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Introduction

The purpose of this note is to present some formulae related to the
Hamilton-Jaeobi equation

$H(x, Du)=0$ (0.1)

in the framework of viscosity solutions theory.
We start in section 1assuming the continuity of $H$ in both variables as

well as aconvexity condition with respect to the second one. This is the
most classical case, the formulae given here go back to the $\mathrm{P}.\mathrm{L}$ . Lions’
book . They are exploited to obtain existence results and to represent
viscosity solutions of (0.1) coupled with suitable boundary conditions.
Moreover under additional hypotheses they are interpreted from ametric
point of view.

Two variations of the previous formulae are presented in sections
2and 3for the case where continuity but no convexity properties are
assumed on $H$ and where $H$ is just measurable with respect to the state
variable and verifies some convexity in the second one.

In the nonconvex case asuitable penalty term is introduced under
the integral and asome game theory is used to get an $\inf-\sup$ integral
formula.

In the measurable case the formula of section 1is recovered because
of the convexity assumption but the set of admissible curves is modifie
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imposing atransversality condition with respect to some sets of vanishing
Lebesgue measure.

In the analysis acrucial role is played by the 0-sublevel sets of the
Hamiltonian

$Z(x)=\{P:H(x,p)\leq 0\}$ for $x\in \mathrm{R}^{N}$ (0.2)

In the paper the term (sub-super) solution signifies viscosity (sub-super)
solution.

The materials of sections 1,2 can be mainly found in $[6],[7],[8]$ and
those of section 3in [2]. We refer the reader to the bibliographies of the
above papers for further information.

1Aclassical formula
Here we assume the Hamiltonian $H$ to be continuous in both variables
and verifying aquasiconvexity property with respect to the second one.

More precisely we require that the 0-sublevel sets of $H$ defined in
(0.2) are nonempty and convex. In addition we assume the coercivity
condition

$\lim_{|p|arrow+}\inf_{\infty}H(x,p)>0$ for any $x$ (1.1)

and the relation
$\partial Z(x)=\{H(x,p)=0\}$ (1.2)

These hypotheses guarantee that the set-valued map $x|\mapsto Z(x)$ is con-
tinuous with respect to Hansdorff metric and compact convex valued.

Thanks to (1.2) the analysis of (0.1) as well as the representation
formulae for solutions will depend only on $Z$ and not on $H$ . Therefore
two Hamiltonians with the some 0-sublevel sets give rise to equations
which cannot be distinguished from aviscosity solutions viewpoint.

We set for $(x, q)\in \mathrm{R}^{N}\mathrm{x}\mathrm{R}^{N}$

$\sigma(x, q)=\max_{p\in Z(x)}qp$

the support function of $Z(x)$ at $\mathrm{g}$ , and for any Lipschitz-continuous curve
defined in $[0, 1]$

$I( \xi)=\int_{0}^{1}\sigma(\xi,\dot{\xi})d\mathrm{t}$ (1.3)
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To choose interval $[0, 1]$ as domain is just amatter of convenience being
the value of the integral invariant for reparametrization of the curve.

For any couple of points $x$ , $y$ we denote by $A_{y,x}$ the set of Lipschitz-
continuous curves defined in $[0, 1]$ and joining $y$ to $x$ . The quantity (1.3)
is first used to get an existence result.

Proposition 1.1 The following three conditions are equivalent

$\mathrm{i}$ . for any closed curve $\xi$ , $I(\xi)$ is nonnegative

$\mathrm{i}\mathrm{i}$ . equation (0.1) has a subsolution

$\mathrm{i}\mathrm{i}\mathrm{i}$ . equation (0.1) has a solution

$\mathrm{i}$ . is in fact equivalent to

$L(y, x):= \inf\{I(\xi) : \xi\in A_{y,x}\}>-\infty$ (1.4)

for any $y,x$ . Therefore for any fixed $y_{0}$

$u:=L(y_{0}, \cdot)$

is asubsolution of (0.1) and also asolution in $\mathrm{R}^{N}\backslash \{y_{0}\}$ . By the coer-
civity assumption (1.1) every subsolution is locally Lipschitz continuous.
Actually in the present setting the notions of (viscosity) subsolution and
locally Lipschitz-continuous $\mathrm{a}.\mathrm{e}$ . subsolution are equivalent and they are
characterized by the inequality

