On minimal vertical singular diffusion preventing overturning

儀我美保

北大·理 儀我美一

Mi-Ho Giga and Yoshikazu Giga*
*Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan

1 Introduction

This is a preliminary version of our work to a continuation of recent works [9], [10] of the second author.

In [9] we introduce the notion of proper viscosity solutions for a class of equations whose solutions may develop jump discontinuities. The class contains (scalar) conservation laws as special examples and a proper viscosity solution is essentially equivalent to an entropy solution for conservation laws. In [10] we propose to interpret this evolution as a result of the vertical singular diffusion. By a formal argument we have noted in [10] that there is a threshold value of the strength of the vertical diffusion such that it prevents overturning of the solution.

In this paper we give a rigorous proof for the fact that a solution develops overturning if the strength M of the vertical diffusion is smaller than the critical value by studying the Riemann problem for the Burgers equation:

$$u_t + uu_x = 0, (1.1)$$

$$u(x,0) = (\operatorname{sgn} x)d/2. \tag{1.2}$$

If one views the graph of u as a level set of auxiliarly function $\psi(x,y,t)$, ψ must satisfy

$$\psi_t + y\psi_x = 0. ag{1.3}$$

If we consider (1.3) in $\mathbb{R}^2 \times (0,T)$, each level set of ψ moves by (1.1) if it is represented by the graph of a function u = u(x,t). This formulation is successful to track discontinuous solutions for

$$u_t + H(u, u_x) = 0$$

if $r \mapsto H(r,p)$ is nondecreasing so that solution does not develop discontinuities if the initial data is continuous [12]. However, for (1.1) the zero level set of the solution of (1.3) certainly overturn if initially

$$\{(x,y); \psi(x,y,0) > 0\} = \{(x,y); y < -d/2\} \cup \{(x,y); x < 0, -d/2 \le y < d/2\}; \quad (1.4)$$

in fact, the zero level set $\psi = 0$ for t > 0 cannot be viewed as the graph of a single valued function in any sense.

In [10] we propose to add the vertical diffusion term

$$\psi_t + y\psi_x = M|\nabla\psi|\partial_y(\psi_y/|\psi_y). \tag{1.5}$$

A formal argument [10, Theorem 2.1] reflecting [3] says that if M is large so that

$$V_I \ge V - 2M$$
 on $I = (-d/2, d/2),$ (1.6)

then the zero level set of ψ with initial condition (1.4) does not overturn and equals the graph of the entropy solution of (1.1), (1.2). Here $V(\eta) = -\eta^2/2$ which is the primitive of -y and V_I denotes its convex hull in I. An elementary calculation shows that the minimum value M_0 of M satisfying (1.6) is $d^2/16$. In the numerical simulation [16] we also observe that the overturning occurs if and only if $M < M_0 = d^2/16$. (There I is replaced by (a,b) but the value of M_0 equals $(b-a)^2/16$.)

In this paper we show analytically that M_0 is optimal in the sense that if $M < M_0$, the overturning is not prevented. It is also possible to prove that the overturning does not occur $M \ge M_0$ for more general equations but we shall discuss this problem in one of forthcoming papers.

Although the level set method (see e.g. [8]) allowing the singular diffusivity is well-studied by [4], [5], [6], the equation handled there is spatially homogeneous and excludes (1.5). Instead of developing a general theory for (1.5) we rather study its approximation. In fact, we shall prove that there is a sequence of level set equations

$$\psi_t + y\psi_x = M|\nabla\psi|\operatorname{div}\left(\nabla\gamma_\varepsilon(-\nabla\psi)\right) \tag{1.7}$$

approximating (1.5) such that the limit of zero level set of $\psi = \psi^{\varepsilon}$ develops 'overturning' if $M < M_0$. Here $\gamma_{\varepsilon} \in C^2(\mathbf{R}^2 \setminus \{0\})$ is convex and positively homogeneous of degree one.

The main idea of the proof is to convert the problem of evolution of $\{\psi=0\}$ to the evolution of x=v(y,t) starting with v(y,0)=0. (For this purpose we assume that $\nabla^2\gamma(0,1)=0$ so that the line segment on the line $y=\pm d/2$ does not move.) We study the equation for v derived from (1.7) and prove that it converges to a function which has strictly monotone increasing part in y if $M< M_0$. This means that 'overturning' occurs. Unfortunately, the boundary condition for v at $y=\pm d/2$ is not conventional. It is formally equals the Neumann condition

$$v_y(\pm d/2,t)=-\infty.$$

This is hard to handle so we estimate from above and below by solutions of a homogeneous Neumann problem and on inhomogeneous Dirichlet problem. We prove that solutions of the latter two problems converges to the same function having desired property.

