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1 Introduction
We are concerned with $L^{p}$-viscosity solutions of fully nonlinear, second order, uniformly
elliptic PDEs:

$F$ ($x$ , Du{x), $D^{2}u(x))$ $=f(x)$ in $\Omega$ , (1)

where $\Omega\subset \mathrm{R}^{n}$ is abounded domain with smooth boundary $\partial\Omega$ , and $F:\Omega\cross \mathrm{R}^{n}\cross S^{n}arrow \mathrm{R}$

and $f$ : $\Omegaarrow \mathrm{R}$ are given functions. Here, $S^{n}$ denotes the set of real-valued symmetric
$n\cross n$ matrices equipped with the standard ordering. We will use the notion $B_{f}=\{x\in$

$\mathrm{R}^{n}||x|<r\}$ for $r>0$ .
We refer [5] and [12] for the viscosity solution theory of fully nonlinear, second order,

(possibly degenerate) elliptic PDEs.
Throughout this paper, we freeze the constants $0<\lambda\leq \mathrm{A}$. By using these, the uniform

ellipticity means the following property:

(A1) $P_{\lambda,\Lambda}^{-}(X-\mathrm{Y})$ $\leq F(x, q, X)-F(x, q, \mathrm{Y})\leq P_{\lambda,\Lambda}^{+}(X-\mathrm{Y})$

for any $(x, q, X, \mathrm{Y})\in\Omega\cross \mathrm{R}^{n}\cross S^{n}\cross S^{n}$ , where $P_{\lambda,\Lambda}^{\pm}$ : $S^{n}arrow \mathrm{R}$ are given by

for $X\in S^{n}$ . In what follows, we shall write $p\pm$ for $P_{\lambda,\Lambda}^{\pm}$ since we have fixed Aand A.
We notice that the following relation holds: for $X$ and $\mathrm{Y}\in S^{n}$ ,

$P^{-}(X)+\mathcal{P}^{-}(\mathrm{Y})\leq P^{-}(X+\mathrm{Y})\leq P^{-}(X)+P^{+}(\mathrm{Y})\leq P^{+}(X+\mathrm{Y})\leq P^{+}(X)+P^{+}(\mathrm{Y})$ .

When $F$ does not have the divergence structure, less is known on the regularity of
solutions of (1). Moreover, before the viscosity solution theory was born, we did not know
what was the correct notion of weak solutions for (1)
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Since there are many works when the mapping x $arrow F(x,$q, X) is supposed to be contin-
uous, we shall forcus our attention to the case when

(A2) the mapping $xarrow F(x, q, X)$ is measurable for any fixed $(q, X)\in \mathrm{R}^{n}\cross S^{n}$ .

We only refer Trudinger’s works [29], [30], [31] for the regularity of viscosity solutions of
(1) when the mapping $xarrow F(x, q, X)$ is continuous.

Under these hypotheses, even when $(q, X)arrow F(x, q, X)$ is linear, we only have afew
results: Initiated by the pioneering work in terms of probability by Krylov-Safonov in [22],
Trudinger gave a“PDE” proof of the Holder estimates for strong solutions of (1) in [29].

When $(q, X)arrow F(x,q,X)$ is fully nonlinear and linear growth, Caffarelli in [2] (see
also the book [1] $)$ showed the Holder estimate and, moreover, assuming “VMO” continuity
for coefficients, $W^{2p}$-estimates for viscosity solutions. We also refer the book [23] for the
regularity theory of strong solutions when coefficients are of VMO type.

However, by atechnical reason, we have to suppose that the right hand side $f$ is contin-
uous. In fact, in various situations, we need to find solutions of

$\mathcal{P}^{\pm}(D^{2}u)=f$ in 0, (2)

under the Dirichlet condition $u=0$ on an as the s0-called test functions in the viscosity
solution theory. We refer Evans’ works [10] and [11] for the existence of classical solutions
of (2) when $f$ is smooth.

Unfortunately, when $f\in L^{p}(\Omega)$ , we can only expect the solution $u$ of (2) belongs to
$W^{2_{1}p}(\Omega)$ but $C^{2}(\Omega)$ . Recalling that the set of test functions in the standard viscosity
solution theory is $C^{2}$ , we need abit wider class of test functions when we intend to study
this case since we will have to use (strong) solutions of (2).

