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ABSTRACT

In this paper, we present two successful results from active controls of flows over acircular cylinder and a
sphere for drag reduction. The Reynolds number range considered for the flow over acircular cylinder is 40\sim 3900

based on the free-stream velocity and cylinder diameter, whereas for the flow over asphere it is 105 based on
the free-stream velocity and sphere diameter. The successful active control methods are adistributed (spatially
periodic) forcing and ahigh-frequency (time periodic) forcing. With these control methods, the mean drag and
lift fluctuations decrease and vortical structures are significantly modified. For example, the time-periodic forcing
with ahigh frequency (larger than 20 times the vortex shedding frequency) produces 50% drag reduction for the
flow over asphere at $Re$ $=10^{5}$ . The distributed forcing applied to the flow over acircular cylinder results in a
significant drag reduction at all the Reynolds numbers investigated.

INTRODUCTION
The drag and noise increase very rapidly with increasing speed of vehicles. Therefore, control of flow over

abluff body for drag and noise reduction has been considered one of the major issues in fluid mechanics. In the
present study, we consider two kinds of bluff-body flows: one is the flow over acircular cylinder and the other
is the flow over asphere. These two flows contain most of the characteristics observed in flows over tw0- and
three-dimensional bluffbodies, respectively.

So far, many researchers have applied three kinds of control methods to flow over abluff body: passive,
active open-loop (i.e. non-feedback) and active feedback controls. Among them, we restrict our control method
to acategory of the active open-loop control method in this paper and consider two types of active open-loop
control methods. The first is atime-periodic forcing whose frequency is either near the vortex shedding frequency
(low-ffequency forcing) or similar to or larger than the ffequency corresponding to the shear-layer instability
(high-frequency forcing). The second is asteady but distributed (i.e. spatially varying) forcing. These two control
methods are applied to flows over circular cylinder and asphere, in order to investigate the control effect on the
drag, lift and flow structures.

The Reynolds number ranges considered are $Re$ $=u_{\infty}d/\mathrm{v}=40\sim 3900$ for flow over acircular cylinder and
$Re$ $=u_{\infty}d/\mathrm{v}=425\sim 10^{5}$ for flow over asphere, respectively, where $Re$ is the Reynolds number, $u_{\infty}$ is the free-
stream velocity, $d$ is the cylinder or sphere diameter, and $\mathrm{v}$ is the kinematic viscosity. For flow over acircular
cylinder, numerical simulations are conducted for all the Reynolds numbers investigated. On the other hand, for
flow over asphere, numerical simulations are conducted at $Re$ $=425\sim 3700$ and an experimental study is carried
out at $Re$ $=10^{5}$ .

NUMERICAL AND EXPERIMENTAL METHODS
Flow over aCircular Cylinder

Flow over acircular cylinder is studied at $Re$ $=40\sim 140$ and 3900 using anumerical method. For $Re$ $=$

40\sim 140, the flow is laminar and thus no turbulence model is used. For $Re$ $=3900$, large eddy simulation with
adynamic subgrid-scale model (Germano et al. 1991; Lilly 1992) is carried out. The numerical method used is
based on fully implicit fractional step method (Choi and Moin 1994) in generalized coordinates with the second-
order central difference scheme for the discretization of the spatial derivatives. The numbers of grid points used are
$320\cross 120\mathrm{x}$ $16$ (spanwise direction) for $Re$ $=40\sim 140$ and 672 $\mathrm{x}160\mathrm{x}64$ (spanwise direction) for $Re$ $=3900$.
Even though the base flows at $Re=40\sim 140$ are tw0-dimensional, the computations are carried out in three
dimension because of the distributed forcing applied in the spanwise direction
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Figure 1. SCHEMATIC DIAGRAM OF THE EXPERIMENTAL SET-UP.

Table 1. FORCING CASES.

Cylinder Sphere

Low-frequency Re=100&3900 $Re=3700$ (NUM)

forcing (NUM)

High-frequency Re=100&3900 $Re=3700$ (NUM)

forcing (NUM) &10 (EXP)

Distributed $Re=40\sim 140$ $Re=425$ (NUM)

forcing &3900 (NUM)

Here NUM and EXP denote the numerical and experimental studies, respectively.