2 Explicit solutions for some inhomogeneous very singular diffusion equations

We consider a singular degenerate parabolic equation for $v = v(\eta, t)$ of the form

$$v_t = M(\operatorname{sgn} v_n)_n + \eta \quad \text{in} \quad I \times (0, \infty), \tag{2.1}$$

$$v = 0 \quad \text{on} \quad \partial I \times (0, \infty),$$
 (2.2)

$$v|_{t=0} = 0 (2.3)$$

with I = (-d/2, d/2), where M > 0 is a parameter. Since $(\operatorname{sgn} v_{\eta})_{\eta}$ formally equals $\delta(v_{\eta})v_{\eta\eta}$, the diffusion is degenerate for $v_{\eta} \neq 0$ and is very strong for $v_{\eta} = 0$. Naively, the meaning of a 'solution' is not clear. Fortunately, the theory of nonlinear semigroups [15] or subdifferential equations provides a suitable notion of a solution. We shall briefly review its notion and give an explicit representation formula of the solution.

We first give a subdifferential interpretation of the problem (2.1)-(2.3). For $v \in H = L^2(I)$ we associate the energy E(v) defined by

$$E(v) := \int_{\mathbf{R}} \{M|\tilde{v}_{\eta}(\eta)| - \eta \tilde{v}(\eta)\} \mathrm{d}\eta \ \ \mathrm{if} \ \ v \in BV(I)$$

and $E(v) := \infty$ if $v \notin BV(I)$. Here BV(I) denotes the space of functions with bounded variation in I and \tilde{v} denotes the extention of v to \mathbf{R} such that $\tilde{v} = 0$ outside I. The integral $\int_{\mathbf{R}} |\nabla \tilde{v}(n)| d\eta$ denotes the total variation of \tilde{v} in \mathbf{R} . Then as in [7, the first lemma in §2] the functional E is convex, lower semicontinuous in the Hilbest space H equipped with the standard inner product $(f,g) = \int_I fgd\eta$. Note that (2.1) is formally a gradient flow of E. Thus we formulate the problem (2.1)-(2.3) as

$$\frac{dv}{dt} \in -\partial E(v),\tag{2.4}$$

$$v(0) = 0, \tag{2.5}$$

where ∂E denotes the subdifferential of E in H. A general theory [15], [1] yields that there is a unique solution v of (2.4) and (2.5) in the sense that

(i) $v \in C([0,\infty), H)$ i.e., v is continuous from the time interval $[0,\infty)$ to H. Moreover, v satisfies (2.5).

(ii) v is absolutely continuous with values in H on each compact set in $(0, \infty)$ and solves (2.4) for almost all $t \ge 0$.

As well-known (e.g. [1], see also [7, §2]) the solution v(t) is right-differentiable at all t > 0 with values in H and its right derivative d^+v/dt satisfies

$$\frac{d^+v}{dt} = -\partial^0 E(v) \quad \text{for all} \quad t > 0.$$
 (2.6)

where $\partial^0 E(v)$ is the canonical restriction (or minimal section) of $\partial E(v)$, i.e., $\partial^0 E(v)$ is the unique element of the closed convex set $\partial E(v)$ which is closest to the origin of H. Moreover, we have another definition of solution equivalent to (i) (ii). Namely, v is the solution of (2.4) and (2.5) if and only if v fulfills (i) and

(ii) v is absolutely continuous with values in H on each compact set in $(0, \infty)$ and solves (2.6) for all t > 0.

Here and hereafter by solution of (2.1)-(2.3) we mean that v satisfies (i) and (ii)'. Fortunately, the solution can be represented in an explicit formula.

Lemma 2.1. Let v be the solution of (2.1)-(2.3). Then v is represented by

$$v(\eta, t) = tv_1(\eta), \ t \ge 0 \tag{2.7}$$

with v_1 satisfying

$$v_1(\eta) = \min(\eta, (\frac{d}{2} - 2M^{1/2})_+)$$
 for $\eta \in [0, \frac{d}{2})$
 $v_1(\eta) = -v_1(-\eta)$ for $\eta \in (-\frac{d}{2}, 0],$

where $\alpha_+ = \max(\alpha, 0)$. In particular, $v_1 \equiv 0$ if and only if $M \geq d^2/16$ and otherwise v_1 has a strictly increasing part.