Here, we refer aseries of works by L. Wang, [32], [33], [34], [35], for the parabolic case.
Recently, Caffarelli-Crandall-Kocan-Swiqch [3] introduced anew notion “$L^{p}$ viscosity

solutions” (which is abit stronger than the standard one) to be able to recover Caffarelli’s
results to the case of $f\in L^{p}(\Omega)$ . We refer [3], [7], [4], [27], [15], [13], [6], [8], [16] for the
recent development of $I\nearrow \mathrm{v}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{y}$ solutions.

On the other hand, it is important to study uniformly elliptic PDEs with quadratic
growth in Du. We only mention several applications such as risk-sensitive stochastic control
problems, large deviation problems, etc.

For simplicity, we suppose that there is $\mu>0$ such that

(A3) $|F(x,q, O)|\leq\mu|q|^{2}$ for $(x,q)\in\Omega\cross \mathrm{R}^{n}$ .
When (A3) is switch to the case when $|F(x, q, O)|\leq\mu|q|^{2-\epsilon}$ for $\epsilon\in(0,1)$ , in [19], we

verify that Caffarelli’s argument works to get the Holder estimate provided that the $L^{\infty}-$

bound of $I\nearrow$-viscosity solutions is known. Later, in [21], we obtain the same result as in
[19] even under assumption (A3)
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Thus, our questions here are as follows: assuming $(\mathrm{A}1)-(\mathrm{A}3)$ ,

(i) can we get the $L^{\infty}$-bound for $IP$-viscosity solutions ?
(ii) if not, under which condition, can we get the $L^{\infty}$-estimate of //-viscosity solutions ?
(iii) how about the existence of $IP$-viscosity solutions ?

Here, we recall the notion of //-viscosity solutions for $p>n/2$ .

Definition $u\in C(\Omega)$ is called an $L^{p}$-viscosity subsolution (resp., supersolution) of (1) if
for any $\phi\in W_{loc}^{2,p}(\Omega)$ such that $u-\phi$ attains its local maximum (resp., minimum) at $x\in\Omega$ ,
it holds that

$ess \lim_{yarrow}\inf_{x}$ ($F(y, \mathrm{f}(\mathrm{y}))$ $D^{2}\phi(y))-f(y))\leq 0$

(resp., $ess \lim_{yarrow}\sup_{x}$ ($F(y, \mathrm{f}(\mathrm{y}))$ $D^{2}\phi(y))-f(y))\geq 0)$ .

Also, $u\in C(\Omega)$ is called an $IP$-viscosity solution of (1) if it is an //-viscosity sub- and
supersolution of (1).

2Nagumo’s results
In this section, we recall some known facts from [25].

In [25], Nagumo gave an existence result of classical solutions for “principally” linear
(i.e. linear in the variable $D^{2}u$) PDEs with quadratic growth in Du. For this purpose, he
supposed that there exist a“quasi” subsolution $\underline{\omega}$ and “quasi” supersolution $\overline{\omega}$ such that
$\underline{\omega}<\overline{\omega}$ in $\Omega$ , and $||\underline{\omega}||_{\infty}$ , $||\overline{\omega}||_{\infty}\leq M$ for some $M>0$ satisfying that

$M \mu\Lambda<\frac{1}{16}$ . (3)

In the above, aquasi subsolution $\underline{\omega}$ (resp., supersolution $\overline{\omega}$) means the point-wise maxi-
mum (resp., minimum) of afinite number of (local) classical subsolutions (resp., supers0-
lutions); roughly speaking,

$\underline{\omega}(x)=\max_{i=1,2,\ldots,k}u_{i}(x)$ such that $F(x, Du_{j}(x),$ $D^{2}u_{j}(x))\leq 0$ $j\in\{1,2, \ldots, k\}$

(resp., $\overline{\omega}(x)=\min_{i=1,2,\ldots,k}u:(x)$ such that $F(x, Du_{j}(x),$ $D^{2}u_{j}(x))\geq 0$ $j\in\{1,2, \ldots, k\}$).
We also recall aNagumo’s example in [25] for the non-existence of solutions when the

growth order of the mapping $qarrow F(x, q, O)$ is more than quadratic (although in the
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example below contains the $u$-dependence). We refer asimilar example in [17] (p. 23),
which indicates the non-existence of solutions for the super-quadratic case.

Example 1. Setting $\Omega=B_{2}\backslash \overline{B}_{1}$ , we consider the following PDE:

$\{$

$-\triangle u+(n-1)|x|^{-2}\langle x, Du\rangle+u(1+|Du|^{2})^{1+\epsilon}=0$ in 0,
$u(x)=0$ for $|x|=1$ ,
$u(x)=h$ for $|x|=2$ ,

where the constant $h>0$ will be fixed later. Because of the uniqueness, the solution $u$ is
radial, and $v(|x|):=u(x)$ satisfies that

$v’=v(1+|v’|^{2})^{1+\epsilon}$ in $(1, 2)$ .

