)(v) for (a,m) # (1,1) in the domain
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Imv € [—%, %] (physical strip) have the ANZC property. On the other hand,

Yl(l)(v) has zeros of order N/2 at +i(3 —u) if u > 0 (J < 0), poles of order
N/2 at +i(3 +u) if w < 0 (J > 0) in the physical strip. Then we must

modify Yl(l)(v) as
:tNﬁn]nSm]
~(a) (a) 7!' . 1 ) e . ]. 2
Y *(v) =Y, (v) { tanh 5(1} + 2(5 + u)) tanh —2—('0 - 2(5 + u)) , (28)
where the sign =+ is identical to that of —u. Taking note on the relation
tanh %(v + i) tanh %(v —1i) =1, (29)
one can modify the lhs of the Y-system (25) as

o Dy 4 1y (L YE)0+ 1)
Y 2)Ym ( +2) Hd=1(1+(Yn(zd)(U))_l)I°d , (30)

for meZy and a€{l,2,...,s}

Now that the ANZC property has been established for the Y-system, we can
transform (30) into a system of nonlinear integral equations by a standard
procedure.

a10m 1 L1
log V¥ (v) = :Fﬂ-l——l log {tanh %(v + 2(5 + u)) tanh %(v - 2(5 + u))}
1+Y9)1+YY
+K*log{( + ) (:; 1)}( )5 : (31)
[T, (1 + (Ym?) 1) e
where Y{*(v) = 0, a € {1,2,...,5} and m € Zy,; * is a convolution
(Fem)@) = [ dufw - whiw) (32)
and the kernel is .
1 _
B = g coshmo (33)
Substituting u = —— “and taking the Trotter limit N — 00, we obtain the

TBA equation

(a) (@) :
g Y (0) = %+K*1Og{(1+y ) )(1+ Y )}(,U), (34)

coshmv - o, (1 + (YD) =1)1ad
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where a € {1,2,...,s}, m € Zsy, Y*(v) := 0. This TBA equation (34) is
identical to the one from the string hypothesis. Taking note on the relations

min(a,d)

Coa(v) = Z Gla-dj+2-1(v),
=1
2s+1-2a)w Ty

Galv) = 4 cost 2512 cosh 223+1

25 + 1 cos ———(23;1 +f“)" + cosh 24’:’1 ’

= / dvCog(v)e ™,

Z Cac cd(k) = 60,4, (35)

Dcd(k) = 20c4 coshg— — I4,

one can also rewrite this TBA equation as
logY W (w) = 218T6m1Ga(v)

L (1+Y2)1 +YY
+zcab*1og{ )0t b)) (ag)
b=1 [Ta=y (14 Yim?)tee

where Y{*(v) =0, a € {1,2,...,s} and m € Z3,. In contrast to (34), (36)
does not contain 1+ (Y, (v)) ~! which is not relevant to evaluate the central

charge for the case 7 < 0. One can also derive the following relatlon from
(22) for m =1, (24) and (35).

log TN (W) = logo-(v+i)ds(v—1)+ Z G, * log(1 + Y{*)

a=1
®  2¢~% sinh(ku) cos(kv) cosh(2=Lk)
N dk a7 7
+ / k cosh(2E1 ) (37)
Taking the Trotter limit N — oo with u = —ﬂ, we obtain the free energy
density F = — % log T(1 (0) w1thout infinite sum.

L, 3+2s
r o= j{m<210g2 ¢(2 +1)+¢(2+4s))_1}

—kgT Z /_ " 40Ga(v) log(1 + ¥O(v), (38)
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where 1(z) is the digamma function

W) = - logT(z). (39)

The first term in the rhs of (38) for J = —1 coincides with the grand state
energy of the osp(1|2s) model in [16]. Using the result of this section, we can
show that the central charge of the corresponding system is s.

6 Discussion

In this paper, we have derived the TBA equation from the osp(1|2s) version
of the T-system. The osp(r|2s) integrable spin chain is related to interesting
physical problems, such as the loop model which is related to statistical
properties of polymers[22], and the fractional quantum Hall effect [52], etc.
So it is desirable to study the osp(r|2s) integrable spin chain beyond the
osp(1|2s) case. For r > 0 case, we have only the T-system for tensor-like
representations [30]. To construct a complete set of the T-system which is
relevant for the QTM method, we have to treat spinorial representations.

In closing this paper, we shall mention the si(r + 1|s + 1) version of the
T-system [26, 27, 28] which is omitted in this paper. The osp(1|2s) T-system
is obtained as a reduction of a kind of Hirota-Miwa equation. This is also
the case with sl(r + 1|s 4+ 1). For m,a € Z3,, sl(r +1|s + 1) T-system leads
as follows. ‘

T (v - VIR +1) = Th ()T @) + T2 @) T )
for 1<a<r or 1<m<s or (a,m)=(r+1,s+1),

T+ (y — DT (p +1) = ngll)(v)T,(n’_ll)(v) for m>s+2,

T (v - l)Ts(i)l(v +1)= TsfiJ{l)(v)Ts(izl)(v) for a>r1+2.

S

where,

T (v) = TP (v) for a>7+1,

TP @) =T () = 1

Here we omit the vacuum part which can be easily recovered so as to be
compatible with the lhs (vacuum part) of the BAE. The phase factor €, de-
pends on the definition of the transfer matrix. For example, if the transfer
matrix is defined as a supertrace of a monodromy matrix, we have ¢, =
(—1)(s+D(e+r+1) - Note that above functional equation reduces to the T-
system for sl.41 [32] (see also [53, 54]) if we set s = —1.
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