Remark 2.2. (i) If we replace the homogeneous Dirichlet condition (2.2) by the homogeneous Neumann condition

$$v_{\eta} = 0 \quad \text{on} \quad \partial I \times (0, T),$$
 (2.2')

the solution of (2.1) with (2.2'), (2.3) is the same as in (2.7). Here we should replace the definition of E by

$$E_N(v) := \int_I \{M|v_{\eta}| - \eta v\} d\eta \quad \text{if} \quad v \in BV(I)$$
 (2.8)

and $E_N(v) := \infty$ if $v \notin BV(I)$ so that (2.1), (2.2') (2.3) is formulated by (2.4), (2.5) with E replaced by E_N .

(ii) We may replace the homogeneous Dirichlet condition (2.2) by inhomogeneous Dirichlet condition

$$v = \mp R \quad \text{at} \quad \eta = \pm d/2. \tag{2.2''}$$

The solution of (2.1) with (2.2"), (2.3) is the same as in (2.7) for R > 0. Here we should replace E by

$$E_R(v) := \int_{\mathbf{R}} \{ M|\bar{v}_{\eta}| - \eta \bar{v} \} d\eta \quad \text{if} \quad v \in BV(I)$$
 (2.9)

and $E_R(v) := \infty$ if $v \notin BV(I)$. The extention \bar{v} of v equals -R for $\eta \geq d/2$ and R for $\eta \leq -d/2$. The equation (2.1), (2.2"), (2.3) is now formulated by (2.4), (2.5) with E replaced by E_R .

To show these statements it suffices to verify (2.6) as in [3].

3 Neumann problems for some non-uniform parabolic equations

To study solutions of problems approximating (2.1)-(2.3) we consider the Neumann problem:

$$v_t = a(v_\eta)v_{\eta\eta} + \eta \quad \text{in} \quad I \times (0, \infty), \tag{3.1}$$

$$v_{\eta} = -\alpha \quad \text{on} \quad \partial I \times (0, \infty),$$
 (3.2)

$$v|_{t=0} = 0. (3.3)$$

Here $a \in C^1(\mathbf{R})$ is assumed to be positive and α is a non-negative constant. Since v_{η} of (3.1) solves

$$v_{\eta t} = (a(v_{\eta})v_{\eta \eta})_{\eta} + 1, \tag{3.4}$$

by the maximum principle we have an a priori bound $|v_{\eta}(n,t)| \leq \max(t,\alpha)$ for v_{η} . So in $I \times (0,T)$ with T > 0 we may assume that equation is uniformly parabolic by restricting a on $[-\max(T,\alpha), \max(T,\alpha)]$. A general theory of parabolic equations [14] yields an unique global classical solution $v \in C^{2,1}(I \times [0,\infty)) \cap C^{2,1}(\bar{I} \times (0,\infty))$ of (3.1)-(3.3).

Our main goal in this section is to prove several properties of the solution of (3.1)-(3.3).

Theorem 3.1. Let v^{α} be the solution of (3.1)-(3.3) with $\alpha \geq 0$.

- (i) (Symmetry). $v^{\alpha}(\eta, t) = -v^{\alpha}(-\eta, t)$ for $\eta \in I$, $t \ge 0$. In particular, $v^{\alpha}(0, t) = 0$ for t > 0.
- (ii) (Concavity). $v^{\alpha}(\eta, t) \leq \eta t$, $v^{\alpha}_{t}(\eta, t) \leq \eta$ for $\eta \in I_{+}$, $t \geq 0$ with $I_{+} = (0, d/2)$. In particular, $v^{\alpha}_{\eta\eta} \leq 0$ in $I_{+} \times (0, \infty)$.

- (iii) (Monotonicity). $v^{\alpha} \leq v^{\beta}$ in $I_{+} \times (0, \infty)$ if $\alpha \geq \beta \geq 0$. Moreover $v^{\alpha}_{\eta} \leq v^{\beta}_{\eta}$ in $I_{+} \times (0, \infty)$ if $\alpha \geq \beta \geq 0$.
- (iv) (Lower bound). Assume that

$$c_0 := \int_{-\infty}^0 a(\tau) d\tau \le \frac{d^2}{8}$$

$$(3.5)$$

and

$$c_1 := \int_{-\infty}^{0} |\tau| a(\tau) d\tau < \infty. \tag{3.6}$$

Then $v^{\alpha}(\eta, t) \geq -c_0 c_1$ for $\eta \in [0, d/2], t \geq 0$.