Thus, $(1+|v’|^{2})^{-\epsilon}=\epsilon(C_{h}-v^{2})$ , where $C_{h}=C_{h}(\epsilon)$ will be defined. Since $v^{2}(r)\leq C_{h}$ for
$r\in(1,2)$ , we get

$h^{2}\leq C_{h}$ .
Moreover we have $\epsilon^{\frac{1}{2e}}(C_{h}-v^{2})^{\frac{1}{2\epsilon}}v’\leq 1$ . Hence, we have

$1 \geq\epsilon^{\frac{1}{2e}}\int_{0}^{h}(C_{h}-v^{2})dv\geq\epsilon^{\frac{1}{2e}}\int_{0}^{h/\sqrt{2}}(h^{2}-v^{2})dv\geq\epsilon^{\frac{1}{2*}}\frac{5h^{3}}{6\sqrt{2}}$ .

Therefore, for fixed $\epsilon>0$ , by taking large $h>0$ (i.e. $C_{h}$ is also large), the above inequality
does not hold true.

3Maximum principle
In this section, we first give acounter-example for which the maximum principle does not
hold when $\mu>0$ in (A3).

Example 2. ([22]) Setting $\Omega=B_{1}$ , for $\epsilon$ $\in(0,1)$ , we define $u_{\epsilon}\in C(\overline{\Omega})\cap C^{2}(\Omega)$ by

$u_{\epsilon}(x)=\{$ $21\mathrm{o}\mathrm{g}(2-(2-\epsilon)|x|)-2\log\epsilon 1-(2-\epsilon)^{2}|x|^{2}-21\mathrm{o}\mathrm{g}\epsilon$

provided $x\in\overline{\Omega}\backslash B_{(2-\epsilon)^{-1}}$ ,
provided $x\in B(2-\epsilon)^{-1}$ .

It is easy to check that $u_{\epsilon}$ is aclassical subsolution of

$-\triangle u_{\epsilon}-n|Du_{\epsilon}|^{2}\leq 8n=:f$ in $\Omega$

with $u_{\epsilon}(x)=0$ for $x\in 8\Omega$ . However, we cannot find auniversal constant $C>0$ (i.e.
independent of $\epsilon>0$) such that

$\mathrm{m}_{\frac{\mathrm{a}}{\Omega}}\mathrm{x}u_{\epsilon}\leq C||f||_{L^{n}(\Omega)}$
(4)
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because $\max_{\overline{\Omega}}u_{\epsilon}=1-2\log\epsilonarrow\infty$ as $\epsilonarrow 0$ .

Remark, It is not hard to construct acounter-example when $|F(x, q, O)|\leq\mu|q|^{\alpha}$ holds
for any fixed $\alpha>1$ instead of (A3). However, in the above example for instance, we do
not know if we can find auniversal $C>0$ so that (4) holds true for solutions (not only
subsolutions).

Setting $d_{0}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\Omega)$ , we present our main result here:

Theorem 1. ([22]) Assume that (Al), (A2) and (A3) hold. Fix $p>n$ .
Then, there are $\delta=\delta(\lambda, \Lambda,n,p)>0$ and $C=C(\lambda, \Lambda, n,p)>0$ such that if

$\mu f_{0}^{-\frac{n}{\mathrm{p}}}||f^{+}||_{L^{\mathrm{p}}(\Omega\rangle}\leq\delta$ (resp., $\mu d_{0^{n}}^{2-\mathrm{A}}||f^{-}||_{L^{\mathrm{p}}(\Omega)}\leq\delta$), (5)

and $u\in C(\overline{\Omega})$ is an $IP$-viscosity subsolution (resp. supersolution) of (1), then

$\mathrm{m}_{\frac{\mathrm{a}}{\Omega}}\mathrm{x}u^{+}\leq\max u^{+}\partial\Omega+Cd_{0}^{-\frac{n}{p}}||f^{+}||_{L^{\mathrm{p}}(\Omega)}$

(resp., $\mathrm{m}_{\frac{\mathrm{a}}{\Omega}}\mathrm{x}u^{-}\leq$ an
$u^{-}+Cd_{0}^{2-\frac{n}{p}}||f^{-}||_{L^{p}(\Omega)}$).

