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Abstract

Aconceptual model was constructed for the problem of determining the condi-
tions under which the transition from laminar to turbulent flow in circular pipes
and between parallel plates occurs, so that it becomes possible to calculate the
critical Reynolds number (Re). Up until now this problem has been investigated
by stability theory with disturbances. However, the minimum critical Reynolds
number (Rc(min)) has not yet been obtained theoretically. Accordingly, the author
.took up the problem directly ffom many previous experimental investigations and
found that (i) plots of the transition length versus the Reynolds number (Re) show
that the transition occurs in the entrance region under the conditions of natural
disturbances, and (ii) plots of ${\rm Re}$ versus the ratio $(\gamma)$ of bellmouth diameter (BD)
to the pipe diameter (D) show that with larger shapes of bellmouths, laminar flow
will persist to higher ${\rm Res}$ . The problem is thus defined clearly as: Entrance shape
dete rmines the critical Reynolds number.

1Kanda’s Transition Model
Alayout of the procedure for the modeling and simulation of this problem to determine
${\rm Re}$ is illustrated in Fig. 1on the 7th page. Hence, we shall focus on the transition length,
which is the distance between the pipe inlet and the point where transition from laminar
to turbulent flow occurs, and on the shape of bellmouths fitted at the pipe inlet. The
objectives of this study are to derive and verify the concepts of the model from previous
experimental investigations, especially (1) - (3), and (6) below.
(1) Transition occurs in the entrance region under the conditions of natural disturbances
(Kanda and Oshima, 1987).
(2) Entrance shape determines ${\rm Re}$ apparently: with larger shapes of bellmouths, laminar
flow will persist up to higher ${\rm Res}$ (Kanda, $1999\mathrm{a}$).
(3) Rc(min) of approximately 2000 is obtained in the case of astraight circular pipe, i.e.,
when no bellmouth is fitted on the pipe inlet (Kanda, $1999\mathrm{a}$ and $1999\mathrm{b}$).
(4) The model holds for flows in circular pipes and between parallel plates, i.e., for internal
flows (Kanda, 2001).
(5) For external flow such as boundary-layer flow past aflat plate, transition occurs
necessarily further downstream since its steady state does not exist (Kanda, $2000\mathrm{a}$).
(6) Disturbances are not considered in the current version of the model (Kanda, $2000\mathrm{b}$).
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Fig. 2Transition length vs Reynolds number.

2Entrance Length and Transition Length
2.1 Entrance Length

The transition length should be compared to the entrance length. The uniform velocity
profile at the pipe inlet is gradually transformed further downstream into the parabolic,
Poiseuille-type distribution by the action of viscous forces on the wall. The entrance
length (Ze) is the distance between the pipe inlet and the point where the velocity profile
giow $\iota\backslash \cdot$ into the fully developed, parabolic distribution. The downstream region after the
point $7^{\rho},$. is called the fully developed region. The dimensionless entrance length (Le) is
usually expressed as

Le $\equiv\frac{Ze}{D\cross Re}$

Shah and London (1978) defined Le as the point where the developing centerline velocity
equals 99% of the Poiseuille value $u_{\max}$ , and recommended the following correlation for
Le:

Le $= \frac{0.6}{Re(1+0.035Re)}$ +0.056 (1)

From Eq. (1), Le varies for ${\rm Res}$ below about 100; however, it approaches aconstant value
of 0.056 for ${\rm Res}$ above 600 (see the constant line of Le $=0.056$ in Fig. 2).

2.2 Transition Length

When the transition length (Zt) is compared to the entrance length, the same dimension-
less unit is desirable and the dimensionless transition length (Lt) is thus defined by

$Lt$ $\equiv\frac{Zt}{D\cross Re}$
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For Reynolds’ color-dye experiments (1883), Lt can be estimated as

$Lt$ $\approx\frac{30}{12,600}=0.00238$ (2)

Figure 2shows the experimental data of Lt, where the diamond and plus symbols show
the transition length for flow in the straight pipe and through the bellmouth entrance,
respectively (Kanda and Oshima, 1987). The black dot is the result of Reynolds’ color-dye
experiments. The straight line is drawn according to the result of Shapiro and Smith’s
experiments (1948), in which ${\rm Re}$ (based on the pipe diameter) ranged from 39,000 to
590,000. Shapiro and Smith found that transition from alaminar to turbulent boundary
layer occurs at aReynolds number (Rz, based on the distance (z) from the pipe inlet) of
about 500,000, which compares well with the corresponding figure for aflat plate, i.e.,

$Rz \equiv\frac{zu_{0}}{\nu}=500,000$ (3)

From Shapiro and Smith’s experimental results, Lt is expressed as

$Lt$ $= \frac{z}{DRe}=\frac{Rz}{(Re)^{2}}=\frac{500,000}{(Re)^{2}}$ (4)

If Reynolds’ critical value of 12,600 is applied to Eq. (4), Lt becomes

$Lt= \frac{500,000}{12,600*12,600}=0.00315$ (5)

Although this value of 0.00315 is to some extent larger than the value of 0.00238, which
is calculated using Eq.(2), they are of the same order of magnitude.