Proof. (i) Since $-v^{\alpha}(-\eta, t)$ solves (3.1)-(3.3), the uniqueness of a solution yields the symmetry.

(ii) Clearly ηt is a supersolution of (3.1)-(3.3) in $I_+ \times (0, \infty)$ with zero boundary condition at $\eta = 0$ so the comparison principle yields $v \leq \eta t$ in $I_+ \times (0, \infty)$. We differentiate (3.1), (3.2) in t to get

$$w_t = a(v_\eta^\alpha) w_{\eta\eta} + a'(v_\eta^\alpha) w_\eta v_{\eta\eta}^\alpha \quad \text{in} \quad I \times (0, \infty)$$
$$w_\eta(d/2, t) = 0, \quad w(0, t) = 0 \text{ (by (i))}$$

for $w = v_t^{\alpha}$. Since $v_t^{\alpha} \leq \eta$ at t = 0 on I_+ by $v^{\alpha} \leq \eta t$, the maximum principle implies that $w \leq \eta$ in $[0, d/2] \times [0, \infty)$. The concavity follows from $v_t \leq \eta$ and the equation (3.1) since a > 0.

(iii) For $\beta \leq \alpha$ the solution v^{β} is a supersolution of (3.1)-(3.3) with v=0 at $\eta=0$ in $I_{+}\times(0,\infty)$, the comparison principle yields $v^{\alpha}\leq v^{\beta}$ in $I_{+}\times(0,\infty)$. Since $v^{\alpha}\leq v^{\beta}$ and $v^{\alpha}=v^{\beta}=0$ at $\eta=0$, we observe that $v^{\alpha}_{\eta}\leq v^{\beta}_{\eta}$ at $\eta=0$. Since v^{β}_{η} solves (3.4) and $v^{\alpha}_{\eta}\leq v^{\beta}_{\eta}$ at $\eta=d/2$, the comparison principle yields $v^{\alpha}_{\eta}\leq v^{\beta}_{\eta}$ in $I_{+}\times(0,\infty)$.

(iv) As in the next Lemma we shall construct a time independent subsolution $f = f_{\alpha}$ for (3.1)-(3.3) in $I_{+} \times (0, \infty)$ with the zero-boundary condition at $\eta = 0$ such that $f_{\alpha} \geq -c_{0}c_{1}$. Once such a subsolution is constructed, the comparison principle yields the bound $v^{\alpha} \geq -c_{0}c_{1}$ for v^{α} .

Lemma 3.2. Assume that (3.5) holds. Then there exists a unique $\sigma \in I_+ = (0, d/2)$ and a C^1 function $f = f_{\alpha}$ on \tilde{I}_+ such that

$$-(A(f'(\eta))' = \eta \quad \text{on} \quad I_+, \tag{3.7}$$

$$f'(d/2) = -\alpha, \ f'(\sigma) = f(\sigma) = 0,$$
 (3.8)

where $A(q) = \int_0^q a(\tau) d\tau$ and f' denotes the derivative of f. If moreover a satisfies (3.6), then

$$-c_0c_1 \le \inf\{f_{\alpha}(\eta); \quad \eta \in [0, d/2], \alpha \ge 0\} = \inf\{f_{\alpha}(d/2); \alpha \ge 0\}$$

(The zero-exterision of f_{α} to $[0,\sigma]$ is still denoted by f_{α}).

Proof. Integrating (3.7) from σ to η yields

$$-A(f'(\eta)) = (\eta^2 - \sigma^2)/2 \tag{3.10}$$

since $f'(\sigma) = 0$. Since $A(p) \leq d^2/8$ for $p \leq 0$ by (3.5), there is unique $\sigma \in I_+$ such that

$$-A(-\alpha) = \frac{1}{2} \left(\frac{d}{2}\right)^2 - \frac{\sigma^2}{2}.$$

We fix such a σ and then taking the inverse A^{-1} of (3.10) to get

$$f'(\eta) = A^{-1}((\sigma^2 - \eta^2)/2), \ \eta \in [\sigma, d/2].$$
 (3.11)

Integrating this with $f(\sigma) = 0$ we obtain the solution f and $\sigma \in I_+$ satisfying (3.7), (3.8).