Remarks. We can extend this result to the case when $p\in(p_{0}, n]$ , where $p_{0}=$

$p_{0}(\lambda, \Lambda, n)>n/2$ is aconstant derived by Escauriaza [9] although the above estimate
becomes abit complicated. To prove the assertion for $p\in(p_{0}, n]$ , we have to use the
argument below for that of $p>n$ in a“bootsrap way”.

We will obtain our existence result under assumption (5). Thus, since we construct a
solution between $\underline{\omega}$ and $\overline{\omega}$ in [25], our sufficient condition (5) is similar to Nagumo’s (3).

Sketch of proof of Theorem 1.

Step 1: Let us suppose that $0\in\Omega$ and set $B=B_{2d_{0}}$ .
To avoid the lack of $L^{\infty}$-bound of the right hand side “$f”$ , we use the strong supersolution

$va\in C(\overline{B})\cap W_{loc}^{2,p}(B)$ of
$\{$

$p-(D^{2}w)=g$ in $B$ ,
$w=0$ on $\partial B$ ,

where

$g(x)=\{$
$f^{+}(x)+d_{0}^{-\frac{n}{\mathrm{p}}}||f^{+}||_{L^{p}(\Omega)}$ for $x\in\Omega$ ,
0for$x\in B\backslash \Omega$ .
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By [3], we can find astrong supersolution of the above satisfying that

$0\leq w\leq Cd_{0}^{2-\frac{n}{\mathrm{p}}}||f^{+}||_{L^{\mathrm{p}}(\Omega)}$ in $B$ ,

and, by remembering $W^{2,p}$ is imbedded in $C^{1,\alpha}$ for some $\alpha\in(0,1)$ ,

$||Dw||_{L^{\infty}(\Omega)}\leq d_{0}^{1-\frac{n}{\mathrm{p}}}||f^{+}||_{L^{\mathrm{p}}(\Omega)}$ .

Setting $v=u-w- \max_{\theta\Omega}u^{+}$ , we easily (at least formally) verify that

$P^{-}(D^{2}v)\leq 2\mu|Dv|^{2}+d_{0}^{-\frac{n}{\mathrm{p}}}||f^{+}||_{L^{\mathrm{p}}(\Omega)}(C\mu f_{0}^{-\frac{n}{\mathrm{p}}}||f^{+}||_{L^{\mathrm{p}}(\Omega)}-1)$ .

Thus, we can find $\delta>0$ such that if (5) holds, then $v$ is an IPZAviscosity subsolution of

$P^{-}(D^{2}v)-\mu|Dv|^{2}=0$ in 0,

with $\max_{\partial\Omega}v\leq 0$ .

Step 2: By [14], we find functions $\psi_{m}\in C^{\infty}$ such that

$\lim_{marrow\infty}\psi_{m}=0$ uniformly in $\overline{\Omega}$ ,

and, by setting $v_{m}=v+\psi_{m}$ , $v_{m}$ is an $L^{\mathrm{p}}\mathrm{Z}\mathrm{A}\mathrm{v}\mathrm{i}\mathrm{s}$ cosity subsolution of

$P^{-}(D^{2}v_{m})- \mu|Dv_{m}|^{2}=-\frac{\lambda}{2}$ i$\mathrm{n}$ 0.

From the definition (with the test function $\phi\equiv 0$) of $v_{m}$ , we have

$\mathrm{m}_{\frac{\mathrm{a}}{\Omega}}\mathrm{x}v_{m}=$ a $v_{m}$ .

Sending $marrow\infty$ , we have
$\mathrm{m}_{\frac{\mathrm{a}}{\Omega}}\mathrm{x}v=1\mathrm{m}$

$v(\leq 0)$ ,

which implies the assertion by (6).

4Existence of $L^{p}$-viscosity solutions
For the existence result, we suppose the following continuity in Du-variable:

(A4) $|F(x, q,X)-F(x, q’, X)|\leq\mu(|q|+|q’|)|q-q’|$ for $(x,q,q’,X)\in\Omega\cross \mathrm{R}^{n}\cross \mathrm{R}^{n}\cross S$
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Our existence result is as follows:

Theorem 2. Assume that (Al), (A2), (A3) and (A4) hold. Fix $p>p_{0}$ . Let $g\in C(\partial\Omega)$

be given.
Then, there exists $\delta=\delta(\lambda, \Lambda, n,p)>0$ such that if

$\mu d_{0}^{2-\frac{n}{\mathrm{p}}}||f||_{L^{\mathrm{p}}(\Omega)}\leq\delta$, (7)

holds, then there exists an $U$-viscosity solution $u\in C(\overline{\Omega})$ of (1) with $u=g$ on an.
Sketch of proof of Theorem 2.