$H(x,p)\leq 0$

for any $x$ and $p$ in the (Clarke) generalized gradient of the function at
$x$ . The main contribution of viscosity solutions theory is in giving asu-
persolution condition. The (viscosity) solutions are particular Lipschitz-
continuous $\mathrm{a}.\mathrm{e}$ . solutions.

To show $\mathrm{i}\mathrm{i}$ . one considers asequence

$u_{n}:=L(y_{n}, \cdot)$

with $|y_{n}|arrow\infty$ . It is is locally equiLipschitz-continuous being every $u_{n}$

subsolution and equibounded up to addition of suitable constants. Then
asubsequence converges locally uniformly to afunction $u$ which is a
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solution of (0.1) for the stability properties of viscosity solutions and
because the “bad” points $y_{n}$ have disappeared at infinity.

Prom the existence of asolution it is simple to recover the property
$\mathrm{i}$ . of the previous statement using the Lipschitz-continuity of it.

If asubsolution of (0.1) exists, $L$ can be used to give representation
formulae for solutions of the equation coupled with suitable boundary
conditions as well as to express admissibility conditions for boundary
data.

If $K$ is acompact subset of $\mathrm{R}^{N}$ and $g$ acontinuous function defined
on $\partial K$ then

$w(x):= \min\{L(y, x)+g(y) : y\in\partial K\}$ (1.5)

is asolution of (0.1) in $\mathrm{R}^{N}\backslash K$ and $u\leq g$ in $\partial K$ , if in addition the
condition

$\mathrm{g}\{\mathrm{y}$ ) $-g(y_{2})\leq \mathrm{L}\mathrm{y}2$ , $y_{1})$ for $y_{1}$ , $y_{2}\in\partial K$ (1.6)

holds true then $u=g$ in $\partial K$ .
To obtain comparison principles and uniqueness results it must be

assumed the existence of astrict subsolution.
In fact using atechnique introduced by Ishii, it can be proved the

relation
$\max_{\dot{\Omega}}u-v=$ an $u-v$ (1.7)

for any open bounded set 0, $u$ subsolution of (0.1) in $\Omega$ upper semi-
continuous in $\mathrm{c}1\Omega$ , $v$ supersolution lower semicontinuous in $\mathrm{c}1\Omega$ . For any
given continuous $g$ defined on $\partial\Omega$ and verifying (1.6) in an, the function
$w$ defined as in (1.5) with an in place of $\partial K$ is the unique solution of
(0.1) in $\Omega$ verifying

$u=g$ in $\partial\Omega$

It is also the maximal element in the class of Lipschitz-continuous $\mathrm{a}.\mathrm{e}$ .
subsolution of the equation in $\Omega$ verifying

$u\leq g$ in $\partial\Omega$

To give acertain geometric flavor to our construction, we proceed to
assume that the null function is astrict subsolution of (0.1)
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Actually we strengthen abit this condition requiring

$H(x,p)<0$ for any $x$ , $|p| \leq\frac{a}{|x|+b}$ (1.8)

with $a$ , $b$ suitable positive constants.
In this case $L$ defined as in (1.4) is a(nonsymmetric) distance in $\mathrm{R}^{N}$

wich is complete thanks to (1.8) and locally equivalent to the Euclidean
metric.

More precisely it is aFinsler metric. It can be viewed as ageneraliza-
tion of aRiemannian one having convex compact sets containing 0in its
interior, as tangential balls instead of ellipsoids. Then $Z(x)$ is the closed
cotangential ball of $L$ at $x$ .