By (3.11) $f'(\eta) \leq 0$ in I_+ so $\inf_{I_+} f = f(d/2)$. Thus to prove (3.9) if suffices to prove that

$$\inf_{\alpha} f_{\alpha}(d/2) > -\infty. \tag{3.12}$$

Integrating (3.11) over $[\sigma, d/2]$ to get

$$- f_{\alpha}(d/2) = -\int_{\sigma}^{d/2} A^{-1}((\sigma^{2} - \eta^{2})/2) d\eta$$
$$= -\int_{A(-\alpha)}^{0} A^{-1}(\xi) \xi d\xi \le -A(-\infty) \int_{A(-\infty)}^{0} A^{-1}(\xi) d\xi.$$

Since

$$-\int_{A(-\infty)}^{0} A^{-1}(\tau) d\tau = \int_{-\infty}^{0} (A(p) - A(-\infty)) dp = \int_{-\infty}^{0} |\tau| a(\tau) d\tau = C_{0}$$

we now obtain that $-f_{\alpha}(d/2) \leq c_0 c_1$. \square

4 Approximate problems

Let v^{α} be the solution of (3.1)-(3.3). We define v^{∞} by

$$v^{\infty}(\eta, t) = \inf_{\alpha > 0} v^{\alpha}(\eta, t), \eta \in I_{+} = (0, d/2)$$

$$v^{\infty}(\eta, t) = -v^{\infty}(-\eta, t), \eta \in (-d/2, 0)$$

$$v^{\infty}(0, t) = 0.$$

By the monotone properties and bounds (Theorem 3.1) v^{∞} is well-defined and $\eta \mapsto v^{\infty}(\eta, t)$ is C^1 and concave in I_+ .

Our goal in this section is to prove the convergence of v^{∞} to v in (2.7) when $\int_{-\infty}^{q} a^{2} dx$ approximates $M \operatorname{sgn} q$.

Theorem 4.1. Assume that $a = a^{\varepsilon} \in C^1(\mathbf{R}), a^{\varepsilon} > 0$ satisfies (3.5) and (3.6). Assume that c_0^{ε} , c_1^{ε} defined by (3.5), (3.6) with $a = a^{\varepsilon}$ are bounded as $\varepsilon \to 0$. Assume that $A^{\varepsilon}(q) = \int_0^q a^{\varepsilon}(\tau) d\tau$ converges to $M \operatorname{sgn} \eta + c$ with some constant c as $\varepsilon \to 0$ (in the sense of monotone graphs). Let v_{ε}^{∞} be the solution of (3.1), (3.2), (3.3) with $a = a^{\varepsilon}$ and let $v_{\varepsilon}^{\infty} = \inf_{\alpha > 0} v_{\varepsilon}^{\alpha}$. Let v be the function defined in (2.7). Then v_{ε}^{∞} converges to v as $\varepsilon \to 0$ uniformly in every compact subset of $I \times [0, \infty)$.

We shall prove this result by estimating v_{ϵ}^{∞} from above by the solution of the homogeneous Neumann problem and from below by that of a nonhomogeneous Dirichlet problem.

4.1 Convergence of the Neumann problem

Proposition 4.2. Assume that $A^{\varepsilon}(q) = \int_0^q a^{\varepsilon}(\tau) d\tau$ convergence to Msgn $\eta + c$ with some constant c as $\varepsilon \to 0$, where $a^{\varepsilon} \in C^1(\mathbf{R})$ and $a^{\varepsilon} > 0$. Let v_{ε}^0 be the solution of (3.1)-(3.3) with $\alpha = 0$. Then v_{ε}^0 converges to v (defined by (2.7)) as $\varepsilon \to 0$ uniformly in $\bar{I} \times [0, T]$ for any T > 0.

Proof. We formulate the problem (3.1)-(3.3) by using a subdifferential equation $u_t \in -\partial E_N^\varepsilon(u), \ u|_{t=0}=0$. By a stability theorem of J. Watanabe [17] based on [2] the solution v_ε^0 converges to a solution u of $u_t \in -\partial E_N$ in $C([0,T],L^2(I))$ for any T>0. Since the solution of $u_t \in -\partial E_N$ with $u|_{t=0}=0$ equals v of (2.7) as in Remark 2.2, $v_\varepsilon^0 \to v$ in $C([0,T],L^2(I))$. By Theorem 3.1 $v_\varepsilon^0(\eta,t)$ is concave in $\eta \in I_+$ and $v_{\varepsilon\eta}^0 \le 1$ at $\eta=0$. Since $v_{\varepsilon\eta}^0(d/2,t)=0$, we see that $v_{\varepsilon j}^{0j}(\cdot,t_j)$ always contains a uniform convergent subsequence on I as $j\to\infty$ if $\varepsilon_j\to 0$, $t_j\in [0,T]$. Since $v_\varepsilon^0\to v$ in $C([0,T],L^2(I))$ this implies the uniform convergence of v_ε^0 in $\bar I\times [0,T]$ as stated in the next lemma whose proof is elementary.