Flow over aSphere
Flow over asphere is studied at $Re=425$ and 3700 using anumerical method and 10 using an experimental

method, respectively.

For $Re=425$ , the flow is laminar unsteady and thus no turbulence model is used. For $Re=3700$, large eddy
simulation with adynamic subgrid-scale model (Germano et al. 1991; Lilly 1992) is carried out. The numerical
method used is based on anewly-developed immersed boundary method by Kim et al. (2001) with the second-
order central difference scheme for the discretization of the spatial derivatives. The number of grid points used for
$Re=425$ is $449\cross 161\cross 40$, and that for $Re=3700$ is $577\cross 141\cross 40$, respectively, in the streamwise, radial and
circumferential directions.

For $Re=10^{5}$ , an experimental study is conducted. Figure 1shows the schematic diagram of the present
experimental set-up, consisting of an open-type wind tunnel, sphere, supporter, speaker, load cell and traversing
unit. The diameter of asphere is 150 $\mathrm{m}\mathrm{m}$, and the free-stream velocity is 10 $\mathrm{m}/\mathrm{s}$ . AtwO-dimensional slit of
0.65 mm (about $0.5^{o}$) width is located on the sphere surface at the angle of $76^{o}$ from the stagnation point, which
is an upstream location of the separation line. Asupporter attached to the sphere base is linked to aspeaker
chamber through latex. Then the speaker induces atime-periodic blowing and suction at aspecified frequency at
the slit. The forcing frequencies (/) applied are from 10 Hz to 370 Hz by increments of 10 Hz, corresponding to
$S\mathrm{r}(=fd/u_{\infty})=0.15$ to 5.55 by increments of 0.15. For all the frequencies, the maximum velocity at the slit is
tuned to be 1 $\mathrm{m}/\mathrm{s}$ (10% of the free-stream velocity). The drag on the sphere is directly measured using aload cell
(Cass BCL-IL), and the velocity field is measured with an in-ho se $\mathrm{x}$-type hot-wire probe and atw0-dimensional
traversing unit that operates at variable horizontal angles. We also separately place atrip composed of two 0.5
$\mathrm{m}\mathrm{m}$-thick wires, respectively, at $55^{o}$ and $60^{o}$ to examine the effect of trip on the drag
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Figure 2. VARIATION OF THE DRAG COEFFICIENT WITH THE FORCING FREQUENCY.

CONTROL METHODS
The control methods used in this study are explained in this section: one is atime-periodic forcing and the

other is adistributed forcing. For atime-periodic forcing, the disturbance is provided to the base flow either from
the free-stream or from aslot on abluff-body (cylinder or sphere) surface in afollowing manner:

$\phi(t)=\mathrm{a}\sin(2\mathrm{y}\mathrm{c}f\mathrm{r})$ , (1)

where $t$ is the time, $\alpha(=0.1u_{\infty})$ is the forcing amplitude and $f$ is the forcing ffequency. The forcing frequency
$f$ is selected to be either near the vortex-shedding frequency (low-frequency forcing) or near or larger than the
frequency corresponding to the shear-layer instability (high-frequency forcing).

For distributed forcing, the disturbance is provided ffom a slot located on abluff-body surface: for acylinder

$\phi(z)=a\sin(2\pi\frac{z}{\lambda_{\mathrm{z}}})$ (2)

and for asphere

$\phi(\Theta)=\alpha\sin(m9)$ , (3)

where $z$ is the spanwise direction of the cylinder, $\Theta$ is the circumferential direction of the sphere, $\lambda_{z}$ is the wave-
length of the forcing in the spanwise direction, and $m$ is an integer $(m =\mathrm{I},2, \cdots)$ .