For simplicity, we give our strategy of the proof when $g$ is smooth and $p>n$ .

Step 1: Approximate $F$ by $F_{j}$ which satisfies linear growth (the rate depends on $j$ ) and
(A3); for $q=(q_{1}, \ldots, q_{n})\in \mathrm{R}^{n}$ , we define $q^{j}=(q_{1}^{j}, \ldots, q_{n}^{j})$ by

$q_{i}\dot{/}=\{$

$j$ provided $q_{i}\geq j$ ,
$q$: provided $|q_{i}|<j$ ,
$-j$ provided $q_{i}\leq-j$ .

for $i\in\{1, \ldots, n\}$ .

Then we set

$F_{j}(x, q, X)=F(x, q^{j}, X)$ for $(x, q, X)\in\Omega\cross \mathrm{R}^{n}\cross S^{n}$ .

Using the result in [6], we then solve the $\mathrm{I}\mathrm{P}$-viscosity solutions $u_{j}$ of

$F_{j}$ ($x$ , Du, $D^{2}u$ ) $=f_{j}$ in $\Omega$ , (8)

under Dirichlet condition $u_{j}=g$ on an.
Step 2: In view of Theorem 1, we obtain the $L^{\infty}$ estimate of $u_{j}$ because (7) holds. Hence,

we can apply the Holder estimate in [21] to get the equi-continuity of $u_{j}$ . Thus, we can
find $u\in C(\overline{\Omega})$ such that $u_{j}$ converges to $u$ uniformly in $\overline{\Omega}$ by taking asubsequence $u_{j_{k}}$ if
necessary.

Step 3: Applying the following stability result, we verify that $u$ is an //-viscosity solution
of (1).

Theorem 3. Assume that $F$, $F_{j}$ : $\Omega\cross \mathrm{R}^{n}\cross S^{n}arrow \mathrm{R}$ satisfy (Al), (A2), and (A3).
Assume also that $F_{j}$ satisfies (A4)
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Fix p $>p_{0}$ . Let $f_{j}$ , f $\in L^{\mathrm{p}}(\Omega)$ be given. Let $u_{j}\in C(\Omega)$ be an $L^{p}$-viscosity subsolution
(resp., supersolution) of (8).

Assume also that $u_{j}arrow u$ locally uniformly in $\Omega$ , as j $arrow\infty$ , and that for $B_{2\mathrm{r}}(x)\subset\Omega$

and $\phi\in W^{2p}(B_{r}(x))$ ,

$||(F(\cdot, D\phi(\cdot)$ , $D^{2}\phi(\cdot))-f(\cdot)-F_{j}(\cdot, D\phi(\cdot),$ $D^{2}\phi(\cdot))+f_{j}(\cdot))^{+}||_{L^{\mathrm{p}}(B_{r}(x))}arrow 0$ (9)

(resp., $||(F(\cdot, D\phi(\cdot)$ , $D^{2}\phi(\cdot))-f(\cdot)-F_{j}(\cdot, D\phi(\cdot),$ $D^{2}\phi(\cdot))+f_{j}(\cdot))^{-}||_{L^{\mathrm{p}}(B_{r}(x))}arrow 0$),
as $jarrow\infty$ .

Then, $u$ is an $LP$-viscosity subsolution (resp., supersolution) of (1).

Remarks. It is not hard to verify that (9) holds when $F_{j}$ is constructed by the above
procedure.

It is well-known that the uniqueness of $L^{p}$-viscosity solutions does not hold under as-
sumptions (A1), (A2), and the linear growth of the mapping $qarrow F(x, q, O)$ instead of
(A3) (i.e. even in alinear case). We refer [24] and [26] for the non-uniqueness of “weak”
solutions of (1).

Idea of$\underline{\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}}$of Theorem3.

We modify the proof in [3] (when $qarrow F$ ($x$ , $q$ , $O$) is linear growth) using some ideas from
the proof of Theorem 1.

We also need the maximum principle and $W^{2p}$ estimates for If-viscosity solutions of

$P^{\pm}(D^{2}u)+\gamma(x)|Du|=f(x)$ in 0,

for $7\in L^{p}$ , which was studied by Fok [13].
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