We can state the following uniqueness result:

Proposition 1.2 $L$ is the unique complete metric on $\mathrm{R}^{N}$ such that $L(y_{0}, \cdot)$

is a solution of (0.1) in $\mathrm{R}^{N}\backslash \{y_{0}\}$

This can be proved observing that the completeness is equivalent to

$\lim_{|x|arrow+\infty}L(y_{0}, x)=+\infty$

for any $y_{0}$ and making use of the Kruzkov transform.
Aconverse construction is also possible, namely starting from acom-

plete continuous Finsler metric it can be defined an Hamiltonian having
the closed unit cotangential ball of it as 0-sublevel sets. The relation
between the associated Hamilton-Jacobi equation and the metric is as in
the statement of Proposition 1.2

2First variation
In this section we remove any convexity condition on $H$ and on $Z$ . We
still require continuity on the Hamiltonian as well as (1.2) and (1.8). In
addition we need alocally uniform version of (1.1) to get the continuity
of $Z$ , namely we assume that for any compact set $K$ there exists $R>0$

verifying

$\inf\{H(x,p) : x\in K, |p|>R\}>0$ (0.1)
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In this setting the set-valued maps $x|arrow Z(x)$ , $x\}arrow\partial Z(x)$ are can
tinuous compact valued.

The distance $L$ defined in (1.4) is not any more related to (0.1) as in
the convex case. In fact since the support function of any set coincides
with that of its convex hull, it is clear that $L$ is related to aconvexified
form of the equation with Hamiltonian having $coZ(x)$ as 0-sublevel set,
for any $x$ .

We modify the formula of $L$ to give adistance adapted to the non-
convex setting. We will get an $\inf-\sup$ integral formula and make use of
some game-theory devices.

Roughly speaking the modifications can be described as follows:
starting point

$\inf_{\xi}\int_{0}^{1}\sigma(\xi(\mathrm{t}),\dot{\xi}(\mathrm{t})dt=\inf_{\xi}\int_{0}^{1}\sup\eta(\mathrm{t})\dot{\xi}(\mathrm{t})d\mathrm{t}\eta(\mathrm{t})\in Z(\xi(t))$

$1^{st}$ step
“commute” $\sup$ and $\int \mathrm{t}\mathrm{o}$ get

$\inf_{\xi}\sup\int_{0}^{1}\eta(t)\dot{\xi}(\mathrm{t})d\mathrm{t}\eta\in Z(\zeta)$

$2^{nd}$ step
introduce apenalty term to eliminate the constraint in the $\sup$ and

obtain
$\inf_{\xi}\sup_{\eta}\int_{0}^{1}\eta(\mathrm{t})\dot{\xi}(t)-|\dot{\xi}(t)|d^{*}(\eta(\mathrm{t}), Z(\xi(\mathrm{t}))d\mathrm{t}$

where d’ represents the signed Euclidean distance, this term is indeed
positive in the interior of $Z(\xi(t))$ and negative outside it.

$3^{\tau d}$ step
relate $\eta$ and $\dot{\xi}$ using the notion of nonanticipative strategy to get the

final formula.
We denote, for any $T$ , by $B^{T}$ the space of measurable essentially

bounded functions defined in ]0, $T$ [ with values in $\mathrm{R}^{N}$ and set for any
couple $yrx$ of points

$B_{y,x}^{T}= \{\zeta\in B^{T} : y+\int_{0}^{T}\zeta dt=x\}$

we write $\Gamma^{T}$ , $\Gamma_{y,x}^{T}$ for the set on nonanticipative strategies from $B^{T}$ to $B^{T}$

and from $B^{T}$ to $B_{y,x}^{T}$ , respectively
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For $\eta\in B^{T}$ , $\gamma\in\Gamma^{T}$ , we denote by $\xi(\eta, \gamma,$y, .) the integral curve of
$\gamma[\eta]$ which equals y at 0.