RESULTS
Table 1illustrates the forcing cases investigated in this study. In the below, we briefly describe the results ffom

the controls listed in Table 1.
With low- and high-frequency forcings applied to the flows over acylinder and asphere were not successful

in producing drag reduction at low Reynolds numbers $(<O(10^{4}))$ because the low-ffequency forcing enhanced
the vortex shedding and the high-frequency forcing increased the shear-layer instability after flow separation. On
the other hand, the high-frequency forcing applied to the flow over asphere at $Re=10^{5}$ reduced the mean drag by
50%. This result will be described in more details later in this section.

The distributed forcing (spatially periodic forcing in the spanwise direction) was applied to the flow over a
circular cylinder as shown in Table 1with varying the forcing wavelength. With this control, the drag was signif-
icantly reduced when the base flow contained vortex shedding (i.e. $Re\geq 47$). This result will also be presented
later in this section. Unlike the case of cylinder, the distributed forcing applied to the flow over asphere slightly
increased the drag for $m=1,2$ and 3(Equation 3). This difference in the control results between the cases of the
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Figure 3. VARIATIONS OF THE DRAG COEFFICIENT DUE TO ACTIVE AND PASSIVE DEVICES AS AFUNCTION OF THE
REYNOLDS NUMBER: ., PRESENT STUDY; DIMPLE (GOLF BALL), BEARMAN AND HARVEY (1976); ROUGHNESS (K),

ACHENBACH (1974).

cylinder and sphere is mainly attributed to the very different vortical structures between two flows, indicating a
significant dependence of the control method on the shape of abluff body.

In the below, we present the results from two successful controls applied to the flows over asphere and a
cylinder.

Flow over aSphere: High-Frequency Forcing at ${\rm Re}=10^{5}$

Figure 2shows the variations of the drag coefficient $(C_{D})$ with respect to the forcing frequency in the absence
and presence of trip. Here the drag coefficient is normalized by that of the basic sphere (i.e. without forcing in
the absence of trip; $C_{D,b}$ ) and $St=0$ corresponds to the case of no forcing. The drag coefficient measured on the
basic sphere is about 0.51, which is in good agreement with the result ofAchenbach (1972). In the absence of trip,
the drag abruptly decreases by about 50% at acritical forcing frequency of $St_{c}(=f_{c}d/u_{\infty})=2.85$ and becomes
nearly constant for $St>Stc$ . On the other hand, the drag is reduced by 30% in the presence of trip, but the forcing
does not reduce the drag further. Strikingly, the amount of drag reduction from the forcing in the absence of trip is
larger than that from the forcing in the presence of trip. The reason for this will be explained later in this section.

Figure 3shows the variations of the drag coefficient due to active and passive devices as afunction of the
Reynolds number. It was shown in Achenbach (1974) that with surface roughness the drag coefficient rapidly
decreases and then increases with increasing Reynolds number, showing alocal minimum at acritical Reynolds
number (Rec). This critical Reynolds number decreases with increasing roughness. Also, the drag coefficient
at $Re>Re_{c}$ increases more sharply at larger roughness and approaches 0.4. On the other hand, dimples reduce
the drag coefficient even at alower Reynolds number than surface roughness does (Bearman and Harvey 1976).
After its decrease by dimples, the drag coefficient remains almost constant at about 0.25. In the present study,
for different Reynolds numbers, we fix the forcing frequency to be $f=330$ Hz ($fd/u_{\infty}=4.95$ at $Re=10^{5}$ ) and
the forcing amplitude to be 1 $\mathrm{m}/\mathrm{s}$ . It is shown in Figure 3that the result of the present forcing is very similar to
that with dimples. After its rapid decrease due to the present high-frequency forcing, the drag coefficient remains
almost constant at about 0.24.