Lemma 4.3. Assume that $u^{\varepsilon} \to u$ in $C([0,T], L^{2}(\Omega))$ as $\varepsilon \to 0$, where Ω is an open set in \mathbf{R}^{d} . Assume that $\{u^{\varepsilon_{j}}(\cdot,t_{j})\}$ has a uniform convergent subsequence in $\bar{\Omega}$ provident that $\varepsilon_{j} \to 0$, $t_{j} \in [0,T]$. Then $u^{\varepsilon} \to u$ uniformly in $[0,T] \times \bar{\Omega}$.

4.2 Dirichlet problem

We consider the Dirichlet problem for (3.1), (3.3) with $a = a^{\varepsilon}$ with the boundary condition

$$v(\pm d/2, t) = \mp R,\tag{4.1}$$

where R is a positive constant. Let $v_{R^{\epsilon}}$ be the solution of (3.1), (3.3) with (4.1). The solution may not be satisfies (4.1). It can be understood as the limit of a uniformly parabolic problem which approximates (3.1), (3.3) and (4.1). Since we may assume that we conclude that $v_{R\epsilon,\eta\eta} \leq 0$ in $I_t \times (0,\infty)$.

Proposition 4.4 Assume the same hypotheses of Proposition 4.2 concerning a^{ε} . Let $v_{R^{\varepsilon}}$ be the solution of (3.1), (3.3) and (4.1). with $a = a^{\varepsilon}$. Then $v_{R^{\varepsilon}} \to v$ as $\varepsilon \to 0$ uniformly in each compact subset of $I \times [0, \infty)$, where v is defined by (2.7).

Proof. As in the proof of Proposition 4.2 we observe that $v_{R^{\epsilon}} \to v$ in $C([0,T],L^2(I))$. Again $v_{R\epsilon}$ is concave in $\eta \in I_+$ and $v_{R\epsilon,\eta}(0,t) \leq 1$. However, there is no control on $v_{R\epsilon,\eta}(d/2,t)$. All we expect is that $v_{R\epsilon}$ is bounded in $I_+ \times [0,T]$ and $v_{R\epsilon}$ is concave in η . From these facts we are able to prove that $v_{R\epsilon_v}(\cdot,t_j)$ has a uniform convergent subsequence in $[0,d/2-\delta]$ for each $\delta>0$ if $t_j\in [0,T]$ and $\epsilon_j\to 0$. By Lemma 4.3 we now conclude that $v_{R\epsilon}\to v$ in each compact subset of $I\times [0,\infty)$

Proof of Theorem 4.1. By Theorem 3.1 (iii) we see that $v_{\varepsilon}^{\infty} \leq v_{\varepsilon}^{0}$ in $I_{+} \times (0, \infty)$. We take $R \geq c_{0}^{\varepsilon} c_{1}^{\varepsilon}$ for small $\varepsilon > 0$. Then by the comparison for the Dirichlet problem

$$v_{R\varepsilon} \leq v_{\varepsilon}^{\alpha}$$
 in $I_{+} \times (0, \infty)$.

since $v_{R\epsilon} = v_{\epsilon}^{\alpha} = 0$ at $\eta = 0$. This implies

$$v_{R\epsilon} \leq v_{\epsilon}^{\infty}$$
 in $I_{+} \times (0, \infty)$.

The convergence results (Propositions 4.2, 4.4) yield the convergence $v_{\epsilon}^{\infty} \to v$. \Box

5 Level set solutions

We consider the level set equation of the form

$$\psi_t + y\psi_x = M|\nabla\psi|\operatorname{div}\{\nabla\gamma(-\nabla\psi/|\nabla\psi|)\}$$
 in $\mathbf{R}^2 \times (0,\infty)$ (5.1)

