Nesin の問題について

岡山大学理学部数学教室 田中 克己

1 はじめに

Ali Nesin は学位論文を書いていた頃、1980年代後半、から次の予想を考えていた。

Nesin の予想 (以降, NC とよぶ)

連結で Morley rank 有限の群 G とその任意の元 a に対し、 $C_G(a)$ は無限であろう.

この問題は、私が Irvine に滞在した 1995 年の時点でも未解決のままであり、彼自身「この問題は考えないほうがいい.」と言っていた。それは、おそらくこの問題が次の Cherlin-Zil'ber 予想に関わってくるからなのだろう漠然と思っていた。

Cherlin-Zil'ber 予想

Morley rank 有限な単純群は代数閉体上の代数群と同型であろう.

いつまでもこのままで放っておくのも気持ちが悪いので、この辺で、何が分かっていて、何が分かっていないのかを明らかにしておこうと思い立った。現在でも open であるこの問題 について攻略の足がかりを見つけたいと思う。

2 単純群

まず、この予想に反例があったとすると、単純群で取れることを示す. そのために、いくつか準備をする.

次の補題は [BCM] や [N] に見られる.

補題 1 連結な群 G が有限集合 X に作用しているとする. $\{g \in G \mid g.x = x \ \forall x \in X\}$ が G の定義可能部分群とする. このとき, G は X に自明に作用する.

証明 群の準同型写像 $f:G \longrightarrow Sym(X)$ を考える。ここで、 $f(g)=f_g$ for $g \in G$ で $f_g(x)=g.x$ for $x \in X$ とする。このとき、 $\ker f$ の G での指数は有限。 $\ker f$ は 定義可能 部分群だから G の連結性より、 $G=\ker f$. つまり、G は X に自明に作用している。ロ

系 2 連結な群 G とその有限正規部分集合 X に対し、 $X \subset Z(G)$.

系 3 G を連結な群, $Z_2(G)$ が有限とする. このとき, $Z_2(G) = Z(G)$ で G/Z(G) は連結. このことから、次が導かれる.

系 4 NC に反例が存在すれば、centerless な反例が存在する.

定理 5 NC に反例が存在すれば、単純群で反例が存在する.

証明 上の系より、centerless な反例の中で Morley rank が最小の群 G をとる。G の定義可能正規部分群 N を考える。N が有限のときは、系 2 より、N は G の中心に含まれる。G は centerless だから、N=1.

N が無限のときは、連結成分 N^o も無限. いま、 $a \in G$ にた対し、 $C_G(a)$ が有限とする. $a \in N^o$ のとき、反例 G の Morley rank の最小性から、 $G = N^o$.

 $a \notin N^o$ のとき、 G/N^o も NC の反例になる。なぜなら、 $MR(G) = MR(a^G)$ (a^G は G で generic) だから、 $\bar{a} = aN^o$ 、 $\bar{G} = G/N^o$ として、 $\bar{a}^{\bar{G}}$ は \bar{G} で generic. よって、 $C_{\bar{G}}(\bar{a})$ は有限。これは G のランクの最小性に反する。したがって G は単純群。 \Box

3 $|a| \neq \infty$

いま, $a \in G$ に対し, $C_G(a)$ が有限とする. このとき, conjugacy class a^G は G で generic.

定理 6 G を NC の反例, a の中心化群が有限とするとき, $|a| \neq \infty$.

証明 G を NC の反例とする. $|a|=\infty$ とする. このとき, $a^n \in C_G(a) \ \forall n \in \mathbb{N}$ で矛盾. \square

4 $|a| \neq 2$

定理 7 G を NC の反例, a の中心化群が有限とするとき, $|a| \neq 2$.

証明 元 a は involution と仮定する. a^G は G で generic. $a^G = A$ とおくとき, aA も G で generic. よって, $aA \cap A$ も G で generic. したがって, $B = \{b \in A \mid ab \in A\}$ は G で generic. このとき,

$$aa^b = ab^{-1}ab = abab = (ab)^2 = 1.$$

ゆえに, $a^b=a$ となり, $b\in C_G(a)$. これは, $B\subseteq C_G(a)$ を意味し $C_G(a)$ の有限性に反

5 Gは involution を持つ

ここで、 $C_G(a)=C_G(a^{-1})$ より、 $a^{-1}\in a^G$. したがって、ある元 $g\in G$ が存在して、

$$a^g = a^{-1}$$
.

補題 8 | $g \neq \infty$.

証明 $a^{g^{2n}}=a$ $\forall n\in\mathbb{N}$ より, $g^{2n}\in C_G(a)$. これは, $C_G(a)$ の有限性に反する. \square

補題 9 | g | は偶数.