Figure 4shows the surface-pressure distribution for different forcing frequencies in the absence of trip, t0-
gether with those for the basic sphere and in the presence of trip, and the inviscid pressure (denoted as ‘theoretical’
in Figure 4). Unlike the cylinder, the base pressure itself does not contribute to the drag on the sphere because the
area at the base point is zero. Considering the area, the pressures at the angles of $45^{o}$ and $135^{o}$ contribute most
to the drag. At the forcing frequencies less than the critical forcing frequency ($St<St_{c}=2.85$ , the pressures on
the sphere are similar to that on the basic sphere, indicating negligible or small drag reduction at these forcing
frequencies. On the other hand, for the forcing frequencies larger than $Stc$ , the surface pressures are nearly the
same as the inviscid pressure for $\phi_{s}<135^{o}$ , indicating that asignificant amount of drag reduction should occu
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Figure 4. STATIC-PRESSURE DISTRIBUTION ON THE SPHERE SURFACE.

no forcing forcing (St $=4.95)$

Figure 5. OIL FLOW $\mathrm{P}\mathrm{A}\Pi \mathrm{E}\mathrm{R}\mathrm{N}$ ON THE SPHERE SURFACE.

at these high forcing frequencies. Interestingly, the pressure on the tripped sphere surface approaches that of the
very high frequency forcing at $\phi_{s}<120^{o}$ but becomes nearly the same in the downstream surface as that on the
basic sphere. It should be mentioned here that there exists aplateau in the pressure curve around 1 $10^{o}$ for the high-
frequency forcing cases $(St>2.85)$ . This pressure pattern is very similar to that observed in the critical region
where aseparation bubble exists on the sphere surface (Achenbach 1974; Fage 1936; Suryanarayana and Meier
1995; Taneda 1978), suggesting an important clue to the present drag-reduction mechanism by the high-frequency
forcing.

Figure 5shows an oil flow visualization on the sphere. In the case of the basic sphere, separation occurs
around $80^{o}$ , whereas for the case of $St=4.95$ separation is delayed to occur at $105^{o}-110^{o}$ , and then the flow
reattaches to the surface at 1 $10^{o}-115^{o}$, forming aseparation bubble there. Second separation occurs near $130^{o}$ for
$St=4.95$ . In the presence of trip (not shown here), separation occurred around $105^{o}$ and no separation bubble was
observed near the sphere surface. Achenbach (1974) indicated that the low drag coefficient in the critical region is
due to the existence of separation bubble: with aseparation bubble, reattached flow has high momentum near the
wall with large turbulence intensity and thus delays second separation. The phenomenon occurred in the critical
region of the basic sphere is very similar to the present observation, suggesting that large drag reduction achieved
for $St>St_{c}$ is essentially due to the existence of the separation bubble. The existence of separation bubble was
also confirmed from the velocity measurement near the sphere surface (not shown here).

Flow over aCircular Cylinder: Spatially Periodic Forcing
Figure6shows the schematic diagram of the forcing. Due to the fact that the forcing is applied in the spanwise

direction, the controlled flow is three-dimensional even if the base flow is tw0-dimensional. Therefore, for $Re$ $\leq$

$140$ , the computational domain size in the spanwise direction is set to be the same as the wavelength of the forcing.
In the case of turbulent flow $(Re =3900)$, the computational domain size of the controlled flow is the same as that
of the uncontrolled flow. In this study, we have two different types of forcing: one is the in-phase forcing and the
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Figure 6. SCHEMATIC DIAGRAM OF THE DISTRIBUTED FORCING: (a) SIDE VIEW; (b) FRONT VIEW.

$c_{D}$

$\lambda_{z}/d$

Figure 7. EFFECT OF THE IN-PHASE FORCING ON THE MEAN DRAG AT $Re=1\mathrm{O}\mathrm{O}$ .

other is the out-0f-phase forcing (see Figure 6).
First, the in-phase forcing is applied to the flow over the cylinder at $Re=1\mathrm{O}\mathrm{O}$ . Figure 7shows the variation

of the drag coefficient with respect to the forcing wavelength $(\lambda_{z}=1\sim 10d)$ . The drag is minimum at $\lambda_{z}\approx 5d$ ,

resulting in about 20% drag reduction. We have also applied the in-phase forcing to the flows at $Re=80$ and 140.
In these cases, the minimum drag occurred at $\lambda_{z}\approx 6d$ and $4d$, respectively, indicating that the optimum wavelength
of the forcing decreases with increasing Reynolds number. It is interesting to note that the optimum wavelength
is similar to the spanwise wavelength of the mode-A instability (Williamson 1996). The same in-phase forcing is
applied to the flow at $Re=40$, where there occurs no vortex shedding in the case of no forcing. In this case, there
is nearly no change in the drag with the forcing, even though three dimensional flow structure appears in the wake
due to the forcing.