For $\eta\in B^{T}$ , $\gamma\in\Gamma^{T}$ we finally define

$\mathrm{I}_{y}^{T}(\eta,\gamma)=\int_{0}^{T}\gamma[\eta]\eta-|\gamma[\eta]|d^{*}(\eta,$ $Z(\xi(\eta, \gamma, y, \cdot))d\mathrm{t}$

We set for any $y$ , $x$

$S(y, x)= \inf_{\gamma\in\Gamma y,x}\sup_{\eta\in B^{1}}\mathrm{I}_{y}^{\mathrm{I}}(\eta, \gamma)$ (2.2)

$S$ satisfies the following dynamical programming principle:

Proposition 2.1 For any $y$ , $x$ , $T>0$

$S(y, x)= \inf_{\gamma\in\Gamma^{T}}\sup_{\eta\in B^{T}}\{\mathrm{I}_{y}^{T}(\eta, \gamma)+S((\xi(\eta, \gamma, y,T), x)\}$

Exploiting it, one can prove that $S$ is acomplete distance on $\mathrm{R}^{N}$

locally equivalent to the Euclidean one with $S\leq L$ . Moreover it can be
related it to the equation (0.1) as follows:

Proposition 2.2 For any $y_{0}$ $u=S(y_{0}$ , $\cdot$ $)$ is solution of (0.1) in $\mathrm{R}^{N}\backslash$

$\{y_{0}\}$ and subsolution in $\mathrm{R}^{N}$ .

Observe that by the coercivity condition (2.1) every subsolution is a
locally Lipschitz continuous $\mathrm{a}.\mathrm{e}$ . subsolution. However in contrast to the
convex case the notions of (viscosity) subsolution and locally Lipschitz
continuous $\mathrm{a}.\mathrm{e}$ . subsolution are not any more equivalent.

There are no uniqueness results unless $Z$ is assumed to have values
strictly star-shaped with respect to 0. If this is the case then the tech-
niques of section 1can be used to recover the Proposition 1,2 with $S$ in
place of $L$ .

We now address the question of examining the relations between the
distances $S$ and $L$ and the metric counterpart of the lack of convexity in
$H$ .

To do that we first need some definitions.
Given ageneral (possibly nonsymmetric) distance $D$ on $\mathrm{R}^{N}$ , we define

for any continuous curve 4defined in $[0, T]$ for acertain $T>0$ , the
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intrinsic length $l_{D}(\xi)$ as the total variation of the curve with respect to
the distance. Namely:

$l_{D}( \xi)=\sup\sum_{\dot{1}}$
$D(\xi(\mathrm{t}:-1), \xi(t_{i}))$

where the supremum is taken with respect to all finite increasing se-
quences $\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\}$ with $\mathrm{t}_{1}=0$ and $\mathrm{t}_{n}=T$ .

Ametric can be then defined via the formula

$D_{l}(y, x)= \inf${ $l_{D}(\xi):\xi$ continuous curve joining $y$ to $x$}

for $y,x\in \mathrm{R}^{N}$ . It is apparent that

$D\leq D_{l}$

We term $D$ path metric, see [5], if equality holds in the previous formula.
The passage from $D$ to $D_{l}$ can be viewed as asort of metric convexifica-
tion. If indeed adistance is complete then the property of being apath
metric, convex in Menger’s sense, and having any couple of points joined
by acurve whose length realizes the distance, are equivalent; moreover
$(D_{l})_{l}=D\iota$ .

While $L$ , being Finsler, is apath metric, this property is in general
not true for $S$ due to the lack of convexity. Anatural issue is then to
determine $S_{l}$ and acandidate for it is of course $L$ .