証明 |g|=n が奇数とする.

$$a = a^{g^n} = a^{(-1)^n} = a^{-1}$$

で矛盾. ロ

定理 10 NC の反例は involution を持つ.

証明 |g|=n=2m とする. このとき, g^m は involution. \square

6 $|a| \neq 3$

前のセクションで分かったことから、NC の反例 G の exponent は 3 にはならない. しかし、このことは以下で紹介する Wagner の結果からも導かれる. ここでなされる議論は、この問題を考えるとき有効だと思われるので、ここに証明と合わせて紹介する.

定理 11 (Wagner[W]) 安定な群が位数 3 の generic な元 g をもつとき, nilpotent-by-finite.

証明 $x \in G$ で g は x 上 generic とする. このとき, ga と xg^{-1} も generic. このとき,

$$x^{g^2}x^gx = gxgxgx = 1 = xg^{-1}xg^{-1}xg^{-1} = xx^gx^{g^2}$$

したがって、 $xx^g = (x^{g^2})^{-1} = x^g x$. 安定性から、 $C_G(x^G) = C_G(x^{g_1}, \cdots, x^{g_n})$ $\exists g_1, \cdots, g_n \in G$. g が独立で generic ならば、 g_1g, \cdots, g_ng も generic. よって、g はすべての x^{g_ig} と可換. したがって、 $x^{g^{-1}}$ はすべての x^{g_i} と可換. ゆえに、 $x^{g^{-1}}$ x^G と可換. したがって、 $x \in C_G(x^G)^g = C_G(x^G)$. よって、 x^G は可換な正規部分群を生成する. [W] の Theorem 1.1.12 より、G は nilpotent.

G の任意の 2 元 x, y から生成される群は 2-step nilpotent. なぜなら, $[x,y]=x^{-1}x^y=y^{-x}y$ は x とも y とも可換. 任意の x と x 上 generic な任意の y に対し, xy は generic. よって,

$$1 = (xy)^3 = x^3y^3[y,x]^3 = x^3[y,x]^3$$

また、x 上独立で generic な別の z に対し、yz も x 上 generic. $x^3=1$ と、 $\langle x^G \rangle$ の中の commutator は可換であることに注意すると、

$$x^3 = [x, y]^3 = [x, z]^3 = [x, yz]^3 = ([x, y]^z [x, z])^3 = ([x, y]^z)^3 [x, z]^3.$$

したがって, G の exponent は 3. \Box

この結果は、Poizat による次の予想の部分解になっている.

Poizat の予想 G を Morley rank 有限な連結群, $\varphi(x)$ を atomic な論理式でG のある generic な元を解にもつとする. このとき, G の任意の元は $\varphi(x)$ の解になる.

7 | $a \neq 2^2$?

このセクションでは、表題のことが成り立つのか考察を試みる. 次の議論は M. Hall によるバーンサイド問題の部分的解決である $\lceil B(r,4) \rceil$ の有限性」の証明と同じ方針で行う.

定理 12 G を NC の反例, a を位数 4 の G の元でその中心化群は有限とする. このとき, a を含む局所有限な群が存在する.

証明 $a^G = A$ とおく. A は G で generic. いま, $a = x_1$ とおく.

 $Claim\ H$ を G の有限部分群, $x\in G$ は $x^2\in H$ をみたすものとする. このとき, $\langle H,x\rangle$ は有限.

この Claim が正しいとすると、 $H=\langle x_1\rangle$ とおく、 $x_2^4=1$ ならば、 $x=x_2^2$ とおけば、 $\langle x_1,x_2^2\rangle$ は有限、次に、 $H=\langle x_1,x_2^2\rangle$ 、 $x=x_2$ とおけば、 $\langle x_1,x_2\rangle$ は有限、同様に、 $\langle x_1,x_2,x_3^2\rangle$ 、 $\langle x_1,x_2,x_3\rangle$ と続ければよい、

Claim の証明 $\langle H, x \rangle$ の任意の元は

$$h_1xh_2xh_3x\cdots h_{n-1}xh_n, (1)$$

ここで、 $n \ge 1, h_1, \dots, h_n \in H$ で、 h_2, \dots, h_{n-1} は non-trivial とする. x を $A \cap \bigcap_{h \in H} Ah^{-1}$ から取れば、 $(xh)^4 = x^4 = 1$ より、

$$xhx = h^{-1}x^{-1}h^{-1}x^{-1}h^{-1} = h^{-1}x(x^{2}h^{-1}x^{2})xh^{-1} = h^{-1}xkxh^{-1}$$
 (2)

を得る. ただし, $k \in H$.

だから, (2) を使うと(1)を

$$h_1 x h_2 \cdots x h_{i-1} h_i^{-1} x k x h_i^{-1} h_{i+1} x \cdots x h_n$$
 (3)

の形に長さを大きくせずに変形できる.