Figure 8shows the variation of vortical structures at $Re=1\mathrm{O}\mathrm{O}$ (using the vortex identification method by
Jeong and Hussain 1995) with the forcing wavelength. It is clear that at the optimum wavelength $(\approx 5d)$ the flow
becomes completely steady. The same observation was made for $Re=80$. However, for $Re=140$, the vortical
structures were still unsteady even at the optimum wavelength owing to the strong vortex strength shed behind the
cylinder at this Reynolds number.

Second, the out-0f-phase forcing with $\lambda_{z}=5d$ is applied to the flow over the cylinder at $Re=1\mathrm{O}\mathrm{O}$ . Figure 9
shows the instantaneous vortical structures for the out-0f-phase forcing. Unlike the in-phase forcing, the flow with
the out-0f-phase forcing shows aclear vortex shedding, resulting in nearly no change in the drag as compared to
that of the base flow.

Lastly, the in-phase and out-0f-phase forcings are applied to the flow at $Re=3900$. Here the base flow is
three-dimensional and turbulent after separation. The size of the computational domain in the spanwise direction
is %d, and the forcing wavelength is taken to be the same as the domain size. Figure 10 shows the variation of
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$L_{\sim}=1d\mathrm{b}^{\mathrm{b}}\circ$ $O_{\Leftrightarrow}1$

Figure 9. INSTANTANEOUS VORTICAL STRUCTURES FOR THE OUT-OF-PHASE FORCING $(\lambda_{z}=5d)$ AT $Re$ $=1\propto$).

$C_{D}$

$tu_{\infty}/d$

Figure 10. VARIATION OF THE DRAG COEFFICIENT DUE TO THE DISTRIBUTED FORCING AT $Re$ $=3900$.

the drag coefficient owing to the forcing. Surprisingly, the out-0f-phase forcing as well as the in-phase forcing
reduces the drag significantly. Instantaneous vortical structures for the base flow and flows with the forcing are
shown in Figure 11. In the case of the out-0f-phase forcing, the vortical structures are significantly changed near
the separation point but those in the further downstream are similar to those of the base flow. On the other hand,
the in-phase forcing drastically changes the vortical structures, showing almost no vortex right behind the cylinder
and further delay of vortex shedding in the downstream.

CONCLUSION
In this paper, we presented the results ffom both the numerical and experimental studies on active control of

flows over circular cylinder and asphere for drag reduction. The Reynolds number range considered for the flow
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Figure 11. CHANGES IN THE INSTANTANEOUS VORTICAL STRUCTURES DUE TO THE DISTRIBUTED FORCING AT $Re=$

3900.

over acircular cylinder was 100\sim 3900 based on the free-stream velocity and cylinder diameter, whereas for the
flow over asphere it was $100\sim 10^{5}$ based on the free-stream velocity and sphere diameter. The active control
methods investigated were (1) aforcing with alow frequency near the vortex shedding frequency; (2) aforcing
with ahigh frequency that is much larger than the vortex shedding frequency; (3) adistributed (i.e. spatially
varying) forcing. The control method (1) increased the mean drag and lift fluctuations at all the Reynolds numbers
investigated for both flows. The result of the control method (2), however, showed asignificant dependence
on the Reynolds number. For example, aforcing with ahigh frequency (larger than 20 times the vortex shedding
frequency) produced 50% drag reduction for the flow over asphere at $Re=10^{5}$ , but increased the drag at ${\rm Re}=3700$ .
The control method (3) applied to the flow over acircular cylinder resulted in asignificant drag reduction for flow
over acircular cylinder at all the Reynolds numbers investigated, but did not reduce the drag for the flow over
asphere, mainly because of the very different vortical structures between the flows over asphere and acircular
cylinder, showing asignificant dependence of the control method on the shape of abluff body.
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