The equality $S_{l}=L$ should establish aconnection between two dif-
ferent type of convexification, namely the convexification of $Z(x)$ leading
to aquasiconvex Hamiltonian and the metric convexification of $S$ leading
to $S_{l}$ .

We are able to prove the following:

Proposition 2.3 If the values of $Z$ are star-shaped with respect to 0
then $S_{l}=L$

The star-shaped condition is exploited to show the existence for any $x_{0}$ ,
$p_{0}\in \mathrm{i}\mathrm{n}\mathrm{t}$ $Z(x_{0})$ of aset-valued continuous convex compact valued map
$Z_{0}$ verifying

$Z_{0}(x)\subset Z(x)$ for any $x$

$p_{0}\in Z_{0}(x_{0})$
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along with other suitable conditions. Prom this and Proposition 2.2 it
can be proved the relation

$\lim_{y.xx_{0},x\vec{\neq}y},$

$\frac{S(x,y)}{\sigma(x_{0},y-x)}=1$ (2.3)

which implies the equality

$l_{S}(\xi)=l_{L}(\xi)$ (2.4)

for any Lipschitz-continuous curve 4. Knowing that and using the 10-
cal equivalence of $S$ and the Euclidean metric, Proposition 2.3 is finally
proved.

It is worth noticing that there is an inversion in the structure of the
analysis in presence or lack of convexity.

In the convex case in fact the metric properties of the Finsler dis-
tance are used to relate it to (0.1), while in the nonconvex setting, from
Proposition 2.2 it is obtained (2.3), (2.4) and eventually the property of
$S$ stated in Proposition 2.3.

3Second variation
Here we treat the case where $H(x,p)$ is measurable in $x$ for any $p$ and
continuous in $x$ for $\mathrm{a}.\mathrm{e}$ . $p$ .

We assume the following coercivity condition:
for any compact subset $K$ there is $R>0$ with

$\mathrm{e}\mathrm{s}\mathrm{s}\inf\{H(x,p) : |p|>R, x\in k\}>0$ (3.1)

Moreover we require the convexity of $Z(x)$ , (1.2}, (1.8) for $\mathrm{a}$ . $\mathrm{e}$ . $x$ .
The first problem is to adapt the notion of viscosity solution to equa-

tions with measurable Hamiltonianians. We suitably modify $L$ and ex-
amine how the quantity given by the modified formula is related to the
equation.

These relations will be taken as basis for the definition of solution.
The difficulty is that $L$ is the infimum of integrals on curves and these
are negligible with respect to the Lebesgue measure and so difficult to
handle under measurability assumptions on $H$ .
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In modifying $\mathrm{L}$ we try to recover the maximality property of $L(y_{0}$ , $\cdot$ $)$

between the locally Lipschitz-continuous $\mathrm{a}.\mathrm{e}$ . subsolution of the equation
vanishing at $y_{0}$ .

It holds for any $y_{0}$ in the continuous case, but it is not valid any more
even if $H$ is upper semicontinuous. To see this, consider the equation

$|Du|=f$ in $\mathrm{R}^{2}$ (3.2)

with $f$ equal to 1/2 on the line $x_{2}=0$ and to 1on the complement. Then
$u(x)=|x|$ is the maximal Lipschitz-continuous $\mathrm{a}$ . $\mathrm{e}$ . subsolution of (3.2)
vanishing at 0, while the strict inequality

$L(0, x)<|x|$

holds for $x$ with $|x_{2}|$ suitably small.
To justify the formula (3.7) given later, let us argue heuristically still

assuming the upper semicontinuity of $H$ in $x$ and consequently the lower
semicontinuity of the set-valued map $Z$ .