(2) を繰り返し使うことによって h_{i-1} を $h_{i-1}h_i^{-1}$ に, h_{i-2} を $h_{i-2}(h_{i-1}h_i^{-1})^{-1}=h_{i-2}h_ih_{i-1}^{-1}$ … と置き換えることができる.このようにすると, h_2 は以下のどれとでも置き換えることができる;

$$h_2, h_2h_3^{-1}, h_2h_4h_3^{-1}, h_2h_4h_5^{-1}h_3^{-1}, \cdots$$

$$h_2h_4\cdots h_{2s}h_{2s-1}^{-1}\cdots h_5^{-1}h_3^{-1}, \quad h_2h_4\cdots h_{2s}h_{2s+1}^{-1}h_{2s-1}^{-1}\cdots h_5^{-1}h_3^{-1},$$

ここで、s は 2s+1 < n を満たしさえすればいくらでも大きく取れる。これらのうちどれか一つでも 1 に等しければ、(1) の長さを短くできる。しかし、もし $n \ge |H| + 3$ ならば、これらのうち一つは 1 になるか、いづれか二つが H で等しくなる。後者の場合、次のうちどれかが成立;

$$\begin{array}{lll} h_2\cdots h_{2r}h_{2r-1}^{-1}\cdots h_3^{-1}&=&h_2\cdots h_{2r}h_{2r+1}^{-1}h_{2r-1}^{-1}\cdots h_3^{-1};\\ h_2\cdots h_{2r}h_{2r-1}^{-1}\cdots h_3^{-1}&=&h_2\cdots h_{2r}\cdots h_{2s}h_{2s-1}^{-1}\cdots h_{2r-1}^{-1}\cdots h_3^{-1};\\ h_2\cdots h_{2r}h_{2r-1}^{-1}\cdots h_3^{-1}&=&h_2\cdots h_{2r}\cdots h_{2s}h_{2s+1}^{-1}\cdots h_{2r-1}^{-1}\cdots h_3^{-1};\\ h_2\cdots h_{2r}h_{2r+1}^{-1}\cdots h_3^{-1}&=&h_2\cdots h_{2r}\cdots h_{2s}h_{2s-1}^{-1}\cdots h_{2r+1}^{-1}\cdots h_3^{-1};\\ h_2\cdots h_{2r}h_{2r+1}^{-1}\cdots h_3^{-1}&=&h_2\cdots h_{2r}\cdots h_{2s}h_{2s+1}^{-1}\cdots h_{2r+1}^{-1}\cdots h_3^{-1}.\\ \end{array}$$

初めの場合は、 $h_{2r+1}=1$ となり、(1) の条件に反する、2番目の場合は、

$$h_{2r+2}\cdots h_{2s}h_{2s-1}^{-1}\cdots h_{2r+1}^{-1}=1.$$

これより、(1) で h_{2r+1} は 1 で置き換えることができ表現が短くなる。残りの三つの場合もこれと同様。

もし、 $n \ge |H|+3$ ならば、(1) の表現の長さを短くすることができる。これを繰り返すと、 $\langle H,x \rangle$ の任意の元は (1) で $n \le |H|+2$ なる表現をもつ。よって、 $\langle H,x \rangle$ は有限。 \Box

さて、定理 12 で構成した局所有限群 (L とする) について考察する。まず次の質問から始めよう。

Q1 Lの exponent は4か?

もし答えが Yes ならば、L は locally-nilpotent となる. すると、

補題 13 (T.Yen, e.g.[B]) lacally nilpotent な M_C-群は solvable.

より、L は solvable. このとき、L の definable closure $ar{L}$ も solvable. そこで次の質問

Q2 $a \in \bar{L}^o$ \hbar ?

に移る. もし答えが Yes ならば、a の中心化群は無限になり、最終的な矛盾が導かれる.

参考文献

- [B] Roger M. Bryant Groups with the Minimal Condition on Centralizers, J. Algebra 60(1979)371-383.
- [BS] J.Baldwin and J.Saxl Logical stability in group theory, J. Austral. Math. Soc 21(1976)267-276.
- [BCM] W.Baur, G.Cherlin and A.Macintyre Totally categorical groups and rings, J. Algebra 57(1979)407-440.
- [H] Wilfrid Hodges Model Theory. Cambridge University Press, Cambridge, 1993.
- [N] Ali Nesin Solvable Groups of Finite Morley Rank, J. Algebra 121(1989)26-39.
- [S] S.Shelah Stable theories, Israel J. of Math 7(1969)187-202.
- [W] F. Wagner Stable Groups, London Mathematical Society Lecture Note Series 240, Cambridge University Press, Cambridge, 1997.