Here γ is a convex, positively homogeneous of degree one in \mathbb{R}^2 . If M=0, the set $\{\psi=0\}$ formally represents the graph of a solution of the Burgers equation for u=u(x,t):

$$u_t + uu_x = 0.$$

We shall use the convention that $\psi > 0$ below the graph of u. By a standard theory of the level set equation for each $\psi_0 \in \mathrm{BUC}(\mathbf{R}^2)$ there is a unique viscosity solution $\psi \in \mathrm{BUC}(\mathbf{R}^2 \times [0,T])$ for any T > 0 of (5.1) satisfying $\psi(x,y,t) = \psi_0(x,\eta)$ provided that $\gamma \in C^2(\mathbf{R} \setminus \{0\})$; see [11], [13]. We consider the initial data ψ_0 satisfying

$$\{\psi_0 > 0\} = \{(x,\eta); y < -d/2\} \cup \{(x,\eta); x > 0, y < d/2\} =: D_0.$$

and call the set $D = {\psi > 0}$ is the level set solution (of (5.1)) with the initial data D_0 . The set D is independent of the choice of ψ_0 and is uniquely determined by D_0 . Our main goal is to show that if $M < d^2/16$, then for a large class of γ such that $\nabla \gamma(-\nabla \psi/|\nabla \psi|)$ approximating $\psi_y/|\psi_y|$, the limit of D develop 'overturning'.

Lemma 5.1. Let $\gamma \in C^2(\mathbf{R}^2 \setminus \{0\})$ be convex and positively homogeneous of degree one. Then

$$\nabla^2 \gamma(0,1) = 0$$

if and only if $|q|^3W''(q) \to 0$ as $q \to -\infty$ for $W(q) = \gamma(1, -q)$.

Proof. By definition

$$\gamma_2(1, -q) = -W'(q)$$
 and $\gamma_{22}(1, -q) = W''(q)$,

where $\gamma_i = \partial \gamma / \partial p_i$, $\gamma_{ij} = \partial^2 \gamma / \partial p_i \partial p_j$. Since γ_i is positively homogeneous of degree one, we have

$$\gamma_{12}(1,-q) - q\gamma_{22}(1,-q) = 0$$

$$\gamma_{11}(1,-q) - q\gamma_{12}(1,-q) = 0.$$

Thus

$$\gamma_{11}(1,-q) = q^2 W''(\gamma), \quad \gamma_{12}(1,-q) = gW'(q).$$

Since γ_{ij} is positively homogeneous of degree -1,

$$\gamma_{ij}(1/(1+q^2)^{1/2}, -q/(1+q^2)^{1/2}) = (1+q^2)^{1/2}\gamma_{ij}(1, -q) \to \gamma_{ij}(0, 1)$$

as $q \to -\infty$. Thus $q^3W''(q) \to 0$ as $q \to \infty$ is equivalent to $\gamma_{ij}(0,1) = 0$ for all $1 \le i, j \le 2$.

The next lemma relates the level set solution D and a solution of (3.1), (3,3).

Lemma 5.2 Let $\gamma \in C^2(\mathbb{R} \setminus \{0\})$ be convex and positively homogeneous of degree. Assume that $|q^3|W''(q) \to 0$ as $q \to -\infty$ for $W(q) = \gamma(1, -q)$. Assume that W''(q) > 0. For $a(q) = M(1 + q^2)^{1/2}W''(q)$ let v^{α} the solution of (3.1)-(3.3) and $v^{\infty} = \inf_{\alpha > 0} v^{\alpha}$. Let D be the level set solution with initial data D_0 . Then

$$D = \{(x, y, t); y < -d/2\} \cup \{(x, y, t); x < v^{\infty}(y, t), -d/2 \le y < d/2\}.$$
 (5.2)

The proof is not short. We here indicate the idea of the proof.

Step1. The right hand side (denoted \tilde{D}) of (5.2) is a solution of (5.1) in the sense that the characteristic function of \tilde{D} solves (5.1) in the viscosity sense. We use the fact that the straight part of $\partial \tilde{D} \subset \{y = \pm d/2\}$ does not move because of Lemma 5.1. We also note that $v_{\eta}^{\infty}(\eta, t) \to -\infty$ as $\eta \uparrow d/2$, This is important to prove that \tilde{D} is the solution of (5.1). Note that if the boundary of \tilde{D} is written as x = v(y, t), then v satisfies (3.1).

Step.2 The set \tilde{D} is the level set solution. This can be proved by showing that there is no fattening for \tilde{D} .

As an application of Theorem 4.1 we have a convergence result.