We consider alocally Lipschitz continuous $\mathrm{a}.\mathrm{e}$. subsolution $v$ of (0.1)
vanishing at acertain point $y_{0}$ and $\xi\in A_{v\mathrm{o}x}$,for $x\in R^{N}$ . It results

$v(x)= \int_{0}^{1}\frac{d}{d\mathrm{t}}v(\xi(\mathrm{t}))d\mathrm{t}$ (3.3)

and if $\mathrm{t}_{0}$ is adifferentiability point of $\xi$ then

$\frac{d}{dt}v(\xi(t_{0}))=p(\mathrm{t}_{0})\dot{\xi}(\mathrm{t}_{0})$ (3.4)

for asuitable element $p(\mathrm{t}_{0})$ of the generalized gradient of $\partial v(\xi(\mathrm{t}_{0}))$ .
If $Z$ is continuous or even upper-semi continuous, it is apparent by

the very definition of generalized gradient and the convex character of $Z$

that
$\partial v\langle x$) $\subset Z(x)$ for any $x$

It yields by (3.3), (3.4)

$v(x) \leq\int_{0}^{1}\sigma(\xi,\dot{\xi})d\mathrm{t}$ (3.5)

and
$v(x)\leq L(y_{0},x)$
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The situation is different just lower semicontinuouos are assumed in $Z$

or, as in the general setting, measurability. However the inequality (3.5)
is still valid if 4is required to verify

$\mathcal{L}^{1}(\{\mathrm{t}:\xi(\mathrm{t})\in E\})=0$ (3.6)

with $E$ denoting the null set (i.e. set of vanishing $N$-dimensional Lesbe-
gue measure) where $u$ is not differentiate and $\mathcal{L}^{1}$ the one-dimensional
Lebesgue measure.

If (3.6) holds in fact

$\frac{d}{d\mathrm{t}}v(\xi(\mathrm{t}))=Dv(\xi(\mathrm{t}))\dot{\xi}(\mathrm{t})$ for $\mathrm{a}.\mathrm{e}$ . $\mathrm{t}$

and so the limiting procedure we have applied before is not any more
necessary.

The relation given in (3.6) between acurve and anull set will play
acentral role in the analysis and it will be expressed saying that 4is
transversal to $E$ , in symbols 4 $\mathrm{r}\mathrm{A}$ $E$ .

The previous discussion leads to the following formal inequality

$v(x) \leq\sup_{E||=0}\inf\{I(\xi) : \xi \in A_{y0,x}, \xi \mathrm{r}\Uparrow E\}$ (3.7)

The notion of transversality as well as $\sup-\inf$ formulae similar to
(3.7) have been introduced in [3], [4] in the framework of the study of
the s0-called Lip-manifold and of some class of metrics defined in it.

We proceed to show that the $\sup-\inf$ formula in (3.7) is indeed the
modification of $L$ we were looking for.

Our assumptions imply that $Z$ is measurable as amap from $\mathrm{R}^{N}$ with
the Lebesgue measure to the space of compact subset of $\mathrm{R}^{N}$ endowed
with the Hausdorff topology.

Therefore $x\vdasharrow\sigma(x, q)$ is measurable for any $q$ . We give the conven-
tional $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}+\infty$ to $I(\xi)$ whenever $t\daggerarrow\sigma(\xi(\mathrm{t}),\dot{\xi}(\mathrm{t}))$ is not measurable. It
can be proved using Pubini’s theorem that for any null set $E$ , the subset
of $A_{y,x}$ of curves transversal to $E$ and suche that $I(\xi)$ is well defined and
finite, is nonempty. This implies that the $\sup-\inf$ is finite.

This quantity is invariant with respect to the following equivalence
relation between Hamiltonians:

$H\sim H’$ if $H(x,p)=H’(x,p)$
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for acertain null set $E$ and $(x,p)\in(\mathrm{R}^{N}\backslash E)\mathrm{x}$ $\mathrm{R}^{N}$ . We set for any $y$ , $x$

$T(y, x)= \sup_{E||=0}\inf\{I(\xi) : \xi\in A_{y,x}, \xi \mathrm{r}\Uparrow E\}$ (3.8)

If we renounce to the invariance with respect to the previously defined
equivalence relation and fix arepresentative $H$ (or equivalently $Z$) then
we can select anull set $E_{0}$ such that for any $y$ , $x$

$T(y, x)= \inf\{I(\xi) : \xi\in A_{y,x}, \xi \mathrm{f}\mathrm{h} E_{0}\}$ (3.9)

Taking into account (3.8), we see that (3.9) still holds if we replace
$E_{0}$ by any null set containing it. This remark is frequently exploited in
the analysis.