The major conclusion for Lt is that under the conditions of ordinary disturbances, the
.transition should necessarily take place in the entrance region.

$Lt<<$ Le $(\approx$ 0.056$)$ (6)

3Effects of Bellmouth
3.1 Previous Assumptions on the Bellmouth
Bellmouths are designed to have the following effects on the entrance flow:
(1) The entrance to the pipe is well rounded, and the fluid enters smoothly from areser-
voir, having an almost uniform velocity over the pipe inlet cross section.
(2) The entrance region begins at the pipe inlet, and not at the bellmouth inlet. Ac-
cordingly, the entrance length is measured as the distance between the pipe inlet and the
point at which the velocity profile grows into afully developed parabolic distribution.
(3) The fluid will always have some residual disturbances carried along with it. Bellmouths
are used to minimize disturbances prior to flow entering the pipe.

The author however showed that abellmouth creates aflow field similar to that in
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Fig. 3Reynolds’ bellmouth (a). Fig. 4Reynolds’ bellmouth (b).

the entrance region (Kanda, 1998): (i) At the bellmouth outlet, the axial velocity is not
uniform but develops aprofile somewhat similar to Poiseuille’s parabolic profile, because
large vorticities occur on the bellmouth wall and then spread from the wall into the
fluid; (ii) Since radial pressure distributions exist, Prandtl’s boundary-layer assumption
for pressure does not hold for the entire bellmouth region.

3.2 Bellmouth Shapes and Critical ${\rm Re}$

We shall focus on the shape of bellmouths, especially on the ratio (7) of bellmouth
diameter to pipe diameter and consider what determines $\mathrm{R}\mathrm{e}$ . Figures 3and 4show the
Reynolds’ bellmouths in his color-dye experiments. Results of previous experimental
investigations are listed in Table 1. Figure 5is drawn by selecting entrances whose sizes
are well describ $\mathrm{e}\mathrm{d}$ : Nos. 1.10 and 16 in Table 1.

The major conclusions for the relation between ${\rm Re}$ and $\gamma$ are as follows:
(1) ${\rm Re}$ takes the minimum value Rc(min) when $\gamma$ approaches alimit of one.

$Rc( \min)=$ $\lim_{\gammaarrow 1}Rc\approx$ 2000 (7)

(2) With the same shape as the Reynolds’ bellmouth, ${\rm Re}$ increases proportionally to $\gamma$ as
Eq. (8).

$Rc \approx\gamma\cdot Rc(\min)$ (8)
For Kanda and Oshima’s value of $5790<\mathrm{R}\mathrm{c}<6690$ , ${\rm Re}$ is estimated using $\gamma=2.9$ ,

$Rc\approx 2.9\cross 2000$ $\approx 5,800$

For Reynolds’ critical value of 12,600, ${\rm Re}$ is estimated using $\gamma=5.78$ ,

$Rc\approx 5.78\cross 2000$ $\approx 11,560$

For Shapiro’ critical value of $\mathrm{R}\mathrm{c}<113,800$ , ${\rm Re}$ is estimated using $\gamma=46.2$ ,
$Rc\approx 46.2\cross 2000$ $\approx 92,400$

The values calculated above are fairly close to their experimental values of ${\rm Re}$
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Fig. 5Rc vs bellmouth shape $\gamma$ . Fig. 6 ${\rm Re}$ using Reynolds’ apparatus.

4General Questions on Disturbances
The present situation of the study of the transition in pipe flows is not obvious. The
obscure comprehension may be caused partly by Ekman’s experimental results and partly
by Van Dyke’s introduction of acurrent critical value when using the same Reynolds’
color-dye experimental apparatus. The three different critical Reynolds numbers (Res)
were presented (see Fig. 6):

(i) Reynolds: $11.800<\mathrm{R}\mathrm{c}<14,100$ ; (ii) Ekman: $12,900<\mathrm{R}\mathrm{c}$. $<51,200$ ;
$l\mathrm{i}\mathrm{i}_{1}).\backslash ^{\gamma}\mathrm{a}\mathrm{n}$ Dyke: $\mathrm{R}\mathrm{c}<13,000$ .