Theorem 5.3. Let γ^{ε} fulfills the assumption of γ in Lemma 5.2 with $W^{\varepsilon}(q) = \gamma^{\varepsilon}(1, -q)$. Assume that $W^{\varepsilon'}(q) \to \operatorname{sgn} q + c$ with some constant c as $\varepsilon \to 0$ in the sense of monotone graphs. Let D^{ε} be the level set solution of (5.1) with $\gamma = \gamma^{\varepsilon}$ starting with D_0 Assume that there is r > 0 such that

$$\int_{-\infty}^{0} (1+q^2)^{1/2} \ W^{\varepsilon''}(q) \mathrm{d}q \le r \quad \text{for small} \quad \varepsilon$$

and

$$\sup_{0<\epsilon<1} \int_{-\infty}^{0} |q| (1+q^2)^{1/2} \ W^{\epsilon''}(q) \mathrm{d}q < \infty.$$

Then \bar{D}^{ε} converges to

$$E = \{(x, y, t); y < -d/2\} \cup \{(x, y, t); x < v(y, t), -d/2 \le y < d/2\}$$

in the sense of Hausdorff distance topology provided that $Mr \leq d^2/8$.

Example. If $W^{\varepsilon}(q) = \int_0^q \tanh(\tau/\varepsilon)d\tau$, then

$$\int_{-\infty}^{0} (1+q^2)^{1/2} W^{\epsilon''}(q) dq \to 1,$$

so for each $\delta > 0$, there is $\varepsilon_0 > 0$ such that

$$\int_{-\infty}^{0} (1+q^2)^{1/2} W^{\varepsilon''}(q) \mathrm{d}q \le 1 + \delta \quad \text{for} \quad \varepsilon \in (0, \varepsilon_0).$$

The condition

$$\sup_{0<\epsilon<1}\int_{-\infty}^0 q(1+q^2)^{1/2}\ W^{\epsilon''}(q)\mathrm{d}q<\infty$$

is evidently fulfilled. Thus the convergence results holds for $M(1+\delta) \leq d^2/8$. If $\delta > 0$ is taken small so that $(1+\delta)/16 < 8$, then we have a threshold value $M = d^2/16$ such that if $M < d^2/16$, then E experiences 'overturning' in the sense that there is a point (x_0, y_0, t_0) and (x_0, y_1, t_0) satisfying $y_1 < y_0$ such that

$$(x_0, y_0, t_0) \in E$$
 while $(x_1, y_1, t_0) \notin E$.

If $M \ge d^2/16$, $E = D_0 \times (0, \infty)$ so no overturn occurs.

References

- [1] V. Bardu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff Int. Pub., Groningen 1976.
- [2] H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Functional Analysis 9 (1972), 63-74.
- [3] M.-H. Giga and Y. Giga, A subdifferential interpretation of crystalline motion under nonuniform driving force, Proc. of the International Conference on Dynamical Systems and Differential Equations, Springfield, Missouri (1996); in Dynamical Systems and Differential Equations" (W.-X. Chen and S.-C. Hu eds.,) Southwest Missouri State Univ. 1998, vol.1 (1998), 276-287.
- [4] M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, Arch. Rational Mech. Anal., 141 (1998), 117-198.
- [5] M.-H. Giga and Y. Giga, Stability for evolving graphs by nonlocal weighted curvature, Commun. in PDEs 24 (1999), 109-184.
- [6] M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.
- [7] M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations, Advanced Studies in Pure Mathematics **31** (2001), Taniguchi Conference on Mathematics, Nara '98 (eds. T. Sunada and M. Maruyama) pp.93-125.
- [8] Y. Giga, A level set method for surface evolution equation, Sugaku Expositions 10 (1999), 217-241. Translated from Sūgaku 47 (1995), 321-340.
- [9] Y. Giga, Viscosity solutions with shocks, Comm. Pure Appl. Math., to appear.
- [10] Y. Giga, Shocks and very strong vertical diffusion, Free boundary problems (Kyoto, 2000). Sūrikaisekikenkyūsho Kōkyūroku **1210** (2001), 156-166.
- [11] Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving proparties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J., 40 (1991), 443-470.
- [12] Y. Giga and M.-H. Sato, A level set approach to semicontinuous viscosity solutions for Cauchy problems. Comm. Partial Differential Equations 26 (2001), 813-839.
- [13] H. Ishii and P. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. 47 (1995), 227-250.

- [14] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-Linear Equation of Parabolic Type, AMS (1968).
- [15] Y. Kōmura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan 19 (1967), 493-507.
- [16] Y.-H.R. Tsai, Y. Giga and S. Oscher, A level set approach for computing discontinuous solutions of a class of Hamilton-Jacobi equations, Math. Comp. to appear.
- [17] J. Watanabe, Approximation of nonlinear problems of a certain type, in 'Numerical analysis of evolution equations', (H. Fujita and M. Yamaguti, eds.), Lecture Notes Numer. Appl. Anal., 1, Kinokuniya Book Store, Tokyo (1979), pp. 147-163.