Prom the previous heuristic discussion it can be understood that
$T=L$ if $H$ is lower semicontinuous with respect to $x$ and so $Z$ upper
semicontinuous.

We proceed to examine the relation between $T$ and the equation
(0.1). It comes from our assumptions that $T(y_{0}$ , $\cdot$ $)$ is locally Lipschitz-
continuous for any $y_{0}$ .

The first step is the following:

Proposition 3.1 For $a.e$ . $x_{0}$

$\lim_{xarrow}\sup_{x_{0}}\frac{T(x,x_{0})}{\sigma(x,x_{0}-x)}\leq 1$ (3.10)

The previous inequality holds, more precisely, if $x_{0}$ is an approximate
continuity point of $Z$ , i.e. apoint verifying for any $\epsilon>0$

$\lim_{farrow 0}.\frac{|\{x.d_{H}(Z(x),Z(x_{0}))<\epsilon\}\cap B(x_{0},r)|}{|B(x_{0},r)|}=1$

where $d_{H}$ denotes the Hausdorff metric and $|\cdot|$ the Lebesgue measure.
We recall that the usual local characterization of measurability holds

for set-valued maps and so the complement of the set of approximate
continuity points has vanishing measure.

Prom the previous proposition we get

Proposition 3.1 For any $y_{0}$ , $L(y_{0}$ , $\cdot$ $)$ is $a.e$ . subsolution of (0.1). In ad-
dttion for any $x_{0}$ and $\varphi$

$C^{1}$ -supertangent to $L(y_{0}, \cdot)$ at $x_{0}$
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$D\varphi(x_{0})\in\overline{Z}(x_{0})$ (3.11)

where $\overline{Z}(x_{0})$ is defined via the $\mathrm{f}\mathrm{o}$ rmula

$\overline{Z}(x_{0})=\cap\{C:\lim_{rarrow 0}.\frac{|\{x\cdot Z(x)\supset C\}\cap B(x_{0},r)|}{|B(x_{0},r)|}=0\}$

In any point of approximate continuity $x$ it result $\overline{Z}(x)=Z(x)$ . For
the equation (3.1) the condition (3.11) reads

$D \varphi(x_{0})\leq \mathrm{a}\mathrm{p}\lim_{xarrow}\sup_{x_{0}}f(x)=\inf\{a:\lim_{farrow 0}.\frac{|\{x.f(x)>a\}\cap B(x_{0},r)|}{|B(x_{0},r)|}=0\}$

An important difference with respect to the convex continuous case is
that $w=T(y0, \cdot)$ is not in general $\mathrm{a}.\mathrm{e}$ . solution of the equation, however
it can be proved that the equality $H$ ($x$ , Du(x)) $=0$ holds in adense
subset of $\mathrm{R}^{N}$ .

The following example shows this phenomenon (see [3]), it is based
on adense set such that the complement has positive measure.

Let $a_{n}$ be asequence made up by all rational numbers, we set

$A=$ { $a\in \mathrm{R}$ : $|a-a_{n}|< \frac{1}{2^{n}}$ for some $n\in \mathrm{N}$}

$B=$ $(\mathrm{R} \mathrm{x}A)\cup(A\cross \mathrm{R})$

Consider the equation (3.2) in $\mathrm{R}^{2}$ with $f$ equal to 1/2 in $B$ and 1on the
complement. Since $B$ is dense in $\mathrm{R}^{2}$ , it results for any fixed $y_{0}=(y_{0}^{1}, y_{0}^{2})$

and $x=(x_{1}, x_{2})$

$w(x)=L(y_{0}, x)= \frac{1}{2}|x_{1}-y_{1}^{0}|+\frac{1}{2}|x_{2}-y_{2}^{0}|$

and so
$|Dw(x)|<1=f(x)$ for any $x\in \mathrm{R}^{2}\backslash B$

The following proposition specifies the supersolution property verified
by $w$ .