It is thought that this difference is due to different disturbances in flows. It, however,
may be natural to obtain nearly the same results anywhere and anytime if fluid dynamics
is scientifically based, such as Rc(min) of approximately 2000.

(1) Ekman’s case (Ekman, 1910)
Kanda (2000b) noted that in the first section of Ekman’s paper, the word wax was used five
times: “After the trumpet mouth had been rigidly attached to the glass tube, both were
covered inside, in the neighborhood of the joint, by alayer of soft wax. . . . The trumpet
mouth was now fastened more rigidly, and the wax joint was improved. Apreliminary
experiment (No. 4). . . gave amuch higher value of the critical Reynolds number $\ldots$ .”
Apparently, the application of wax made ${\rm Re}$ increase to 51,000. Then, concerning the
wax, is it true that the wax coated on the joint could directly decrease disturbances?

The author considers as follows using the normal wall strength (Kanda, $1999\mathrm{b}$), which
is the radial component of the curl of vorticity multiplied by $(2/{\rm Re})$ (see Eq.(9)).

normal wall strength $\equiv$ $\frac{2}{Re}[\nabla\cross\omega]_{f}|_{r=R}=$ $- \frac{2}{Re}\frac{\partial(v}{\partial z}|_{r=R}$ $>0$ (9)

where $\omega$ is the vorticity, $\mathrm{r}$ the radial coordinate, and $\mathrm{R}$ the pipe radius
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(1) the viscosity of the wax is higher than that of water; (ii) ${\rm Re}$ is inversely proportional
to viscosity; (iii) the normal wall strength varies inversely to $\mathrm{R}\mathrm{e}$;(iv) the higher viscosity
of the wax caused the normal wall strength to be much higher than in the case of without
wax (Reynolds’ experiments) and thus ${\rm Re}$ increased, and; (v) in the case of without wax
(No. 2and 3), Ekman’s results are nearly equal to that of Reynolds: ${\rm Re}$ $=\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y}$

$13,000$ .

(2) Van Dyke’s case
Van Dyke (1982) states: “. . . the original apparatus has survived at the University of
Manchester. Using it acentury later, N. H. Johannesen and C. Lowe have taken this
sequence of photographs. . . . Modern traffic in the streets of Manchester made ${\rm Re}$ lower
than the value 13,000 found by Reynolds.”

Professor J. D. Jackson of the University of Manchester kindly allowed the author
to take photographs of the original apparatus on May 25, 1994 (see Figs. 3and 4). Of
the original apparatus, the bellmouths (trumpet mouths) have been safely kept in the glass
case there. The bellmouth currently used at the University of Manchester differs from the
original ones, so that ${\rm Re}$ observed by Johannesen and Lowe differed from the results of
Reynolds’ experiments.

Conclusions
The following conclusions are derived under the condition of an ordinary disturbance or
anatural one in flow.
(1) The transition from laminar to turbulent flow occurs in the entrance region since the
dimensionless transition length (Lt) is less than 0.01 for most experiments.
(2) It is the shape of pipe entrances that determines the critical Reynolds number (Re).
With larger $\backslash ;$ ] $.\cdot\cdot \mathfrak{v}\mathrm{e}\mathrm{s}$ of bellmouths, laminar flow $\mathrm{w}\mathrm{i}1^{1}1$ persist up to higher Reynolds numbers.
(3) The $\mathrm{m}\mathrm{i}1:\mathrm{i}\mathrm{r}_{-1}\mathrm{u}\mathrm{m}$ critical Reynolds number (Rc(min)) of approximately 2000 is obtained
in the following two cases:
(i) The first case is from the Reynolds’ pressure experiments; i.e., when fluid is initially
admitted in ahigh state of disturbance, as the fluid proceeds along the pipe, the turbulent
flow settles down to astable condition. Above Rc(min), the turbulent flow never settles
down to astable condition.
(ii) The second is from the experimental data plotted in Fig. 5; in the case of astraight
circular pipe only, i.e., when no bellmouth is fitted on the pipe inlet.
(4) Although there is apparently amarked difference in phenomena between (3-i) and
$(3- \mathrm{i}\mathrm{i})\backslash$ ’the theory of the occurrence of transition and the theory of the settlement of
turbulence should be the same (Kanda, $2000\mathrm{a}$).
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Fig. 1Modeling and simulation
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Table 1Critical Reynolds numbers and entrance shapes

[note] Length is in units of cm
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