Proposition 3.3 For any $x_{0}\neq y_{0}$ and any Lipschitz-continuous func-
tion $\psi$ subtangent to $w$ at $x_{0}$

$\mathrm{e}\mathrm{s}\mathrm{s}\lim_{xarrow}\sup_{x_{0}}\gamma(x, D\psi(x))\geq 1$ (3.11)
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In the statement 7is the gauge function defined for any $x$ , $p$ by

$\gamma(x,p)=\inf\{\lambda>0 : \frac{p}{\lambda}\in Z(x)\}$

The equations (0.1) and $\gamma$ ($x$ , Du) – $1=0$ are equivalent in the sense
specified in section 1.

The essential $\lim\sup$ is given by

$\mathrm{e}\mathrm{s}\mathrm{s}\lim\sup=\lim_{rxarrow x0arrow 0}\{\mathrm{e}\mathrm{s}\mathrm{s}\sup_{B(x_{0},t)}g\}$

This notion has been used in the definition of viscosity solutions for
second order measurable equations, see [1].

Proposition 3.3 can be equivalently stated requiring the non existence
of locally Lipschitz continuous subtangents $\varphi$ at $x_{0}$ verifying

$H(x, D\varphi(x))\leq-\epsilon$

for $\mathrm{a}.\mathrm{e}$ . $x$ in acertain neighborhood of $x_{0}$ and acertain $\epsilon>0$ .
From the properties of $w$ proved in Propositions 3.2, 3.3 we derive

the definition of solution of (0.1) for $H$ measurable.
We say that acontinuous function $u$ is asolution if (3.11) is verified

for any $C^{1}$ supertangent $\varphi$ and (3.12) holds for any Lipschitz-continuous
subtangent $\psi$ . The lack of symmetry in this definition is crucial for prov-
ing comparison and uniqueness results.

Note that the subsolution condition implies the local Lipschitz-continuity
of the subsolutions and it is actually equivalent, as in the case of continu-
ous $H$ , to require such regularity property and the inequality $H(x, Du)\leq$

0 $\mathrm{a}.\mathrm{e}$ .
The formulae and the comparison results established in section 1can

be recovered here with $T$ in place of $L$ using minor modifications of the
usual techniques.

It can be proved that for any $y_{0}w=T(y_{0}$ , $\cdot$ $)$ is the maximal locally
Lipschitz continuous subsolution of the equation vanishing at $y_{0}$ .

The relation (1.7) is still valid for any bounded set $\Omega$ , $u$ subsolution
and $v$ supersolution.

Formula (1.5) with $T$ and $\Omega$ in place of $L$ and $K$ , respectively, repre-
sents the unique solution of (0.1) in 0equaling $g$ on $\partial\Omega$ if the compati-
bility condition (1.6) holds with $T$ replacing $L$ .
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Finally Proposition 1.2 holds true for $T$ . The metric $T$ is not any
more Finsler as in the continuous case, however it can be shown that it
is acomplete path metric locally equivalent to the Euclidean one.

Conversely if $D$ is ametric of this tyPe, it can be indicated aproce-
dure starting from the derivatives $\lim_{tarrow 0}\frac{D(x,x+tq)}{t}$ for $x$ , $q\in \mathrm{R}^{N}$ which
leads to an Hamilton-Jacobi equation related to $D$ as (0.1) and $L$ in
Proposition 1.2.
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